Evaluation of Endocrine Disruptome and VirtualToxLab for Predicting Per- and Polyfluoroalkyl Substances Binding to Nuclear Receptors
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection of Compounds
2.2. Docking with ED
2.3. Docking with VTL
2.4. Database Search
2.4.1. CompTox Database
- For AR:
- o TOX21_AR_BLA_Agonist_ratio
- o TOX21_AR_LUC_MDAKB2_Agonist
- o TOX21_AR_LUC_MDAKB2_Agonist_3µM_Nilutamide
- o TOX21_AR_BLA_Antagonist_ratio
- o TOX21_AR_LUC_MDAKB2_Antagonist_10nM_R1881
- o TOX21_AR_LUC_MDAKB2_Antagonist_0.5nM_R1881
- For ERα:
- o TOX21_ERa_BLA_Agonist_ratio
- o TOX21_ERa_LUC_VM7_Agonist
- o TOX21_ERa_LUC_VM7_Agonist_10nM_ICI182780
- o TOX21_ERa_BLA_Antagonist_ratio
- o TOX21_ERa_LUC_VM7_Antagonist_0.5nM_E2
- o TOX21_ERa_LUC_VM7_Antagonist_0.1nM_E2
- For ERβ:
- o TOX21_ERb_BLA_Agonist_ratio
- o TOX21_ERb_BLA_Antagonist_ratio
- For GR:
- o TOX21_GR_BLA_Agonist_ratio
- o TOX21_GR_BLA_Antagonist_ratio
- For PPARγ:
- o TOX21_PPARg_BLA_Agonist_ratio
- o TOX21_PPARg_BLA_antagonist_ratio
2.4.2. PubMed Database
2.5. Evaluation of ED and VTL
2.6. Relationship Between Lipophilicity and Nuclear Receptor Interaction Potential
3. Results
3.1. Selection of Compounds and Receptors and Results of In Silico Analysis
3.2. Evaluation of ED
3.3. Evaluation of VTL
3.4. Combined Approaches
3.5. Assessment of PFAS Reactivity with AR, ERα, and ERβ Using “ED/VTL Approach”
4. Discussion
4.1. Suitability of ED and VTL for the Identification of AR Binders
4.2. Suitability of ED and VTL for the Identification of ER Binders
4.3. Suitability of ED and VTL for the Identification of GR Binders
4.4. Suitability of ED and VTL for the Identification of PPAR Binders
4.5. Assessment of PFAS Reactivity with Nuclear Receptors and Preliminary Structure–Activity Relationship
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PFMOPrA | Perfluoro-3-methoxypropanoic acid |
PFBA | Perfluorobutanoic acid |
PFPeA | Perfluoropentanoic acid |
PFHxA | Perfluorohexanoic acid |
PFHpA | Perfluoroheptanoic acid |
PFOA | Perfluorooctanoic acid |
PFNA | Perfluorononanoic acid |
PFDA | Perfluorodecanoic acid |
PFUnA | Perfluoroundecanoic acid |
PFBS | Perfluorobutanesulfonic acid |
PFPeS | Perfluoropentanesulfonic acid |
PFHxS | Perfluorohexanesulfonic acid |
PFHpS | Perfluoroheptanesulfonic acid |
PFOS | Perfluorooctanesulfonic acid |
PFNS | Perfluorononanesulfonic acid |
PFDS | Perfluorodecanesulfonic acid |
9-Cl | 9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid |
PFOSA | Perfluorooctanesulfonamide |
NMeFOSAA | 2-(N-Methylperfluorooctanesulfonamido)acetic acid |
NEtFOSAA | 2-(N-Ethylperfluorooctanesulfonamido)acetic acid |
4:2 FTS | 4:2 Fluorotelomer sulfonic acid |
6:2 FTS | 6:2 Fluorotelomer sulfonic acid |
8:2 FTS | 8:2 Fluorotelomer sulfonic acid |
8:2 FTOH | 8:2 Fluorotelomer alcohol |
6:2 FTOH | 6:2 Fluorotelomer alcohol |
HFPO-DA | Perfluoro-2-methyl-3-oxahexanoic acid |
ADONA | 4,8-Dioxa-3H-perfluorononanoic acid |
PFMBA | Perfluoro(4-methoxybutanoic) acid |
PFEESA | Perfluoro(2-ethoxyethane)sulfonic acid |
8:2 monoPAP | 8:2 Fluorotelomer dihydrogen phosphate |
6:2 monoPAP | 6:2 Fluorotelomer phosphate monoester |
5:3 acid | 2H,2H,3H,3H-perfluorooctanoic acid |
PFECA B | Perfluoro-3,6-dioxaheptanoic acid |
References
- Gaines, L.G.T. Historical and Current Usage of Per- and Polyfluoroalkyl Substances (PFAS): A Literature Review. Am. J. Ind. Med. 2023, 66, 353–378. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Lee, T.; Sahle-Demessie, E.; Ateia, M.; Nadagouda, M.N. Recent Advances on PFAS Degradation via Thermal and Nonthermal Methods. Chem. Eng. J. Adv. 2023, 13, 100421. [Google Scholar] [CrossRef]
- Coggan, T.L.; Moodie, D.; Kolobaric, A.; Szabo, D.; Shimeta, J.; Crosbie, N.D.; Lee, E.; Fernandes, M.; Clarke, B.O. An Investigation into Per- and Polyfluoroalkyl Substances (PFAS) in Nineteen Australian Wastewater Treatment Plants (WWTPs). Heliyon 2019, 5, e02316. [Google Scholar] [CrossRef]
- Silva, A.O.D.; Spencer, C.; Scott, B.F.; Backus, S.; Muir, D.C.G. Detection of a Cyclic Perfluorinated Acid, Perfluoroethylcyclohexane Sulfonate, in the Great Lakes of North America. Environ. Sci. Technol. 2011, 45, 8060–8066. [Google Scholar] [CrossRef]
