The Evolution of Poxvirus Vaccines
Abstract
:1. Introduction
2. Origin of Vaccination: Cowpox/Horsepox Controversy upon Original Vaccinia Strain
3. First-Generation VACV Vaccines and the Global Smallpox Eradication Campaign
VACV Strain | Country or Region of Application |
---|---|
New York City Board of Health (NYCBH) | USA |
Lister | UK, Europe, Asia, Africa, USA |
Temple of Heaven (Tian Tan) | China |
Ecuador-Moscow 1963 (EM-63) | Union of Soviet Socialist Republics (USSR), India |
Tashkent | USSR |
B-15 | USSR |
Bern | Germany, Austria |
Paris | France, Paris, Syria, Turkey |
Copenhagen | Denmark |
Dairen | Japan |
Ikeda | Japan |
4. Second-Generation VACV Vaccines
Strain | Vaccine | Cell Culture | References |
---|---|---|---|
Lister | RIVM | Rabbit kidney cells | [51] |
Israel | Chorioallantoic membrane of CE | [53,54] | |
Lister/CEP | CE cells | [55] | |
Elstree-BN | CE cells | [56,57] | |
NYCBH | CCSV | MRC-5 cells | [58] |
ACAM1000 | MRC-5 cells | [59] | |
ACAM2000 | VERO cells | [60] | |
CJ-50300 | MRC-5 cells | [61] | |
WR | Rabbits, mice, cell cultures | [43] |
Poxvirus Strain | Target Pathogen or Disease | Heterologous Antigen | Status | References |
---|---|---|---|---|
Lister | Hepatitis B | HBsAg | preclinical | [64,65] |
Cystic echinococcosis | Echinococcus granulosus EG95 | preclinical | [66] | |
Lassa Fever | Nucleocapside | preclinical | [67] | |
Wyeth | Influenza A | HA, NA, M1, M2 and NP from H5N1 | preclinical | [68,69] |
Hepatitis B | preS2-S | preclinical | [70] | |
Rinderpest | F and HA | preclinical | [71] | |
Lassa fever | Glycoprotein | preclinical | [72] | |
Anthrax | PA of Bacillus anthracis | preclinical | [73] | |
Copenhagen | Rabies | Glycoprotein | preclinical | [74,75] |
HCMV | gB | preclinical | [76] | |
RVHD | Capsid protein (VP60) | preclinical | [77] | |
Measles | HA, F, NP | preclinical | [78] | |
Equine Herpesvirus | GP13 | preclinical | [79] | |
WR | Malaria | PYCS, Pf155/RESA, GLURP | preclinical | [80,81,82] |
Influenza | HA, NP | preclinical | [16,83] | |
HIV/AIDS | ENV, ENV (TAB13) | preclinical | [84,85,86] | |
Leishmaniasis | LACK | preclinical | [87,88] | |
Hepatitis B | HBsAg | preclinical | [89] | |
Rabies | Glycoprotein | preclinical | [74] | |
Anthrax | PA | preclinical | [90] | |
Japanese Encephalitis Virus | Structural proteins | preclinical | [91] | |
Rinderpest | F, HA | preclinical | [92,93] | |
Measles | F, HA | preclinical | [94] | |
Brucella | 18 kDa | preclinical | [95] | |
Respiratory Sincitial Virus | F, G | preclinical | [96] | |
Feline Infectiuos Peritonitis | Fusogenic Spike Protein | preclinical | [97] |
Pox Strain | Target Pathogen or Disease | Heterologous Antigen | Status | References |
---|---|---|---|---|
Viral Infections | ||||
CNPV | HIV/AIDS | HIV-1SF2 Env | preclinical | [112] |
FWPV | HIV/AIDS | HIV-1SF2 Env | preclinical | [112] |
