Advanced Characterization of Environmental Pollutant Metabolism in Human Skin
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Chemical Treatment of RHE Tissues
2.3. Chemical Analysis
2.4. Data Analysis
2.5. Workflow Validation
- Quality Assurance (QA) Practices:
- The analytical setup and workflows strictly adhere to Standard Operating Procedures (SOPs).
- The LC-HRMS instrument used was systematically calibrated, tuned, and maintained according to the manufacturer’s specifications and our internal QA protocols prior to each analytical sequence. This includes regular checks of mass accuracy and signal intensity, ensuring the instrument is operating optimally for untargeted metabolite detection.
- Quality Control (QC) Sample Implementation:
- Replicate Samples: Experimental samples were run in triplicates. This allowed us to evaluate the consistency of metabolite detection across technical replicates, ensuring that detected features were robustly observed.
- Internal Standards (IS): BaP and BaP 12D were qualitatively considered as internal standards. They served as end-to-end process controls, allowing us to monitor and assess the consistency of extraction efficiency, chromatographic alignment, ion pairing, and overall data treatment performance throughout the entire analytical workflow.
- Blank Samples: Process blanks were strategically interspersed within the analytical batch. These blanks were instrumental in identifying potential background noise, reagent contaminants, and carryover effects. Features detected in process blanks that exceeded a predefined signal-to-noise ratio were filtered out to enhance the specificity of our xenometabolite detection.
- Post-Analysis Quality Management:
- Data Processing and Filtering: We utilized the Compound Discoverer algorithm, which integrates an XCMS package, to process the raw data. While such algorithms are extensively validated for peak detection and alignment [29], we implemented additional manual review steps, as recommended by Evans et al., to verify peak detection, chromatographic alignment, and feature integration for critical xenometabolites.
- Quality of Identification: For the characterization of xenometabolites, we followed Metabolomics Standards Initiative (MSI) recommendations. This involves matching exact mass, retention time, and MS/MS fragmentation patterns against authentic standards or spectral libraries when possible. The highlighted metabolites were all in the 3rd level of confidence (exact mass and formula match).
3. Results
3.1. Stable Isotope Labeling Approach
3.2. Search for Xenometabolites
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACN | Acetonitrile |
APCI | Atmospheric Pressure Chemical Ionization |
ATP | Adenosine Triphosphate |
BaP | Benzo[a]pyrene |
CYP | Cytochrome P450 Monooxygenases |
DMSO | Dimethyl Sulfoxide |
FWHM | Full Width at Half Maximum |
HRMS | High-Resolution Mass Spectrometry |
KMD | Kendrick Mass Defect |
LC-HRMS | Liquid Chromatography–High-Resolution Mass Spectrometry |
m/z | Mass-to-Charge Ratio |
mEH | Microsomal Epoxide Hydrolase |
MS | Mass Spectrometry |
MS/MS | Tandem Mass Spectrometry |
PCA | Principal Component Analysis |
PAH | Polycyclic Aromatic Hydrocarbon |
PDA | Photodiode Array |
PLS-DA | Partial Least Squares Discriminant Analysis |
ppm | Parts Per Million |
QTOF-MS | Quadrupole Time-of-Flight Mass Spectrometry |