- Rankin, K.; Mabury, S.A.; Jenkins, T.M.; Washington, J.W. A North American and Global Survey of Perfluoroalkyl Substances in Surface Soils: Distribution Patterns and Mode of Occurrence. Chemosphere 2016, 161, 333–341. [Google Scholar] [CrossRef]
- Borghese, M.M.; Ward, A.; MacPherson, S.; Manz, K.E.; Atlas, E.; Fisher, M.; Arbuckle, T.E.; Braun, J.M.; Bouchard, M.F.; Ashley-Martin, J. Serum Concentrations of Legacy, Alternative, and Precursor per- and Polyfluoroalkyl Substances: A Descriptive Analysis of Adult Female Participants in the MIREC-ENDO Study. Environ. Health 2024, 23, 55. [Google Scholar] [CrossRef]
- DeLuca, N.M.; Minucci, J.M.; Mullikin, A.; Slover, R.; Hubal, E.A.C. Human Exposure Pathways to Poly- and Perfluoroalkyl Substances (PFAS) from Indoor Media: A Systematic Review. Environ. Int. 2022, 162, 107149. [Google Scholar] [CrossRef]
- EPA. Our Current Understanding of the Human Health and Environmental Risks of PFAS. Available online: https://www.epa.gov/pfas/our-current-understanding-human-health-and-environmental-risks-pfas (accessed on 22 November 2024).
- Rosato, I.; Bonato, T.; Fletcher, T.; Batzella, E.; Canova, C. Estimation of Per- and Polyfluoroalkyl Substances (PFAS) Half-Lives in Human Studies: A Systematic Review and Meta-Analysis. Environ. Res. 2024, 242, 117743. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, L.; Barouki, R.; Blanc, E.; Coumoul, X.; Andréau, K. Per- and Polyfluoroalkyl Substances as Persistent Pollutants with Metabolic and Endocrine-Disrupting Impacts. Trends Endocrinol. Metab. 2024, 36, 249–261. [Google Scholar] [CrossRef]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.; Nebbia, C.S.; et al. Risk to Human Health Related to the Presence of Perfluoroalkyl Substances in Food. EFSA J. 2020, 18, e06223. [Google Scholar] [CrossRef] [PubMed]
- Berg, V.; Nøst, T.H.; Hansen, S.; Elverland, A.; Veyhe, A.S.; Jorde, R.; Odland, J.Ø.; Sandanger, T.M. Assessing the Relationship between Perfluoroalkyl Substances, Thyroid Hormones and Binding Proteins in Pregnant Women; a Longitudinal Mixed Effects Approach. Environ. Int. 2015, 77, 63–69. [Google Scholar] [CrossRef]
- Tsai, M.S.; Lin, C.C.; Chen, M.H.; Hsieh, W.S.; Chen, P.C. Perfluoroalkyl Substances and Thyroid Hormones in Cord Blood. Environ. Pollut. 2017, 222, 543–548. [Google Scholar] [CrossRef]
- Wang, Y.; Rogan, W.J.; Chen, P.C.; Lien, G.W.; Chen, H.Y.; Tseng, Y.C.; Longnecker, M.P.; Wang, S.L. Association between Maternal Serum Perfluoroalkyl Substances during Pregnancy and Maternal and Cord Thyroid Hormones: Taiwan Maternal and Infant Cohort Study. Environ. Health Perspect. 2014, 122, 529–534. [Google Scholar] [CrossRef]
- Louis, G.M.B.; Chen, Z.; Schisterman, E.F.; Kim, S.; Sweeney, A.M.; Sundaram, R.; Lynch, C.D.; Gore-Langton, R.E.; Barr, D.B. Perfluorochemicals and Human Semen Quality: The LIFE Study. Environ. Health Perspect. 2014, 123, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Louis, G.M.B.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Lynch, C.D.; Gore-Langton, R.E.; Maisog, J.; Kim, S.; Chen, Z.; Barr, D.B. Persistent Environmental Pollutants and Couple Fecundity: The LIFE Study. Environ. Health Perspect. 2013, 121, 231–236. [Google Scholar] [CrossRef]
- Averina, M.; Brox, J.; Huber, S.; Furberg, A.S. Exposure to Perfluoroalkyl Substances (PFAS) and Dyslipidemia, Hypertension and Obesity in Adolescents. The Fit Futures Study. Environ. Res. 2021, 195, 110740. [Google Scholar] [CrossRef]
- Pitter, G.; Jeddi, M.Z.; Barbieri, G.; Gion, M.; Fabricio, A.S.C.; Daprà, F.; Russo, F.; Fletcher, T.; Canova, C. Perfluoroalkyl Substances Are Associated with Elevated Blood Pressure and Hypertension in Highly Exposed Young Adults. Environ. Health 2020, 19, 102. [Google Scholar] [CrossRef]
- Grandjean, P.; Meddis, A.; Nielsen, F.; Sjödin, A.; Hjorth, M.F.; Astrup, A.; Budtz-Jørgensen, E. Weight Loss Relapse Associated with Exposure to Perfluorinated Alkylate Substances. Obesity 2023, 31, 1686–1696. [Google Scholar] [CrossRef] [PubMed]