SIVmac239 Gag/Pol, SIV89.6P Env, Gag/Pol, Env, Tat/Rev (clade B), Gag/Pol, Env, Tat/Rev (clade A/E), IFN-γ, IL-2 | preclinical | [113,114,115,116,117,118] | ||
HIV-1 TAB9 multiepitopic polypeptide | preclinical | [119] | ||
MEG(4): multi-epitope gene (4 HIV-1 B cell epitopes), HIV-1 p24, MEG(25): multi-epitope gene (25 HIV-1 CTL epitopes) | preclinical | [120] | ||
HIVCN gp120, IL-2 | preclinical | [121] | ||
Gag, Env (clade D), cholera toxin B subunit | preclinical | [122] | ||
HIV-1SF2 Gag, Pol, HIV-1BH10 Env, IFN-γ | preclinical | [116,123] | ||
HIV-1SF2 Gag, Pol, IFN-γ | clinical | [124] | ||
Gag and Pol (clade B) | clinical | [125] | ||
Gag/Pol, Env, Tat/Rev (clade A/E) | clinical | [126] | ||
Env/Gag, Tat/Rev/Nef-RT (clade B) | clinical | [127] | ||
NDV | F and HN | licensed for commercial veterinary use (chickens) | [128,129,130,131,132,133,134,135,136] | |
ILTV | gB (+AE) | licensed for commercial veterinary use (chickens) | [137,138,139] | |
NDV + ILTV | F and HN (NDV) + gB (ILTV) | preclinical | [128] | |
IBV | S1, S1 + IFN-γ, S1 + IL-18 | preclinical | [140,141,142,143] | |
AEV | AE (+LT) | licensed for commercial veterinary use (chickens) | [137] | |
AIV | native or synthetic HA, HA and/or NP, HA + IL-18 or IL-6, NA, HA + NA, LPAIV insert | preclinical | [144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161] | |
IBDV | VP2, VP2-VP4-VP3 | preclinical | [162,163,164,165,166] | |
MDV | glycoproteins B, E, I, H and UL32, pp38 | preclinical | [167,168,169,170,171] | |
Rabies virus | Glycoprotein | preclinical | [110,172] | |
HPV | L1 structural protein, E6 and E7 oncoproteins | preclinical | [173,174] | |
FMDV | capsid and 3C protease, P1, 2A and 3C, IL-18 | preclinical | [175,176] | |
CSFV | E0 | preclinical | [177] | |
DHBV | DHBc and Pre-S/S antigens | preclinical | [178] | |
PRRSV | GP5/GP3, IL-18 | preclinical | [179] | |
TRTV | F | preclinical | [180] | |
CDV | H and F antigens of RPV | preclinical | [181] | |
HEV | native hexon | preclinical | [182] | |
MeV | F | preclinical | [183] | |
Smallpox | VACV L1, A27, A33 and B5 | preclinical | [184,185] | |
APV | - | preclinical | [186,187,188] | |
Bacterial diseases | ||||
FWPV | Mycoplasma gallisepticum | 40 k and mgc gene segments | licensed for commercial veterinary use (chickens) | [189] |
Parasitic diseases | ||||
FWPV | Eimeria tenella | rhomboid gene | preclinical | [190] |
Pox Strain | Target Pathogen or Disease | Heterologous Antigen | Status | References |
---|---|---|---|---|
Raccoon poxvirus | Influenza A | HA and NA from H5N1 | preclinical | [191] |
Bubonic plague | F1 capsular antigen of Yersinia pestis | preclinical | [192,193,194,195,196] | |
Rabies | Glycoprotein | preclinical | [19,197,198,199,200] | |
Internal structural NP | preclinical | [198,201] | ||
Feline panleukopenia | VP2 | preclinical | [199,202] | |
FIPV | Nucleocapsid | preclinical | [203] | |
Parapoxvirus (orf) | Influenza A | HA or NP from H5N1 | preclinical | [204] |