RHE | Reconstructed Human Epidermis |
RT | Retention Time |
SIL | Stable Isotope Labeling |
S/N | Signal-to-Noise Ratio |
SOD | Superoxide Dismutase |
TPs | Transformation Product |
UFP | Ultrafine Particle |
UHPLC | Ultra-High-Performance Liquid Chromatography |
UV | Ultraviolet |
UVA1 | Ultraviolet A1 (350–400 nm) |
References
- Parrado, C.; Mercado-Saenz, S.; Perez-Davo, A.; Gilaberte, Y.; Gonzalez, S.; Juarranz, A. Environmental Stressors on Skin Aging. Mechanistic Insights. Front. Pharmacol. 2019, 10, 759. [Google Scholar] [CrossRef]
- Tang, X.Y.; Yang, T.Y.; Yu, D.J.; Xiong, H.; Zhang, S.Y. Current insights and future perspectives of ultraviolet radiation (UV) exposure: Friends and foes to the skin and beyond the skin. Environ. Int. 2024, 185, 108535. [Google Scholar] [CrossRef]
- Gu, X.Y.; Li, Z.R.; Su, J. Air pollution and skin diseases: A comprehensive evaluation of the associated mechanism. Ecotox Environ. Safe 2024, 278, 116429. [Google Scholar] [CrossRef]
- Krutmann, J.; Liu, W.; Li, L.; Pan, X.C.; Crawford, M.; Sore, G.; Seite, S. Pollution and skin: From epidemiological and mechanistic studies to clinical implications. J. Dermatol. Sci. 2014, 76, 163–168. [Google Scholar] [CrossRef]
- Bukowska, B.; Mokra, K.; Michalowicz, J. Benzo[a]pyrene-Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity. Int. J. Mol. Sci. 2022, 23, 6348. [Google Scholar] [CrossRef]
- Moreau, M.; Ouellet, N.; Ayotte, P.; Bouchard, M. Effects of Intravenous Benzo[a]Pyrene Dose Administration on Levels of Exposure Biomarkers, DNA Adducts, and Gene Expression in Rats. J. Toxicol. Environ. Health Part A 2015, 78, 166–184. [Google Scholar] [CrossRef]
- Misra, N.; Clavaud, C.; Guinot, F.; Bourokba, N.; Nouveau, S.; Mezzache, S.; Palazzi, P.; Appenzeller, B.M.R.; Tenenhaus, A.; Leung, M.H.Y.; et al. Multi-omics analysis to decipher the molecular link between chronic exposure to pollution and human skin dysfunction. Sci. Rep. 2021, 11, 18302. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Guo, C.S.; Li, Q.; Zhong, Y.; Ma, S.T.; Zhou, J.H.; Li, X.T.; Huang, R.D.; Yu, Y.X. Human health risks estimations from polycyclic aromatic hydrocarbons in serum and their hydroxylated metabolites in paired urine samples*. Environ. Pollut. 2021, 290, 117975. [Google Scholar] [CrossRef] [PubMed]
- Fustinoni, S.; Campo, L.; Cirla, P.E.; Martinotti, I.; Buratti, M.; Longhi, O.; Foà, V.; Bertazzi, P. Dermal exposure to polycyclic aromatic hydrocarbons in asphalt workers. Occup. Environ. Med. 2010, 67, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, M.A.; Pham, D.M.; Boussouira, B.; Qiu, H.; Ye, C.; Long, X.; Chen, R.; Gu, W.; Laurent, A.; Nguyen, Q.L. Consequences of urban pollution upon skin status. A controlled study in Shanghai area. Int. J. Cosmet. Sci. 2016, 38, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, M.A.; Pham, D.M.; Boussouira, B.; Bernard, D.; Camus, C.; Nguyen, Q.L. Evaluation of the impact of urban pollution on the quality of skin: A multicentre study in Mexico. Int. J. Cosmet. Sci. 2015, 37, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, A.; Zanini, M.; Zucchi, H.; Boudah, S.; Lima, J.; Soeur, J.; Marrot, L. Vitamin C prevents epidermal damage induced by PM-associated pollutants and UVA1 combined exposure. Exp. Dermatol. 2021, 30, 1693–1698. [Google Scholar] [CrossRef] [PubMed]