- Franko, N.; Kodila, A.; Dolenc, M.S. Adverse Outcomes of the Newly Emerging Bisphenol A Substitutes. Chemosphere 2024, 364, 143147. [Google Scholar] [CrossRef] [PubMed]
- Miranda, R.A.; Silva Souza, B.; de Moura, E.G.; Lisboa, P.C. Pesticides as Endocrine Disruptors: Programming for Obesity and Diabetes | Endocrine. Endocrine 2023, 79, 437–447. [Google Scholar] [CrossRef]
- Mokra, K. Endocrine Disruptor Potential of Short- and Long-Chain Perfluoroalkyl Substances (PFASs)—A Synthesis of Current Knowledge with Proposal of Molecular Mechanism. Int. J. Mol. Sci. 2021, 22, 2148. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Bourguignon, J.-P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef]
- Revised Guidance Document 150 on Standardised Test Guidelines for Evaluating Chemicals for Endocrine Disruption. Available online: https://www.oecd.org/en/publications/guidance-document-on-standardised-test-guidelines-for-evaluating-chemicals-for-endocrine-disruption-2nd-edition_9789264304741-en.html (accessed on 26 November 2024).
- European Chemical Agency (ECHA) and European Food Safety Authority (EFSA) with the technical support of the Joint Research Centre (JRC); Andersson, N.; Arena, M.; Auteri, D.; Barmaz, S.; Grignard, E.; Kienzler, A.; Lepper, P.; Lostia, A.M.; Munn, S.; et al. Guidance for the Identification of Endocrine Disruptors in the Context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA J. 2018, 16, e05311. [Google Scholar] [CrossRef]
- Ding, D.; Xu, L.; Fang, H.; Hong, H.; Perkins, R.; Harris, S.; Bearden, E.D.; Shi, L.; Tong, W. The EDKB: An Established Knowledge Base for Endocrine Disrupting Chemicals. BMC Bioinform. 2010, 11, S5. [Google Scholar] [CrossRef] [PubMed]
- QSAR Toolbox. Available online: https://qsartoolbox.org/ (accessed on 26 November 2024).
- Steinmetz, F.P.; Mellor, C.L.; Meinl, T.; Cronin, M.T.D. Screening Chemicals for Receptor-Mediated Toxicological and Pharmacological Endpoints: Using Public Data to Build Screening Tools within a KNIME Workflow. Mol. Inform. 2015, 34, 171–178. [Google Scholar] [CrossRef]
- Kolšek, K.; Mavri, J.; Dolenc, M.S.; Gobec, S.; Turk, S. Endocrine Disruptome—An Open Source Prediction Tool for Assessing Endocrine Disruption Potential through Nuclear Receptor Binding. J. Chem. Inf. Model. 2014, 54, 1254–1267. [Google Scholar] [CrossRef] [PubMed]
- Vedani, A.; Dobler, M.; Smieško, M. VirtualToxLab—A Platform for Estimating the Toxic Potential of Drugs, Chemicals and Natural Products. Toxicol. Appl. Pharmacol. 2012, 261, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Stanojević, M.; Grobelšek, M.V.; Dolenc, M.S. Computational Evaluation of Endocrine Activity of Biocidal Active Substances. Chemosphere 2021, 267, 129284. [Google Scholar] [CrossRef]
- Rosenmai, A.K.; Ahrens, L.; Godec, T.L.; Lundqvist, J.; Oskarsson, A. Relationship between Peroxisome Proliferator-Activated Receptor Alpha Activity and Cellular Concentration of 14 Perfluoroalkyl Substances in HepG2 Cells. J. Appl. Toxicol. 2018, 38, 219–226. [Google Scholar] [CrossRef]
- Behr, A.C.; Plinsch, C.; Braeuning, A.; Buhrke, T. Activation of Human Nuclear Receptors by Perfluoroalkylated Substances (PFAS). Toxicol. Vitr. 2020, 62, 104700. [Google Scholar] [CrossRef]
- Evans, N.; Conley, J.M.; Cardon, M.; Hartig, P.; Medlock-Kakaley, E.; Gray, L.E. In Vitro Activity of a Panel of Per- and Polyfluoroalkyl Substances (PFAS), Fatty Acids, and Pharmaceuticals in Peroxisome Proliferator-Activated Receptor (PPAR) Alpha, PPAR Gamma, and Estrogen Receptor Assays. Toxicol. Appl. Pharmacol. 2022, 449, 116136. [Google Scholar] [CrossRef] [PubMed]
- Kjeldsen, L.S.; Bonefeld-Jørgensen, E.C. Perfluorinated Compounds Affect the Function of Sex Hormone Receptors. Environ. Sci. Pollut. Res. 2013, 20, 8031–8044. [Google Scholar] [CrossRef]
- US EPA. Working List of PFAS Chemicals with Research Interest and Ongoing Work by EPA. Available online: https://www.epa.gov/chemical-research/working-list-pfas-chemicals-research-interest-and-ongoing-work-epa (accessed on 23 April 2025).