Rabies | Glycoprotein | preclinical | [205] | |
PRV | Glycoproteins gC and/or gD | preclinical | [206,207,208] | |
Borna disease | NP p40 | preclinical | [209] | |
RVHD | VP1 (VP60) | preclinical | [210] | |
CSFV | E2 glycoprotein | preclinical | [211] | |
Capripoxvirus | PPRV | F or HA | preclinical | [212,213,214,215,216,217,218] |
HIV/AIDS | HIV-1 subtype C Gag, reverse transcriptase, Tat and Nef | preclinical | [219,220] | |
Rift Valley fever | Glycoproteins Gn and Gc | preclinical | [221,222] | |
Rinderpest | F or HA | preclinical | [223,224,225,226,227] | |
Bluetongue | VP2, VP7, NS1 and NS3 | preclinical | [228,229] | |
Rabies | Glycoprotein | preclinical | [230] | |
Suipoxvirus | PCV2-associated disease | IL-18 + Cap, Cap | preclinical | [231,232] |
SEZ | M-like protein (SzP) | preclinical | [232] | |
MRP of S. suis type 2 (SS2) | preclinical | [233] | ||
Swine influenza | HA1 from H3N2 and H1N1 | preclinical | [234,235] | |
HA1 from H3N2 | preclinical | [236] | ||
HA1 from H1N1 | preclinical | [236] | ||
Myxomavirus | Bluetongue | VP2 | preclinical | [237] |
Feline calicivirus disease | Cap | preclinical | [238,239] | |
Influenza | HA from H5N1 | preclinical | [240,241] | |
RVHD | Capsid protein (VP60) | preclinical | [242,243,244,245] |
5. Third-Generation VACV Vaccines: Evolution through Several Passages in Cultured Cells
5.1. LC16m8
5.2. Dairen I Strain (DIs)
5.3. M65 and M101 Virus
5.4. Modified Vaccinia Virus Ankara (MVA)
Target Pathogen or Disease | Heterologous Antigen | Status | References |
---|---|---|---|
Viral diseases | |||
Variola (smallpox) | Whole MVA vector | clinical | [299,300,311] |
HIV/AIDS | HIV-1 Gag p24 and p17 fused to 25 overlapping CTL CD8 T cell epitopes (clade A) | clinical | [312] |
HIV-1 Env (clade E); Gag-Pol (clade A) | clinical | [313] | |
HIV-1 Env, Gag, Tat-Rev and Nef-RT (clade C) | clinical | [314] | |
HIV-1 Env, Gag-Pol, Nef-Tat (clades B/C) | clinical | [315] | |
HIV-1 Gag, PR, RT, Env (clade B) | clinical | [316] | |
HIV-1 Env/Gag, Tat/Rev/Nef-RT (clade B) | clinical | [127] | |
HIV-1 Env, Gag-Pol-Nef (clade B) | clinical | [305] | |
21 CTL and 18 HTL epitopes from HIV-1 Gag, Pol, Vpr, Nef, Rev and Env | clinical | [317] | |
HIV-1 Nef | clinical | [318] | |
Influenza A | NP+M1 | clinical | [319] |
HA from H5N1 | clinical | [320] | |
Hepatitis B | HBs | clinical | [321] |
30 CTL and 16 HTL epitopes | preclinical | [322] | |
Hepatitis C | NS3, NS4 and NS5B (genotype 1b) | preclinical and clinical | [323,324] |
E1 and E2 (genotype 1b) | preclinical | [325] | |
C, E1 and E2, p7, NS2, NS3, NS4A, NS4B, NS5A and NS5B (genotype 1a) | preclinical | [326] | |
Chikungunya | C, E3, E2, 6K and E1 | preclinical | [327] |
E3 and E2 | preclinical | [328] | |
E3-E2, 6K-E1 or E3-E2-6K-E1 | preclinical | [329] | |
Dengue | Envelope (Dengue type 2 virus) | preclinical | [330] |