- Soeur, J.; Belaïdi, J.P.; Chollet, C.; Denat, L.; Dimitrov, A.; Jones, C.; Perez, P.; Zanini, M.; Zobiri, O.; Mezzache, S.; et al. Photo-pollution stress in skin: Traces of pollutants (PAH and particulate matter) impair redox homeostasis in keratinocytes exposed to UVA1. J. Dermatol. Sci. 2017, 86, 162–169. [Google Scholar] [CrossRef]
- Xue, W.L.; Warshawsky, D. Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: A review. Toxicol. Appl. Pharm. 2005, 206, 73–93. [Google Scholar] [CrossRef]
- von Koschembahr, A.; Youssef, A.; Béal, D.; Calissi, C.; Bourgart, E.; Marques, M.; Leccia, M.T.; Giot, J.P.; Maitre, A.; Douki, T. Solar simulated light exposure alters metabolization and genotoxicity induced by benzo[a] pyrene in human skin. Sci. Rep. 2018, 8, 14692. [Google Scholar] [CrossRef]
- van Eijl, S.; Zhu, Z.Y.; Cupitt, J.; Gierula, M.; Götz, C.; Fritsche, E.; Edwards, R.J. Elucidation of Xenobiotic Metabolism Pathways in Human Skin and Human Skin Models by Proteomic Profiling. PLoS ONE 2012, 7, e41721. [Google Scholar] [CrossRef]
- Kazem, S.; Linssen, E.C.; Gibbs, S. Skin metabolism phase I and phase II enzymes in native and reconstructed human skin: A short review. Drug Discov. Today 2019, 24, 1899–1910. [Google Scholar] [CrossRef]
- Jiang, H.; Gelhaus, S.L.; Mangal, D.; Harvey, R.G.; Blair, I.A.; Penning, T.M. Metabolism of Benzo[a]pyrene in human bronchoalveolar H358 cells using liquid chromatography-mass spectrometry. Chem. Res. Toxicol. 2007, 20, 1331–1341. [Google Scholar] [CrossRef]
- Brinkmann, J.; Stolpmann, K.; Trappe, S.; Otter, T.; Genkinger, D.; Bock, U.; Liebsch, M.; Henkler, F.; Hutzler, C.; Luch, A. Metabolically Competent Human Skin Models: Activation and Genotoxicity of Benzo[a]pyrene. Toxicol. Sci. 2013, 131, 351–359. [Google Scholar] [CrossRef]
- Creusot, N.; Casado-Martinez, C.; Chiaia-Hernandez, A.; Kiefer, K.; Ferrari, B.J.D.; Fu, Q.G.; Munz, N.; Stamm, C.; Tlili, A.; Hollender, J. Retrospective screening of high-resolution mass spectrometry archived digital samples can improve environmental risk assessment of emerging contaminants: A case study on antifungal azoles. Environ. Int. 2020, 139, 105708. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liang, W.Q.; Feng, X.X.; Ruan, T.; Jiang, G.B. Recent advances in data-mining techniques for measuring transformation products by high-resolution mass spectrometry. Trac-Trend Anal. Chem. 2021, 143, 116409. [Google Scholar] [CrossRef]
- Gorrochategui, E.; Jaumot, J.; Lacorte, S.; Tauler, R. Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: Overview and workflow. Trac-Trend Anal. Chem. 2016, 82, 425–442. [Google Scholar] [CrossRef]
- Takahashi, M.; Izumi, Y.; Iwahashi, F.; Nakayama, Y.; Iwakoshi, M.; Nakao, M.; Yamato, S.; Fukusaki, E.; Bamba, T. Highly Accurate Detection and Identification Methodology of Xenobiotic Metabolites Using Stable Isotope Labeling, Data Mining Techniques, and Time-Dependent Profiling Based on LC/HRMS/MS. Anal. Chem. 2018, 90, 9068–9076. [Google Scholar] [CrossRef]
- Gao, S.; Zhou, X.L.; Yue, M.J.; Zhu, S.Y.; Liu, Q.; Zhao, X.E. Advances and perspectives in chemical isotope labeling-based mass spectrometry methods for metabolome and exposome analysis. Trac-Trend Anal. Chem. 2023, 162, 117022. [Google Scholar] [CrossRef]