- United States Environmental Protection Agency CompTox Chemicals Dashboard. Available online: https://comptox.epa.gov/dashboard/ (accessed on 1 January 2025).
- Kenda, M.; Dolenc, M.S. Computational Study of Drugs Targeting Nuclear Receptors. Molecules 2020, 25, 1616. [Google Scholar] [CrossRef] [PubMed]
- Kenda, M.; Karas Kuželički, N.; Iida, M.; Kojima, H.; Dolenc, M. Triclocarban, Triclosan, Bromochlorophene, Chlorophene, and Climbazole Effects on Nuclear Receptors: An in Silico and in Vitro Study. Environ. Health Perspect. 2020, 128, 107005. [Google Scholar] [CrossRef]
- Nowak, K.; Jakopin, Ž. In Silico Profiling of Endocrine-Disrupting Potential of Bisphenol Analogues and Their Halogenated Transformation Products. Food Chem. Toxicol. 2023, 173, 113623. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Yoshinouchi, Y.; Hirano, M.; Nomiyama, K.; Nakata, H.; Kim, E.Y.; Iwata, H. In Silico Simulations and Molecular Descriptors to Predict in Vitro Transactivation Potencies of Baikal Seal Estrogen Receptors by Environmental Contaminants. Ecotoxicol. Environ. Saf. 2023, 265, 115495. [Google Scholar] [CrossRef]
- Roman, D.L.; Isvoran, A.; Filip, M.; Ostafe, V.; Zinn, M. In Silico Assessment of Pharmacological Profile of Low Molecular Weight Oligo-Hydroxyalkanoates. Front. Bioeng. Biotechnol 2020, 8, 584010. [Google Scholar] [CrossRef]
- Ruiz, P.; Sack, A.; Wampole, M.; Bobst, S.; Vracko, M. Integration of in Silico Methods and Computational Systems Biology to Explore Endocrine-Disrupting Chemical Binding with Nuclear Hormone Receptors. Chemosphere 2017, 178, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Baldi, P.; Brunak, S.; Chauvin, Y.; Andersen, C.A.F.; Nielsen, H. Assessing the Accuracy of Prediction Algorithms for Classification: An Overview. Bioinformatics 2000, 16, 412–424. [Google Scholar] [CrossRef]
- PubChem Database. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 11 November 2024).
- White, A.C.; Mueller, R.A.; Gallavan, R.H.; Aaron, S.; Wilson, A.G. A Multiple in Silico Program Approach for the Prediction of Mutagenicity from Chemical Structure. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2003, 539, 77–89. [Google Scholar] [CrossRef]
- Benninghoff, A.D.; Bisson, W.H.; Koch, D.C.; Ehresman, D.J.; Kolluri, S.K.; Williams, D.E. Estrogen-Like Activity of Perfluoroalkyl Acids In Vivo and Interaction with Human and Rainbow Trout Estrogen Receptors In Vitro. Toxicol. Sci. 2011, 120, 42–58. [Google Scholar] [CrossRef] [PubMed]
- Rosenmai, A.K.; Taxvig, C.; Svingen, T.; Trier, X.; van Vugt-Lussenburg, B.M.A.; Pedersen, M.; Lesné, L.; Jégou, B.; Vinggaard, A.M. Fluorinated Alkyl Substances and Technical Mixtures Used in Food Paper-Packaging Exhibit Endocrine-Related Activity in Vitro. Andrology 2016, 4, 662–672. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, H.; Ishida, H.; Matsuoka, M.; Tominaga, N.; Arizono, K. Estrogenic Effects of Fluorotelomer Alcohols for Human Estrogen Receptor Isoforms α and β in Vitro. Biol. Pharm. Bull. 2007, 30, 1358–1359. [Google Scholar] [CrossRef]
- Rosenmai, A.K.; Nielsen, F.K.; Pedersen, M.; Hadrup, N.; Trier, X.; Christensen, J.H.; Vinggaard, A.M. Fluorochemicals Used in Food Packaging Inhibit Male Sex Hormone Synthesis. Toxicol. Appl. Pharmacol. 2013, 266, 132–142. [Google Scholar] [CrossRef]
- Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. J. Med. Chem. 2012, 55, 6582–6594. [Google Scholar] [CrossRef]