Envelope (Dengue type 3 virus) | preclinical | [331] | |
Ebola | GP (Zaire and Sudan strains) | preclinical | [332] |
CCHF | GP | preclinical | [333] |
SARS | Spike protein | preclinical | [334,335,336,337] |
Spike or nucleocapsid proteins | preclinical | [338] | |
Nucleocapsid | preclinical | [339] | |
MERS | Spike protein | preclinical | [340] |
FIPV | Membrane protein | preclinical | [341] |
RSV | F or G glycoprotein | preclinical | [342,343,344] |
Rift valley fever | Gn/Gc GP | preclinical | [345,346] |
Rabies | Glycoprotein | preclinical | [347] |
JEV | Membrane (prM) and envelope (E) proteins (Korean strain) | preclinical | [348,349,350] |
B cell, CTL and Th multiple linear epitopes (SA14 strain) | preclinical | [351] | |
Measles | HA | preclinical | [352] |
F and HA | preclinical | [94,353] | |
CMV | Soluble GP B (gB) | preclinical | [354] |
UL55 (surface glycoprotein), UL83 (tegument protein) and UL123/e4 (nuclear protein) | preclinical | [355] | |
pp65 (tegument protein) and CMV immediate early gene IE1 | preclinical | [356] | |
pp65-2, gB and IE1 (Rhesus CMV) | preclinical | [357,358] | |
pp65, IE1, IE2 | preclinical | [359] | |
pp65 | preclinical | [360] | |
glycoproteins gH/gL, UL128, UL130 and UL131A (UL128C) | preclinical | [361] | |
gH, gL, UL128, UL130 and UL131A | preclinical | [362] | |
BoHV-1 | Secreted GP D | preclinical | [363] |
EHV-1 | Complement-receptor GP C | preclinical | [364] |
HSV | GP D (gD) (HSV-2) | preclinical | [365] |
Parainfluenza virus | F and/or HN glycoproteins (parainfluenza virus 3) | preclinical | [366,367,368] |
Bacterial diseases | |||
Tuberculosis | Mycobacterial mycolyl-transferase antigen 85A | clinical | [369,370,371] |
Babesia bovis | MSA-2c, RAP-1 and HSP20 proteins | preclinical | [372] |
Bubonic plague | Yersinia pestis low-calcium response V antigen | preclinical | [373] |
Parasitic diseases | |||
Malaria | ME-TRAP | clinical | [374,375] |
AMA1 | clinical | [376,377,378,379,380] | |
MSP1 | clinical | [377,378,379,381] | |
CS | clinical | [375,382] | |
Polyprotein consisting of six pre-erythrocytic antigens from P. falciparum | clinical | [383] | |
Leishmaniasis | LACK | preclinical | [88,271,384,385,386] |
TRYP (Leishmania major substrain LV39) | preclinical | [387] | |
TRYP (Leishmania infantum) | preclinical | [388] | |
TRYP (Leishmania (Viannia) panamensis) | preclinical | [389] | |
Toxoplasmosis | ROP2 | preclinical | [390] |
Chagas disease | Trypanosoma cruzi TcG2 and TcG4 | preclinical | [391] |
5.5. Attenuated Avipoxviruses
Poxvirus Strain | Target Pathogen or Disease | Heterologous Antigen | Status | References |
---|---|---|---|---|
Viral infections | ||||
TROVAC | AIV | HA | licensed for commercial veterinary use (chickens) | [153,405,406,407,408] |
NDV | F and HN | preclinical | [409] | |
ALVAC | HIV/AIDS | SIVK6W Gag-Pol-Env, Gag-Pol | preclinical | [118,410] |
HIV-1IIIB Env | preclinical | [411] | ||