- Shen, D.H.; Lu, Z.J.; Zhong, J.Y.; Zhang, S.F.; Ye, Q.F.; Wang, W.; Gan, J. Combination of high specific activity carbon-14 labeling and high resolution mass spectrometry to study pesticide metabolism in crops: Metabolism of cycloxaprid in rice. Environ. Int. 2021, 157, 106879. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.F.; Hou, X.W.; Mao, X.W.; Jiao, S.N.; Wei, L.F.; Wang, Y.T.; Liu, J.Y.; Jiang, G.B. Biotic and Abiotic Transformation Pathways of a Short-Chain Chlorinated Paraffin Congener, 1,2,5,6,9,10-CHCl, in a Rice Seedling Hydroponic Exposure System. Environ. Sci. Technol. 2022, 56, 9486–9496. [Google Scholar] [CrossRef]
- Bowen, T.J.; Southam, A.D.; Hall, A.R.; Weber, R.J.M.; Lloyd, G.R.; Macdonald, R.; Wilson, A.; Pointon, A.; Viant, M.R. Simultaneously discovering the fate and biochemical effects of pharmaceuticals through untargeted metabolomics. Nat. Commun. 2023, 14, 4653. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.M.; O’Donovan, C.; Playdon, M.; Beecher, C.; Beger, R.D.; Bowden, J.A.; Broadhurst, D.; Clish, C.B.; Dasari, S.; Dunn, W.B.; et al. Dissemination and analysis of the quality assurance (QA) and quality control (QC) practices of LC-MS based untargeted metabolomics practitioners. Metabolomics 2020, 16, 113. [Google Scholar] [CrossRef] [PubMed]
- Tengstrand, E.; Lindberg, J.; Åberg, K.M. TracMass 2-A Modular Suite of Tools for Processing Chromatography-Full Scan Mass Spectrometry Data. Anal. Chem. 2014, 86, 3435–3442. [Google Scholar] [CrossRef]
- Cui, X.; Mi, T.Y.; Xiao, X.; Dong, Y.Y.; Zhang, H.; Chen, G.Q.; Gu, X.L. Metabolomic Reprogramming Induced by Benzo[a]pyene in Skin Keratinocytes and Protective Effects of Glutathione Amino Acid Precursors. J. Cosmet. Dermatol. 2025, 24, e70168. [Google Scholar] [CrossRef]
- Reed, L.; Arlt, V.M.; Phillips, D.H. The role of cytochrome P450 enzymes in carcinogen activation and detoxication: An paradox. Carcinogenesis 2018, 39, 851–859. [Google Scholar] [CrossRef]
- Fukusaki, E.I.; Harada, K.; Bamba, T.; Kobayashi, A. An isotope effect on the comparative quantification of flavonoids by means of methylation-based stable isotope dilution coupled with capillary liquid chromatography/mass spectrometry. J. Biosci. Bioeng. 2005, 99, 75–77. [Google Scholar] [CrossRef]
- Tautenhahn, R.; Bottcher, C.; Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinform. 2008, 9, 504. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- Lu, D.; Harvey, R.G.; Blair, I.A.; Penning, T.M. Quantitation of benzo[a]pyrene metabolic profiles in human bronchoalveolar (H358) cells by stable isotope dilution liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Chem. Res. Toxicol. 2011, 24, 1905–1914. [Google Scholar] [CrossRef]
- Luu-The, V.; Duche, D.; Ferraris, C.; Meunier, J.R.; Leclaire, J.; Labrie, F. Expression profiles of phases 1 and 2 metabolizing enzymes in human skin and the reconstructed skin models Episkin™ and full thickness model from Episkin™. J. Steroid Biochem. 2009, 116, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Marrot, L. Pollution and Sun Exposure: A Deleterious Synergy. Mechanisms and Opportunities for Skin Protection. Curr. Med. Chem. 2018, 25, 5469–5486. [Google Scholar] [CrossRef] [PubMed]
- Sleno, L. The use of mass defect in modern mass spectrometry. J. Mass. Spectrom. 2012, 47, 226–236. [Google Scholar] [CrossRef]
