Inhibiting Effects of Antibiotic-Loaded Porous Gelatin-Hydroxyapatite Microspheres on Staphylococcus aureus
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Preparation and Characterization
2.1.1. Synthesis of Porous Gelatin-HAp Composite Microspheres (G-HAM)
2.1.2. Scanning Electron Microscopy (SEM)
2.1.3. X-Ray Diffraction (XRD)
2.1.4. Transmission Electron Microscopy (TEM)
2.1.5. Fourier Transform Infrared Spectroscopy (FTIR)
2.1.6. Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
2.1.7. Thermal Analysis
2.1.8. Heat Treatment
2.2. Drug Loading and Release Kinetics
2.2.1. Antibiotic Loading on Composite Microspheres and Content Determination
2.2.2. In Vitro Antibiotic Release from Microspheres
2.3. Drug Release Kinetics
2.3.1. First-Order Kinetic Model
2.3.2. Higuchi Model
2.3.3. Korsmeyer–Peppas Model
2.4. Antibacterial Assessment
2.5. Cell Experiments
2.5.1. Cell Culture
2.5.2. Cytotoxicity Tests
2.5.3. MTT Assay
2.5.4. Cell Morphology
2.6. Statistical Analysis
3. Results and Discussion
3.1. Material Characterization
3.1.1. Surface Observations
3.1.2. XRD
3.1.3. FTIR Analysis
3.1.4. Elemental Composition (ICP-MS)
3.1.5. Thermal Analysis (TGA/DSC)
3.1.6. Effect of Heat Treatment on Microspheres
3.1.7. Phase Transformation and Crystallinity After Heat Treatment
3.1.8. TEM Analysis of Composite Microspheres
3.2. Drug Release
3.3. Inhibition Zone Observations
3.4. Cell Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cuylear, D.L.; Elghazali, N.A.; Kapila, S.D.; Desai, T.A. Calcium Phosphate Delivery Systems for Regeneration and Biomineralization of Mineralized Tissues of the Craniofacial Complex. Mol. Pharm. 2023, 20, 810–828. [Google Scholar] [CrossRef]
- Zhang, Y.; Shu, T.; Wang, S.; Liu, Z.; Cheng, Y.; Li, A.; Pei, D. The Osteoinductivity of Calcium Phosphate-Based Biomaterials: A Tight Interaction With Bone Healing. Front. Bioeng. Biotechnol. 2022, 10, 911180. [Google Scholar] [CrossRef] [PubMed]
- Montesissa, M.; Tommasini, V.; Rubini, K.; Boi, M.; Baldini, N.; Boanini, E. State of Art and Perspective of Calcium Phosphate-Based Coatings Coupled with Bioactive Compounds for Orthopedic Applications. Nanomaterials 2025, 15, 1199. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-Y.; Kao, I.F.; Fu, C.-Y.; Yen, S.-K. Effects of Adding Chitosan on Drug Entrapment Efficiency and Release Duration for Paclitaxel-Loaded Hydroxyapatite—Gelatin Composite Microspheres. Pharmaceutics 2023, 15, 2025. [Google Scholar] [CrossRef]
- Wu, M.-Y.; Liang, Y.-H.; Yen, S.-K. Effects of Chitosan on Loading and Releasing for Doxorubicin Loaded Porous Hydroxyapatite–Gelatin Composite Microspheres. Polymers 2022, 14, 4276. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, S.; Stephen Sipaut@ Mohd Nasri, C.; Bin Arshad, S.E. Hydrothermal synthesis of hydroxyapatite powders using Response Surface Methodology (RSM). PLoS ONE 2021, 16, e0251009. [Google Scholar] [CrossRef]
- Matamoros-Veloza, Z.; Rendon-Angeles, J.C.; Yanagisawa, K.; Ueda, T.; Zhu, K.; Moreno-Perez, B. Preparation of Silicon Hydroxyapatite Nanopowders under Microwave-Assisted Hydrothermal Method. Nanomaterials 2021, 11, 1548. [Google Scholar] [CrossRef]