- Yu, S.; Ren, J.; Lv, Z.; Li, R.; Zhong, Y.; Yao, W.; Yuan, J. Prediction of the Endocrine-Disrupting Ability of 49 per- and Polyfluoroalkyl Substances: In Silico and Epidemiological Evidence. Chemosphere 2022, 290, 133366. [Google Scholar] [CrossRef]
- Singam, E.R.A.; Durkin, K.A.; Merrill, M.A.L.; Furlow, J.D.; Wang, J.C.; Smith, M.T. Prediction of the Interactions of a Large Number of Per- and Poly-Fluoroalkyl Substances with Ten Nuclear Receptors. Environ. Sci. Technol. 2024, 58, 4487–4499. [Google Scholar] [CrossRef]
- Sadrabadi, F.; Alarcan, J.; Sprenger, H.; Braeuning, A.; Buhrke, T. Impact of Perfluoroalkyl Substances (PFAS) and PFAS Mixtures on Lipid Metabolism in Differentiated HepaRG Cells as a Model for Human Hepatocytes. Arch. Toxicol. 2024, 98, 507–524. [Google Scholar] [CrossRef]
- Wolf, C.J.; Schmid, J.E.; Lau, C.; Abbott, B.D. Activation of Mouse and Human Peroxisome Proliferator-Activated Receptor-Alpha (PPARα) by Perfluoroalkyl Acids (PFAAs): Further Investigation of C4–C12 Compounds. Reprod. Toxicol. 2012, 33, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Heuvel, J.P.V.; Thompson, J.T.; Frame, S.R.S.R.; Gillies, P.J. Differential Activation of Nuclear Receptors by Perfluorinated Fatty Acid Analogs and Natural Fatty Acids: A Comparison of Human, Mouse, and Rat Peroxisome Proliferator-Activated Receptor-α, -β, and -γ, Liver X Receptor-β, and Retinoid X Receptor-α. Toxicol. Sci. 2006, 92, 476–489. [Google Scholar] [CrossRef]
- Li, C.H.; Ren, X.M.; Guo, L.H. Adipogenic Activity of Oligomeric Hexafluoropropylene Oxide (Perfluorooctanoic Acid Alternative) through Peroxisome Proliferator-Activated Receptor γ Pathway. Environ. Sci. Technol. 2019, 53, 3287–3295. [Google Scholar] [CrossRef]
- Kowalska, D.; Sosnowska, A.; Bulawska, N.; Stępnik, M.; Besselink, H.; Behnisch, P.; Puzyn, T. How the Structure of Per- and Polyfluoroalkyl Substances (PFAS) Influences Their Binding Potency to the Peroxisome Proliferator-Activated and Thyroid Hormone Receptors—An In Silico Screening Study. Molecules 2023, 28, 479. [Google Scholar] [CrossRef]
- Bulawska, N.; Sosnowska, A.; Kowalska, D.; Stępnik, M.; Puzyn, T. PFAS (per- and Polyfluorinated Alkyl Substances) as EDCs (Endocrine-Disrupting Chemicals)—Identification of Compounds with High Potential to Bind to Selected Terpenoids NHRs (Nuclear Hormone Receptors). Chemosphere 2025, 370, 143967. [Google Scholar] [CrossRef]
- Pattarawat, P.; Zhan, T.; Fan, Y.; Zhang, J.; Yang, H.; Zhang, Y.; Moyd, S.; Douglas, N.C.; Urbanek, M.; Buckley, B.; et al. Exposure to Long- and Short-Chain Per- and Polyfluoroalkyl Substances in Mice and Ovarian-Related Outcomes: An in Vivo and in Vitro Study. Environ. Health Perspect. 2025, 133, 057024. [Google Scholar] [CrossRef] [PubMed]
- Palazzolo, S.; Caligiuri, I.; Sfriso, A.A.; Mauceri, M.; Rotondo, R.; Campagnol, D.; Canzonieri, V.; Rizzolio, F. Early Warnings by Liver Organoids on Short- and Long-Chain PFAS Toxicity. Toxics 2022, 10, 91. [Google Scholar] [CrossRef]
- Behr, A.C.; Lichtenstein, D.; Braeuning, A.; Lampen, A.; Buhrke, T. Perfluoroalkylated Substances (PFAS) Affect Neither Estrogen and Androgen Receptor Activity nor Steroidogenesis in Human Cells in Vitro. Toxicol. Lett. 2018, 291, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Carlier, M.P.; Cenijn, P.H.; Baygildiev, T.; Irwan, J.; Escher, S.E.; van Duursen, M.B.M.; Hamers, T. Profiling the Endocrine-Disrupting Properties of Triazines, Triazoles, and Short-Chain PFAS. Toxicol. Sci. 2024, 202, 250–264. [Google Scholar] [CrossRef]