- Loss, E.M.O.; Yu, J.H. Bioremediation and microbial metabolism of benzo(a)pyrene. Mol. Microbiol. 2018, 109, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, D.; Ghosh, S.; Dutta, T.K.; Ahn, Y. Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. Front. Microbiol. 2016, 7, 1369. [Google Scholar] [CrossRef]
- Veselkov, K.A.; Vingara, L.K.; Masson, P.; Robinette, S.L.; Want, E.; Li, J.V.; Barton, R.H.; Boursier-Neyret, C.; Walther, B.; Ebbels, T.M.; et al. Optimized Preprocessing of Ultra-Performance Liquid Chromatography/Mass Spectrometry Urinary Metabolic Profiles for Improved Information Recovery. Anal. Chem. 2011, 83, 5864–5872. [Google Scholar] [CrossRef]
- Yi, L.Z.; Dong, N.P.; Yun, Y.H.; Deng, B.C.; Ren, D.B.; Liu, S.; Liang, Y.Z. Chemometric methods in data processing of mass spectrometry-based metabolomics: A review. Anal. Chim. Acta 2016, 914, 17–34. [Google Scholar] [CrossRef]
- van der Greef, J.; Smilde, A.K. Symbiosis of chemometrics and metabolomics: Past, present, and future. J. Chemometr. 2005, 19, 376–386. [Google Scholar] [CrossRef]
- Djoumbou-Feunang, Y.; Fiamoncini, J.; Gil-de-la-Fuente, A.; Greiner, R.; Manach, C.; Wishart, D.S. BioTransformer: A comprehensive computational tool for small molecule metabolism prediction and metabolite identification. J. Cheminform. 2019, 11, 2. [Google Scholar] [CrossRef]
- de Jonge, N.F.; Mildau, K.; Meijer, D.; Louwen, J.J.R.; Bueschl, C.; Huber, F.; van der Hooft, J.J.J. Good practices and recommendations for using and benchmarking computational metabolomics metabolite annotation tools. Metabolomics 2022, 18, 103. [Google Scholar] [CrossRef] [PubMed]
- Wade, D. Deuterium isotope effects on noncovalent interactions between molecules. Chem. Biol. Interact. 1999, 117, 191–217. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Luo, M.D.; Wang, H.M.; Zhou, Z.W.; Yin, Y.D.; Wang, R.H.; Xing, B.Z.; Yang, X.H.; Cai, Y.P.; Zhu, Z.J. Charting unknown metabolic reactions by mass spectrometry-resolved stable-isotope tracing metabolomics. Nat. Commun. 2025, 16, 5059. [Google Scholar] [CrossRef] [PubMed]
Feature | Molecular Mass (M) | Molecular Formula | RT (min) | Modification | Identification |
---|---|---|---|---|---|
– | 252.09390 | C20H12O | 2.2 | – | BaP |
1 | 268.08882 | C20H12O | 1.5 | +OH | Hydroxylated derivative |
2 | 268.08882 | C20H12O | 0.8 | +OH | Hydroxylated derivative |
3 | 282.06808 | C20H10O2 | 1.7 | +2O | Quinone derivative |
4 | 282.06808 | C20H10O2 | 1.0 | +2O | Quinone derivative |
5 | 284.08372 | C20H12O2 | 0.9 | +2OH | Dihydroxylated derivative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, R.; Zanini, M.; Lereaux, G.; Dimitrov, A.; Boudah, S. Advanced Characterization of Environmental Pollutant Metabolism in Human Skin. J. Xenobiot. 2025, 15, 163. https://doi.org/10.3390/jox15050163
Reis R, Zanini M, Lereaux G, Dimitrov A, Boudah S. Advanced Characterization of Environmental Pollutant Metabolism in Human Skin. Journal of Xenobiotics. 2025; 15(5):163. https://doi.org/10.3390/jox15050163
Chicago/Turabian StyleReis, Rafael, Martine Zanini, Guillaume Lereaux, Ariane Dimitrov, and Samia Boudah. 2025. "Advanced Characterization of Environmental Pollutant Metabolism in Human Skin" Journal of Xenobiotics 15, no. 5: 163. https://doi.org/10.3390/jox15050163
APA StyleReis, R., Zanini, M., Lereaux, G., Dimitrov, A., & Boudah, S. (2025). Advanced Characterization of Environmental Pollutant Metabolism in Human Skin. Journal of Xenobiotics, 15(5), 163. https://doi.org/10.3390/jox15050163