- Castro, M.A.M.; Portela, T.O.; Correa, G.S.; Oliveira, M.M.; Rangel, J.H.G.; Rodrigues, S.F.; Mercury, J.M.R. Synthesis of hydroxyapatite by hydrothermal and microwave irradiation methods from biogenic calcium source varying pH and synthesis time. Boletín Soc. Española Cerámica Vidr. 2022, 61, 35–41. [Google Scholar] [CrossRef]
- Mohd Pu’ad, N.A.S.; Alipal, J.; Abdullah, H.Z.; Idris, M.I.; Lee, T.C. Synthesis of eggshell derived hydroxyapatite via chemical precipitation and calcination method. Mater. Today Proc. 2021, 42, 172–177. [Google Scholar] [CrossRef]
- Jang, J.-H.; Oh, B.; Lee, E.-J. Crystalline hydroxyapatite/graphene oxide complex by low-temperature sol-gel synthesis and its characterization. Ceram. Int. 2021, 47, 27677–27684. [Google Scholar] [CrossRef]
- Jaafar, A.; Schimpf, C.; Mandel, M.; Hecker, C.; Rafaja, D.; Krüger, L.; Arki, P.; Joseph, Y. Sol–gel derived hydroxyapatite coating on titanium implants: Optimization of sol–gel process and engineering the interface. J. Mater. Res. 2022, 37, 2558–2570. [Google Scholar] [CrossRef]
- Catauro, M.; Barrino, F.; Blanco, I.; Piccolella, S.; Pacifico, S. Use of the Sol–Gel Method for the Preparation of Coatings of Titanium Substrates with Hydroxyapatite for Biomedical Application. Coatings 2020, 10, 203. [Google Scholar] [CrossRef]
- Mousavi, M.S.; Pourmadadi, M.; Abdouss, M.; Rahdar, A.; Fathi-Karkan, S.; Pandey, S. Gelatin/CMC/HAP Nanocomposites Based on Double Micro-emulsion for Delivery of 5-FU: Synthesis and Chemical–Physical Characterization. BioNanoScience 2024, 14, 5513–5526. [Google Scholar] [CrossRef]
- Sadat Nasiri, S.; Pourmadadi, M.; Rahdar, A.; Pandey, S. Gelatin/PVP/hydroxyapatite nanocomposite based on double micro-emulsion for tissue engineering applications. J. Mol. Liq. 2024, 401, 124741. [Google Scholar] [CrossRef]
- Fan, J.; Abedi-Dorcheh, K.; Sadat Vaziri, A.; Kazemi-Aghdam, F.; Rafieyan, S.; Sohrabinejad, M.; Ghorbani, M.; Rastegar Adib, F.; Ghasemi, Z.; Klavins, K.; et al. A Review of Recent Advances in Natural Polymer-Based Scaffolds for Musculoskeletal Tissue Engineering. Polymers 2022, 14, 2097. [Google Scholar] [CrossRef]
- Wu, M.-Y.; Huang, S.-W.; Kao, I.F.; Yen, S.-K. The Preparation and Characterization of Chitosan/Calcium Phosphate Composite Microspheres for Biomedical Applications. Polymers 2024, 16, 167. [Google Scholar] [CrossRef]
- Liu, W.; Cheong, N.; He, Z.; Zhang, T. Application of Hydroxyapatite Composites in Bone Tissue Engineering: A Review. J. Funct. Biomater. 2025, 16, 127. [Google Scholar] [CrossRef]
- Yu, F.; Wang, Q.; Liu, D.; Fan, X.; Tong, L.; Shen, G.; Zhai, F. Studies of a novel nano sustained-released drug delivery system with a hydroxyapatite core and polysuccinimide coating structure. Mater. Adv. 2024, 5, 7419–7431. [Google Scholar] [CrossRef]
- Xing, F.; Chi, Z.; Yang, R.; Xu, D.; Cui, J.; Huang, Y.; Zhou, C.; Liu, C. Chitin-hydroxyapatite-collagen composite scaffolds for bone regeneration. Int. J. Biol. Macromol. 2021, 184, 170–180. [Google Scholar] [CrossRef]
- Kavitha Sri, A.; Arthi, C.; Neya, N.R.; Hikku, G.S. Nano-hydroxyapatite/collagen composite as scaffold material for bone regeneration. Biomed. Mater. 2023, 18, 032002. [Google Scholar] [CrossRef]