HIV-1MN gp160 | clinical | [412,413,414,415,416] | ||
HIV-1MN gp120 linked to TM domain of HIV-1LAI gp41, HIV-1LAI Gag and protease | clinical | [417,418,419,420,421,422,423,424] | ||
HIV-1MN gp120 linked to TM domain of HIV-1IIIB gp41, HIV-1IIIB Gag and protease, 3 CTL-dense regions of HIV-1LAI pol, 2 CTL-dense regions of HIV-1LAI nef | clinical | [425] | ||
CRF01_AE gp120 (92TH023) linked to TM domain of HIV-1LAI gp41, HIV-1LAI Gag and protease | clinical | [404,426,427,428,429,430,431,432] | ||
CMV | gB | clinical | [433,434] | |
pp65 | clinical | [435] | ||
Rabies virus | Glycoprotein | licensed for commercial veterinary use (cats) | [436] | |
clinical | [437,438] | |||
CDV | HA and F | licensed for commercial veterinary use (dogs, ferrets) | [439,440,441,442] | |
West-Nile virus | PrM-E | licensed for commercial veterinary use (horses) | [443,444,445,446,447] | |
FeLV | Env, Gag | preclinical | [448] | |
Env, Gag/pol | licensed for commercial veterinary use (cats) | [448–450] | ||
FIV | FIV Ville Franche (subtype A) Env, Gag and Protease | preclinical | [451] | |
EIV | HA | licensed for commercial veterinary use (horses) | [452,453,454] | |
EHV | gB, gC and gD | preclinical | [455] | |
JEV | prM, E, NS1 | clinical | [456,457] | |
HTLV-1 | Env | preclinical | [458] | |
AHSV | VP2 and VP5 | preclinical | [459,460] | |
RHDV | capsid protein | preclinical | [461] | |
HCV | capsid, E1, E2, NS2, NS3 | preclinical | [462] | |
BTV | VP2 and VP5 | preclinical | [463] | |
AIV | HA | preclinical | [408,464] | |
Bacterial diseases | ||||
FP9 | Tuberculosis | Ag85A | preclinical | [465] |
Parasitic diseases | ||||
FP9 | Malaria | CS | preclinical | [466] |
L3SEPTL (six-linked pre-erythrocytic antigens) | preclinical | [467] | ||
ME-TRAP, CS | clinical | [468,469,470,471,472,473,474] | ||
ALVAC | Malaria | CS, SSP2, LSA1, MSP1, SERA, AMA1, Pfs25 CS, SSP2, AMA1, MSP1 | preclinical | [475,476] |
5.5.1. TROVAC
5.5.2. FP9
5.5.3. ALVAC
6. Fourth-Generation VACV Vaccines: Evolution through Genetic Engineering
6.1. Deletion of Genes
Poxvirus Strain | Target Pathogen or Disease | Heterologous Antigen | Status | References |
---|---|---|---|---|
Viral infections | ||||
NYVAC | PRV | Glycoprotein, gB or gD glycoproteins, gII, gIII and/or gp50 glycoproteins | preclinical | [483,489,490,491,492,493,494] |
CDV | F and HA | preclinical | [440,441,442] | |
EHV | gene 64 | preclinical | [455] | |
JEV | prM, E, NS1 | clinical | [456,457] | |
HIV/AIDS | SIVK6W Env-Gag-Pol, SHIV89.6P Env, SIVmac239 Gag-Pol-Nef | preclinical | [487,495,496,497] | |
Env (clade B) | preclinical | [411] | ||
clade C trimeric soluble gp140(ZM96), clade C Gag(ZM96)-Pol-Nef(CN54) as VLPs | preclinical | [498] | ||
Env, Gag-Pol-Nef (clade C) | clinical | [499,500,501,502,503] | ||
Env, Gag-Pol-Nef (clade B) | clinical | [504,505] | ||
AIV | HA | preclinical | [408] | |
HTLV-1 | Env, Env + Gag | preclinical | [458,506,507] | |