- Qiu, Z.; Qu, K.; Luan, F.; Liu, Y.; Zhu, Y.; Yuan, Y.; Li, H.; Zhang, H.; Hai, Y.; Zhao, C. Binding Specificities of Estrogen Receptor with Perfluorinated Compounds: A Cross Species Comparison. Environ. Int. 2020, 134, 105284. [Google Scholar] [CrossRef]
- Ishibashi, H.; Hirano, M.; Kim, E.Y.; Iwata, H. In Vitro and In Silico Evaluations of Binding Affinities of Perfluoroalkyl Substances to Baikal Seal and Human Peroxisome Proliferator-Activated Receptor α. Environ. Sci. Technol. 2019, 53, 2181–2188. [Google Scholar] [CrossRef]
- Wolf, C.J.; Rider, C.V.; Lau, C.; Abbott, B.D. Evaluating the Additivity of Perfluoroalkyl Acids in Binary Combinations on Peroxisome Proliferator-Activated Receptor-α Activation. Toxicology 2014, 316, 43–54. [Google Scholar] [CrossRef]
- Wilson, J.; Berntsen, H.F.; Zimmer, K.E.; Verhaegen, S.; Frizzell, C.; Ropstad, E.; Connolly, L. Do Persistent Organic Pollutants Interact with the Stress Response? Individual Compounds, and Their Mixtures, Interaction with the Glucocorticoid Receptor. Toxicol. Lett. 2016, 241, 121–132. [Google Scholar] [CrossRef]
- Garoche, C.; Boulahtouf, A.; Grimaldi, M.; Chiavarina, B.; Toporova, L.; den Broeder, M.J.; Legler, J.; Bourguet, W.; Balaguer, P. Interspecies Differences in Activation of Peroxisome Proliferator-Activated Receptor γ by Pharmaceutical and Environmental Chemicals. Environ. Sci. Technol. 2021, 55, 16489–16501. [Google Scholar] [CrossRef]
- Kashobwe, L.; Sadrabadi, F.; Braeuning, A.; Leonards, P.E.G.; Buhrke, T.; Hamers, T. In Vitro Screening of Understudied PFAS with a Focus on Lipid Metabolism Disruption. Arch. Toxicol. 2024, 98, 3381–3395. [Google Scholar] [CrossRef]
- Lu, T.; Zheng, W.; Hu, F.; Lin, X.; Tao, R.; Li, M.; Guo, L.H. Disruption of Zebrafish Sex Differentiation by Emerging Contaminants Hexafluoropropylene Oxides at Environmental Concentrations via Antagonizing Androgen Receptor Pathways. Environ. Int. 2024, 190, 108868. [Google Scholar] [CrossRef]
- Xin, Y.; Ren, X.M.; Wan, B.; Guo, L.H. Comparative in Vitro and in Vivo Evaluation of the Estrogenic Effect of Hexafluoropropylene Oxide Homologues. Environ. Sci. Technol. 2019, 53, 8371–8380. [Google Scholar] [CrossRef]
- Murase, W.; Kubota, A.; Ikeda-Araki, A.; Terasaki, M.; Nakagawa, K.; Shizu, R.; Yoshinari, K.; Kojima, H. Effects of Perfluorooctanoic Acid (PFOA) on Gene Expression Profiles via Nuclear Receptors in HepaRG Cells: Comparative Study with in Vitro Transactivation Assays. Toxicology 2023, 494, 153577. [Google Scholar] [CrossRef] [PubMed]
- Pederick, J.L.; Frkic, R.L.; McDougal, D.P.; Bruning, J.B. A Structural Basis for the Activation of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) by Perfluorooctanoic Acid (PFOA). Chemosphere 2024, 354, 141723. [Google Scholar] [CrossRef] [PubMed]
- Conley, J.M.; Lambright, C.S.; Evans, N.; Strynar, M.J.; McCord, J.; McIntyre, B.S.; Travlos, G.S.; Cardon, M.C.; Medlock-Kakaley, E.; Hartig, P.C.; et al. Adverse Maternal, Fetal, and Postnatal Effects of Hexafluoropropylene Oxide Dimer Acid (GenX) from Oral Gestational Exposure in Sprague-Dawley Rats. Environ. Health Perspect. 2019, 127, 37008. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Liu, L.; Hu, J.; Fu, H.; Li, H.; Chen, J.; Yang, C.; Guo, Q.; Liang, X.; Wang, L.; et al. Accumulation and Glucocorticoid Signaling Acids Based on Animal Exposure and Cell Testing. Environ. Int. 2023, 178, 108092. [Google Scholar] [CrossRef]