- Ciobanu, C.S.; Iconaru, S.L.; Predoi, D.; Trușcă, R.-D.; Prodan, A.M.; Groza, A.; Chifiriuc, M.C.; Beuran, M. Fabrication of Novel Chitosan–Hydroxyapatite Nanostructured Thin Films for Biomedical Applications. Coatings 2021, 11, 1561. [Google Scholar] [CrossRef]
- Benedini, L.; Laiuppa, J.; Santillán, G.; Baldini, M.; Messina, P. Antibacterial alginate/nano-hydroxyapatite composites for bone tissue engineering: Assessment of their bioactivity, biocompatibility, and antibacterial activity. Mater. Sci. Eng. C 2020, 115, 111101. [Google Scholar] [CrossRef] [PubMed]
- Sadeghianmaryan, A.; Naghieh, S.; Yazdanpanah, Z.; Alizadeh Sardroud, H.; Sharma, N.K.; Wilson, L.D.; Chen, X. Fabrication of chitosan/alginate/hydroxyapatite hybrid scaffolds using 3D printing and impregnating techniques for potential cartilage regeneration. Int. J. Biol. Macromol. 2022, 204, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, E.M.; Sayed, M.; El-Kady, A.M.; Elsayed, H.; Naga, S.M. In vitro and in vivo study of naturally derived alginate/hydroxyapatite bio composite scaffolds. Int. J. Biol. Macromol. 2020, 165, 1346–1360. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-Y.; Kao, I.F.; Yen, S.-K. Effects of Chitosan on Drug Load and Release for Cisplatin–Hydroxyapatite–Gelatin Composite Microspheres. Polymers 2025, 17, 1485. [Google Scholar] [CrossRef]
- Sharifi, S.; Zaheri Khosroshahi, A.; Maleki Dizaj, S.; Rezaei, Y. Preparation, Physicochemical Assessment and the Antimicrobial Action of Hydroxyapatite–Gelatin/Curcumin Nanofibrous Composites as a Dental Biomaterial. Biomimetics 2022, 7, 4. [Google Scholar] [CrossRef]
- Mobika, J.; Rajkumar, M.; Nithya Priya, V.; Linto Sibi, S.P. Effect of chitosan reinforcement on properties of hydroxyapatite/silk fibroin composite for biomedical application. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 131, 114734. [Google Scholar] [CrossRef]
- Mobika, J.; Rajkumar, M.; Nithya Priya, V.; Linto Sibi, S.P. Substantial effect of silk fibroin reinforcement on properties of hydroxyapatite/silk fibroin nanocomposite for bone tissue engineering application. J. Mol. Struct. 2020, 1206, 127739. [Google Scholar] [CrossRef]
- Nichol, T.; Callaghan, J.; Townsend, R.; Stockley, I.; Hatton, P.V.; Le Maitre, C.; Smith, T.J.; Akid, R. The antimicrobial activity and biocompatibility of a controlled gentamicin-releasing single-layer sol-gel coating on hydroxyapatite-coated titanium. Bone Jt. J. 2021, 103-B, 522–529. [Google Scholar] [CrossRef]
- Tun, T.; Hnin, H.M.; Kanchanasin, P.; Phongsopitanun, W.; Nalinratana, N.; Jansook, P. Development of Eudragit®-coated linezolid-loaded lipid nanoparticles for enhanced ocular delivery in bacterial keratitis treatment. Colloids Surf. A Physicochem. Eng. Asp. 2025, 721, 137210. [Google Scholar] [CrossRef]