Parasitic diseases | ||||
NYVAC | Malaria | LSA-1, CS | preclinical | [508] |
CS, SSP2, LSA1, MSP1, SERA, AMA1, Pfs25 | clinical | [509] |
Pox Strain | Target Pathogen or Disease | Heterologous Antigen | Poxvirus Deleted Gene | Gene Function | Status | References |
---|---|---|---|---|---|---|
MVA | HIV/AIDS | HIV-1 Env, Gag-Pol-Nef (clade B) | A41L/B16R | A41L: Secreted chemokine-binding protein B16R: Secreted interleukin-1β binding protein | preclinical | [528] |
HIV-1 Env, Gag-Pol-Nef (clade B) | C6L | IRF3 inhibitor | preclinical | [527,529] | ||
HIV-1 Env, Gag-Pol-Nef (clade B) | C6L/K7R | C6L: IRF3 inhibitor K7R: NF-кB/IRF3 inhibitor | preclinical | [527] | ||
HIV-1 Env, Gag-Pol-Nef (clade B) | N2L | IRF3 inhibitor | preclinical | [537] | ||
HIV-1 Env, Gag-Pol-Nef (clade C) | F1L | Anti-apoptotic protein | preclinical | [532] | ||
HIV-1 Env, Gag-Pol-Nef (clade C) | C12L | IL-18 binding protein | preclinical | [516] | ||
HIV-1 Env, Gag (clade C) | C12L/A46R/B7R/B16R | C12L: IL-18 binding protein A46R: Inhibitor of TLR signaling B7R: Putative chemokine-binding protein B16R: Secreted interleukin-1β binding protein | preclinical | [533] | ||
NYVAC | HIV/AIDS | HIV-1 Env, Gag-Pol-Nef (clade C) | B8R | Secreted IFNγ binding protein | preclinical | [530] |
HIV-1 Env, Gag-Pol-Nef (clade C) | B19R | Type I IFN binding protein | preclinical | [530] | ||
HIV-1 Env, Gag-Pol-Nef (clade C) | A46R | Inhibitor of TLR signaling | preclinical | [531] | ||
MVA | Chikungunya | C-E1-E2-6K-E3 | C6L/K7R/A46R | C6L: IRF3 inhibitor K7R: NF-кB/IRF3 inhibitor A46R: Inhibitor of TLR signaling | preclinical | [327] |
MVA | Smallpox | - | A35R | Inhibitor of MHC class II antigen presentation | preclinical | [517] |
FWPV | AIV | HA | ORF73 or ORF214 | Suggested interleukin-18 binding proteins | preclinical | [541] |
6.2. Insertion of Genes
Poxvirus Strain | Target Pathogen or Disease | Heterologous antigen | Inserted Gene | Gene Function | Status | References |
---|---|---|---|---|---|---|
Viral infections | ||||||
NYVAC | HIV/AIDS | HIV-1 Env, Gag-Pol-Nef (clade C) | VACV K1L and C7L (B19R deletion) | Host range | preclinical | [542,543] |
HIV-1 Env, Gag-Pol-Nef (clade B) | VACV C7L | Host range | preclinical | [547] | ||
MeV | HA | VACV K1L | Host range | preclinical | [548] | |
ALVAC | HIV/AIDS | HIV-1MN gp120 linked to TM domain of HIV-1LAI gp41, HIV-1LAI Gag and protease, synthetic polypeptide encompassing several human nef and pol epitopes, CD40L | VACV E3L and K3L | PKR and/or 2'5'OAS inhibitors | clinical | [549,550,551,552,553,554,555,556] |
Parasitic diseases | ||||||
NYVAC | Malaria | CS | VACV K1L | Host range | preclinical | [557] |
6.3. Gene Expression Optimization
7. Poxvirus Evolution as Vaccines to Fight Cancer
Poxvirus | Strategy | Strain | Gene | Status | References |
---|---|---|---|---|---|