Perfluoroalkyl Carboxylates | Perfluoroalkane Sulfonates | Perfluoroalkane Sulfonamides | Fluorotelomer Alcohols | Perfluoroalkyl Ether Carboxylates | Fluorotelomer Phosphate Esters | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R | Model | PFBA | PFPeA | PFHxA | PFHpA | PFOA | PFNA | PFDA | PFUnA | PFBS | PFHxS | PFOS | PFOSA | 6:2 FTOH | 8:2 FTOH | HFPO-DA |
8:2 monoPAP |
ARs | ED | −6.90 | −7.30 | −7.60 | −9.00 | −8.90 | −9.40 | −9.70 | −10.40 | −7.90 | −8.60 | −9.70 | −9.80 | −8.60 | −9.40 | −8.00 | −9.10 |
ED an. | −6.80 | −7.30 | −8.20 | −8.70 | −8.80 | −9.20 | −9.60 | −10.20 | −8.20 | −8.30 | −9.70 | −9.50 | −8.50 | −9.47 | −7.90 | −9.10 | |
VTL | >100 | >100 | >100 | >100 | 31.70 | 33.20 | 17.40 | 8.80 | >100 | 97.60 | 60.00 | 15.40 | 4.32 | 0.62 | >100 | >100 | |
in vitro | N | N | N | P | P | P | P | N | N | P | P | P | N | N | N | N | |
ERα | ED | −5.70 | −6.40 | −7.10 | −7.70 | −8.50 | −9.00 | −9.30 | −9.80 | −6.80 | −8.10 | −9.10 | −9.40 | −8.00 | −9.00 | −7.10 | −9.20 |
ED an. | −5.90 | −6.50 | −7.00 | −7.80 | −8.50 | −9.20 | −9.60 | −9.90 | −6.70 | −8.10 | −9.20 | −9.30 | −8.00 | −8.90 | −7.00 | −8.70 | |
VTL | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | 5.58 | 1.51 | >100 | >100 | |
in vitro | N | / | N | N | P | P | P | P | N | N | P | P | P | P | N | / | |
ERβ | ED | −6.00 | −6.80 | −7.50 | −8.20 | −9.30 | −9.70 | −9.80 | −10.40 | −7.20 | −8.70 | −9.70 | −9.90 | −8.40 | −9.03 | −7.90 | −9.40 |
ED an. | −5.80 | −6.60 | −7.30 | −7.90 | −8.50 | −9.20 | −9.70 | −9.70 | −7.00 | −8.30 | −9.40 | −9.40 | −7.60 | −9.10 | −7.20 | −8.80 | |
VTL | >100 | >100 | >100 | >100 | >100 | >100 | >100 | 96.20 | >100 | >100 | >100 | 93.70 | 4.30 | 0.71 | >100 | >100 | |
in vitro | N | / | N | P | P | P | N | N | N | N | P | P | P | N | N | / | |
GRs | ED | −5.60 | −5.90 | −6.80 | −7.30 | −7.60 | −8.40 | −9.20 | −9.60 | −6.40 | −7.50 | −8.50 | −8.60 | −7.40 | −8.13 | −7.00 | −9.10 |
ED an. | −5.60 | −6.10 | −6.40 | −6.80 | −7.50 | −7.90 | −7.90 | −8.20 | −6.50 | −7.00 | −7.80 | −7.80 | −7.20 | −7.97 | −6.50 | −7.70 | |
VTL | >100 | 85.50 | 23.70 | >100 | 14.10 | 24.00 | 32.40 | 6.32 | >100 | 8.40 | 56.40 | 42.00 | 18.60 | 4.54 | >100 | 53.50 | |
in vitro | / | / | N | N | N | N | N | N | / | / | N | N | N | N | N | / | |
PPARα | ED | −5.60 | −6.30 | −7.10 | −7.50 | −8.00 | −8.10 | −8.50 | −8.80 | −6.30 | −7.20 | −8.10 | −8.30 | −7.30 | −8.30 | −6.70 | −8.40 |
in vitro | N | P | P | P | P | P | P | P | P | P | P | N | N | N | P | N | |
PPARγ | ED | −6.10 | −6.60 | −7.20 | −7.80 | −7.90 | −8.30 | −8.90 | −9.40 | −6.90 | −7.40 | −8.70 | −8.50 | −7.80 | −8.50 | −7.30 | −8.70 |
VTL | >100 | >100 | 27.10 | 26.30 | 33.00 | 30.20 | 6.16 | 6.44 | 91.90 | 46.00 | 1.77 | 1.74 | 35.50 | 11.20 | 45.70 | >100 | |
in vitro | N | P | P | P | P | P | P | N | N | P | P | N | N | N | P | N |
TP | FP | TN | FN | PPV [%] | Se [%] | NPV [%] | Sp [%] | Acc [%] | MCC | |
---|---|---|---|---|---|---|---|---|---|---|
AR | 7 | 7 | 2 | 0 | 50 | 100 | 100 | 22 | 56 | 0.3 |
ERα | 6 | 0 | 6 | 2 | 100 | 75 | 75 | 100 | 86 | 0.8 |
ERβ | 4 | 2 | 5 | 2 | 67 | 67 | 71 | 71 | 69 | 0.4 |
GR | 0 | 0 | 11 | 0 | 100 | 100 | 100 | |||
PPARα | 0 | 0 | 5 | 11 | 0 | 31 | 100 | 31 | ||
PPARγ | 0 | 0 | 7 | 9 | 0 | 44 | 100 | 44 |