- Amiri, N.; Ajami, S.; Shahroodi, A.; Jannatabadi, N.; Amiri Darban, S.; Fazly Bazzaz, B.S.; Pishavar, E.; Kalalinia, F.; Movaffagh, J. Teicoplanin-loaded chitosan-PEO nanofibers for local antibiotic delivery and wound healing. Int. J. Biol. Macromol. 2020, 162, 645–656. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Xu, Z.; Li, S.; Cheng, L.; Xu, D.; Li, L.; Chen, L.; Xu, Y.; Liu, Z.; Liu, Y.; et al. Chitosan-vancomycin hydrogel incorporated bone repair scaffold based on staggered orthogonal structure: A viable dually controlled drug delivery system. RSC Adv. 2023, 13, 3759–3765. [Google Scholar] [CrossRef] [PubMed]
- Alegrete, N.; Sousa, S.R.; Padrão, T.; Carvalho, Â.; Lucas, R.; Canadas, R.F.; Lavrador, C.; Alexandre, N.; Gärtner, F.; Monteiro, F.J.; et al. Vancomycin-Loaded, Nanohydroxyapatite-Based Scaffold for Osteomyelitis Treatment: In Vivo Rabbit Toxicological Tests and In Vivo Efficacy Tests in a Sheep Model. Bioengineering 2023, 10, 206. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-L.; Fang, W.; Huang, B.-R.; Wang, Y.-H.; Dong, G.-C.; Lee, T.-M. Bioactive Glass as a Nanoporous Drug Delivery System for Teicoplanin. Appl. Sci. 2020, 10, 2595. [Google Scholar] [CrossRef]
- Chaves, B.J.; Tadi, P. Gentamicin; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Thapa, R.; Pandey, P.; Parat, M.-O.; Gurung, S.; Parekh, H.S. Intravaginal application of linezolid-infused sol-gel for prophylaxis and treatment of sexually transmitted infections. J. Pharm. Investig. 2025. [Google Scholar] [CrossRef]
- Klicova, M.; Mullerova, S.; Rosendorf, J.; Klapstova, A.; Jirkovec, R.; Erben, J.; Petrzilkova, M.; Raabová, H.; Šatínský, D.; Melicherikova, J.; et al. Large-Scale Development of Antibacterial Scaffolds: Gentamicin Sulfate-Loaded Biodegradable Nanofibers for Gastrointestinal Applications. ACS Omega 2023, 8, 40823–40835. [Google Scholar] [CrossRef]
- Motasadizadeh, H.; Tavakoli, M.; Damoogh, S.; Mottaghitalab, F.; Gholami, M.; Atyabi, F.; Farokhi, M.; Dinarvand, R. Dual drug delivery system of teicoplanin and phenamil based on pH-sensitive silk fibroin/sodium alginate hydrogel scaffold for treating chronic bone infection. Biomater. Adv. 2022, 139, 213032. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, Y.; Yang, H.; Liu, D.; Zhang, F.; Zhang, Y.; Zhong, W.; Zuo, B.; Zhou, Z. Vancomycin-loaded silk fibroin microspheres in an injectable hydrogel for chronic osteomyelitis therapy. Front. Bioeng. Biotechnol. 2023, 11, 1163933. [Google Scholar] [CrossRef]
- Kai, K.C.; Borges, R.; Pedroni, A.C.F.; Pelosine, A.M.; da Cunha, M.R.; Marques, M.M.; de Araújo, D.R.; Marchi, J. Tricalcium phosphate-loaded injectable hydrogel as a promising osteogenic and bactericidal teicoplanin-delivery system for osteomyelitis treatment: An in vitro and in vivo investigation. Biomater. Adv. 2024, 164, 213966. [Google Scholar] [CrossRef]
- Chao, S.C.; Wang, M.-J.; Pai, N.-S.; Yen, S.-K. Preparation and characterization of gelatin–hydroxyapatite composite microspheres for hard tissue repair. Mater. Sci. Eng. C 2015, 57, 113–122. [Google Scholar] [CrossRef]
- Báró, M.; Sánchez, E.; Delgado, A.; Perera, A.; Evora, C. In vitro-in vivo characterization of gentamicin bone implants. J. Control. Release 2002, 83, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Bhusal, P.; Rahiri, J.L.; Sua, B.; McDonald, J.E.; Bansal, M.; Hanning, S.; Sharma, M.; Chandramouli, K.; Harrison, J.; Procter, G.; et al. Comparing human peritoneal fluid and phosphate-buffered saline for drug delivery: Do we need bio-relevant media? Drug Deliv. Transl. Res. 2018, 8, 708–718. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, E.; Sanvictores, T.; Sharma, S. Physiology, Acid Base Balance; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Corrigan, O.I.; Devlin, Y.; Butler, J. Influence of dissolution medium buffer composition on ketoprofen release from ER products and in vitro–in vivo correlation. Int. J. Pharm. 2003, 254, 147–154. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Bruschi, M.L. 5—Mathematical models of drug release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Bruschi, M.L., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 63–86. [Google Scholar] [CrossRef]
- Ferraz, M.P.; Mateus, A.Y.; Sousa, J.C.; Monteiro, F.J. Nanohydroxyapatite microspheres as delivery system for antibiotics: Release kinetics, antimicrobial activity, and interaction with osteoblasts. J. Biomed. Mater. Res. Part A 2007, 81A, 994–1004. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-5; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Paul, W.; Sharma, C.P. Development of Porous Spherical Hydroxyapatite Granules: Application Towards Protein Delivery. J. Mater. Sci. Mater. Med. 1999, 10, 383–388. [Google Scholar] [CrossRef]
- Hulbert, S.F.; Morrison, S.J.; Klawitter, J.J. Tissue reaction to three ceramics of porous and non-porous structures. J. Biomed. Mater. Res. 1972, 6, 347–374. [Google Scholar] [CrossRef]
- Chang, B.-S.; Lee, I.-K.; Hong, K.-S.; Youn, H.-J.; Ryu, H.-S.; Chung, S.-S.; Park, K.-W. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 2000, 21, 1291–1298. [Google Scholar] [CrossRef]
- Klose, D.; Siepmann, F.; Elkharraz, K.; Krenzlin, S.; Siepmann, J. How porosity and size affect the drug release mechanisms from PLGA-based microparticles. Int. J. Pharm. 2006, 314, 198–206. [Google Scholar] [CrossRef]
- Sivakumar, M.; Panduranga Rao, K. Preparation, characterization and in vitro release of gentamicin from coralline hydroxyapatite–gelatin composite microspheres. Biomaterials 2002, 23, 3175–3181. [Google Scholar] [CrossRef]
- Martins, M.A.; Santos, C.; Almeida, M.M.; Costa, M.E.V. Hydroxyapatite micro- and nanoparticles: Nucleation and growth mechanisms in the presence of citrate species. J. Colloid Interface Sci. 2008, 318, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Ashok, M.; Meenakshi Sundaram, N.; Narayana Kalkura, S. Crystallization of hydroxyapatite at physiological temperature. Mater. Lett. 2003, 57, 2066–2070. [Google Scholar] [CrossRef]
- Liu, D.-M.; Yang, Q.; Troczynski, T.; Tseng, W.J. Structural evolution of sol–gel-derived hydroxyapatite. Biomaterials 2002, 23, 1679–1687. [Google Scholar] [CrossRef] [PubMed]
- Raynaud, S.; Champion, E.; Bernache-Assollant, D.; Thomas, P. Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials 2002, 23, 1065–1072. [Google Scholar] [CrossRef]
- Mousia, Z.; Farhat, I.A.; Pearson, M.; Chesters, M.A.; Mitchell, J.R. FTIR microspectroscopy study of composition fluctuations in extruded amylopectin–gelatin blends. Biopolymers 2001, 62, 208–218. [Google Scholar] [CrossRef]