TP | FP | TN | FN | PPV [%] | Se [%] | NPV [%] | Sp [%] | Acc [%] | MCC | |
---|---|---|---|---|---|---|---|---|---|---|
AR | 6 | 3 | 6 | 1 | 67 | 86 | 86 | 67 | 75 | 0.5 |
ERα | 2 | 0 | 6 | 6 | 100 | 25 | 50 | 100 | 57 | 0.4 |
ERβ | 2 | 2 | 6 | 4 | 50 | 33 | 60 | 75 | 57 | 0.1 |
GR | 0 | 9 | 2 | 0 | 0 | 100 | 18 | 18 | ||
PPARγ | 8 | 5 | 2 | 1 | 62 | 89 | 67 | 29 | 63 | 0.2 |
TP | FP | TN | FN | PPV [%] | Se [%] | NPV [%] | Sp [%] | Acc [%] | MCC | |
---|---|---|---|---|---|---|---|---|---|---|
AR | 7 | 7 | 2 | 0 | 50 | 100 | 100 | 22 | 56 | 0.3 |
ERα | 7 | 0 | 6 | 1 | 100 | 88 | 86 | 100 | 93 | 0.9 |
ERβ | 5 | 3 | 5 | 1 | 63 | 83 | 83 | 63 | 71 | 0.5 |
GR | 0 | 8 | 3 | 0 | 0 | 100 | 27 | 27 | ||
PPARγ | 8 | 5 | 2 | 1 | 62 | 89 | 67 | 29 | 63 | 0.2 |
TP | FP | TN | FN | PPV | Se [%] | NPV [%] | Sp [%] | Acc [%] | MCC | |
---|---|---|---|---|---|---|---|---|---|---|
AR | 6 | 3 | 6 | 1 | 67 | 86 | 86 | 67 | 75 | 0.5 |
ERα | 1 | 0 | 6 | 7 | 17 | 50 | 100 | 55 | 0.3 | |
ERβ | 1 | 2 | 6 | 5 | 33 | 17 | 55 | 75 | 50 | −0.1 |
GR | 0 | 0 | 11 | 0 | 100 | 100 | 100 | |||
PPARγ | 0 | 0 | 7 | 9 | 0 | 44 | 100 | 44 |
Perfluoroalkyl Carboxylates | Perfluoroalkane Sulfonates | Perfluoroalkane Sulfonamides | N-Alkyl Perfluoroalkyl Sulfonamido Carboxylates | Fluorotelomer Alcohols | Perfluoroalkyl Ether Carboxylates | Fluorotelomer Phosphate Esters | Fluorotelomer Carboxylates | Perfluoroalkyl Polyether Carboxylates | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PFMOPrA | PFBA | PFPeA | PFHxA | PFHpA | PFOA | PFNA | PFDA | PFUnA | PFBS | PFPeS | PFHxS | PFHpS | PFOS | PFNS | PFDS | 9-Cl | PFOSA | NMeFOSAA | NEtFOSAA | 4:2 FTS | 6:2 FTS | 8:2 FTS | 6:2 FTOH | 8:2 FTOH | HFPO-DA | ADONA | PFMBA | PFEESA | 6:2 monoPAP | 8:2 monoPAP | 5:3 Acid | PFECA B | |
AR | N | N | N | N | P | P | P | P | N | N | N | P | P | P | P | P | N | P | P | P | P | P | P | N | N | N | N | N | N | N | N | P | N |
ERα | N | N | N | N | N | P | P | P | P | N | N | N | N | P | P | P | P | P | P | P | N | N | P | P | P | N | N | N | N | N | P | N | N |
ERβ | N | N | N | N | P | P | P | N | N | N | N | N | P | P | P | P | P | P | P | P | N | N | P | P | P | N | N | N | N | P | P | P | N |
# | 0 | 0 | 0 | 0 | 2 | 3 | 3 | 2 | 1 | 0 | 0 | 1 | 1 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 1 | 1 | 3 | 2 | 2 | 0 | 0 | 0 | 0 | 1 | 2 | 2 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franko, N.; Vetrih, M.; Sollner Dolenc, M. Evaluation of Endocrine Disruptome and VirtualToxLab for Predicting Per- and Polyfluoroalkyl Substances Binding to Nuclear Receptors. J. Xenobiot. 2025, 15, 136. https://doi.org/10.3390/jox15050136
Franko N, Vetrih M, Sollner Dolenc M. Evaluation of Endocrine Disruptome and VirtualToxLab for Predicting Per- and Polyfluoroalkyl Substances Binding to Nuclear Receptors. Journal of Xenobiotics. 2025; 15(5):136. https://doi.org/10.3390/jox15050136
Chicago/Turabian StyleFranko, Nina, Manca Vetrih, and Marija Sollner Dolenc. 2025. "Evaluation of Endocrine Disruptome and VirtualToxLab for Predicting Per- and Polyfluoroalkyl Substances Binding to Nuclear Receptors" Journal of Xenobiotics 15, no. 5: 136. https://doi.org/10.3390/jox15050136
APA StyleFranko, N., Vetrih, M., & Sollner Dolenc, M. (2025). Evaluation of Endocrine Disruptome and VirtualToxLab for Predicting Per- and Polyfluoroalkyl Substances Binding to Nuclear Receptors. Journal of Xenobiotics, 15(5), 136. https://doi.org/10.3390/jox15050136