- Hartgerink, J.; Beniash, E.; Stupp, S. Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers. Science 2001, 294, 1684–1688. [Google Scholar] [CrossRef]
- Xu, Q.; Tanaka, Y.; Czernuszka, J.T. Encapsulation and release of a hydrophobic drug from hydroxyapatite coated liposomes. Biomaterials 2007, 28, 2687–2694. [Google Scholar] [CrossRef]
- Anderegg, T.R.; Sader, H.S.; Fritsche, T.R.; Ross, J.E.; Jones, R.N. Trends in linezolid susceptibility patterns: Report from the 2002–2003 worldwide Zyvox Annual Appraisal of Potency and Spectrum (ZAAPS) Program. Int. J. Antimicrob. Agents 2005, 26, 13–21. [Google Scholar] [CrossRef]
- Adali, T.; Yilmaz, E. Synthesis, characterization and biocompatibility studies on chitosan-graft-poly(EGDMA). Carbohydr. Polym. 2009, 77, 136–141. [Google Scholar] [CrossRef]


















| Element | Concentration (ppm) |
|---|---|
| P | 4640 |
| Ca | 7869 |
| As | 0.04 |
| Cd | 0.06 |
| Hg | 0.01 |
| Pb | 0.23 |
| Heat Treatment Temperature (°C) | Grain Size (nm) |
|---|---|
| Microspheres without heat treatment | 19.41 |
| 100 °C | 15.68 |
| 350 °C | 20.39 |
| 500 °C | 25.47 |
| 600 °C | 26.30 |
| 700 °C | 29.11 |
| R2 | ||||
|---|---|---|---|---|
| Antibiotic | Time | 1st Order | Higuchi’s | Korsmeyer-Peppas’s |
| Vancomycin | In 24 h | 0.9457 | 0.9605 | 0.9448 |
| After 24 h | 0.9732 | 0.7859 | 0.857 | |
| Teicoplanin | In 24 h | 0.9203 | 0.9574 | 0.946 |
| After 24 h | 0.9562 | 0.8131 | 0.8954 | |
| Zyvox | In 24 h | 0.7315 | 0.7526 | 0.863 |
| After 24 h | 0.7328 | 0.9091 | 0.8359 | |
| Gentamicin | In 24 h | 0.9973 | 0.9644 | 0.9635 |
| After 24 h | 0.8887 | 0.9192 | 0.9355 | |
| Cellular Response | Negative (Medium Without Material Extracts) | Positive Control (Medium Containing 0.1% Phenol Solution) | Material Extract (Undiluted Extract) |
|---|---|---|---|
| confluency | Normal | Cannot be observed | Normal |
| Cell membrane lysis | Not existing | Existing | Not existing |
| Aggregation | Not existing | Existing | Not existing |
| Granulation | Not existing | Existing | Not existing |
| Paraquat toxicity | Not existing | Existing | Not existing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.-Y.; Yen, C.-C.; Wang, M.-J.; Kao, I.-F.; Yen, S.-K. Inhibiting Effects of Antibiotic-Loaded Porous Gelatin-Hydroxyapatite Microspheres on Staphylococcus aureus. Pharmaceutics 2025, 17, 1598. https://doi.org/10.3390/pharmaceutics17121598
Wu M-Y, Yen C-C, Wang M-J, Kao I-F, Yen S-K. Inhibiting Effects of Antibiotic-Loaded Porous Gelatin-Hydroxyapatite Microspheres on Staphylococcus aureus. Pharmaceutics. 2025; 17(12):1598. https://doi.org/10.3390/pharmaceutics17121598
Chicago/Turabian StyleWu, Meng-Ying, Chao-Chun Yen, Ming-Jia Wang, I-Fang Kao, and Shiow-Kang Yen. 2025. "Inhibiting Effects of Antibiotic-Loaded Porous Gelatin-Hydroxyapatite Microspheres on Staphylococcus aureus" Pharmaceutics 17, no. 12: 1598. https://doi.org/10.3390/pharmaceutics17121598
APA StyleWu, M.-Y., Yen, C.-C., Wang, M.-J., Kao, I.-F., & Yen, S.-K. (2025). Inhibiting Effects of Antibiotic-Loaded Porous Gelatin-Hydroxyapatite Microspheres on Staphylococcus aureus. Pharmaceutics, 17(12), 1598. https://doi.org/10.3390/pharmaceutics17121598