Vaccinia virus | TAA | MVA, Copenhagen | Deletion: J2R, A56R, IGR3 | preclinical | [578,579,580,590,591,592,593,594,595,596,597,598,599,600] |
Neu oncogene; MUC1; oncofetal antigen 5T4; tumor-associated auto-antigen p53; PSA; PSCA; STEAP1; GA733 Ag; AFP; murine surviving; HPV-16 E1 oncoprotein; EBNA1-LMP2 | |||||
Immunomodulation | NYCBH, MVA, Wyeth | Deletion: J2R | preclinical | [479,586,601,602,603,604,605] | |
TAA + Immunomodulation | MVA, WR, Copenhagen | Deletion: J2R, A56R, I4L, A44L | preclinical | [479,582,583,584,606,607] | |
TAA: MUC1, Melan-A/Mart-1 27-15 minigene; gp100280–288 + Melan-A/MART-127–35 + tyrosinase1–9 tumor-associated antigen epitopes; HER-2 | |||||
IL-2; costimulatory molecules B7.1 and B7.2; CD80 and CD86; p2 and p30 T helper cell epitopes from tetanus toxin | |||||
Oncolysis | WR, Copenhagen, Wyeth, MVA, Lister, LIVP | Deletion: J2R, C11R, B18R, F14.5L Mutation: A34L, A5L | preclinical | [581,587,588,589,608,609,610,611,612,613,614,615] | |
hNIS; CEA; Neu oncogene; ETA; polyomavirus-specific tumor-specific antigens; early bovine papillomavirus proteins; CD; PNP; FCU1; RUC-GFP; TFR | |||||
Oncolysis + Immunomodulation | WR, Wyeth | Genes: J2R, C11R, B18R, A56R | preclinical | [479,585,616,617,618,619,620,621,622,623,624,625,626] | |
VEGF-binding ectodomain from Flk1; T-cell engager EphA2-TEA; GM-CSF; IFN-β; CCL5 (RANTES); IL-2; IL-12 (p35 and p40 subunits); FasL; CXCR4; CD40L | |||||
Fowlpox virus | TAA | FWPV | HPV-16 E6 and E7 oncoproteins | preclinical | [479,627] |
TAA + Immunomodulation | FWPV | TAA: PAP | preclinical | [628] | |
Canarypox | TAA | ALVAC | tumor-associated auto-antigen p53; gp100, MAGE-1,3 minigene; NY-ESO-1; MART-1 | preclinical | [479,629,630] |
TAA + Immunomodulation | ALVAC | TAA: CEA; gp100 protein | preclinical | [479,631,632,633,634,635] | |
Immunomodulation | Myxoma | Fusion Protein of Interleukin-15 (IL15) and IL15 Receptor Alpha | preclinical | [636] | |
Mix | TAA | VACV/FWPV | NY-ESO-1; Tyrosinase | preclinical | [639,640] |
Immunomodulation | VACV (NYVAC)/CNPV (ALVAC) FWPV/Canarypox (ALVAC) | IL-2; GM-CSF | preclinical | [479,641,642] | |
TAA + Immunomodulation | VACV/FWPV; VACV (Wyeth)/CNPV (ALVAC) | TAA: PSA; CEA; MUC1 | preclinical | [479,643,644,645,646,647,648,649] | |
Parapox virus | Oncolysis | NZ2 | vascular endothelial growth factor locus | preclinical | [650] |
8. Future Perspectives
Acknowledgements
Author Contributions
Conflict of Interest
References
- Hopkins, D.R. The Greatest Killer: Smallpox in History, with a New Introduction; University of Chicago Press: Chicago, IL, USA, 2002; p. 15. [Google Scholar]
- Parrino, J.; Graham, B.S. Smallpox vaccines: Past, present, and future. J. Allergy Clin. Immunol. 2006, 118, 1320–1326. [Google Scholar] [CrossRef] [PubMed]
- Marketos, S.; Lascaratos, J.; Diamandopoulos, A. The links between the medical school of Padua and the Hellenic medical world. Med. Secoli. 1992, 4, 45–58. [Google Scholar] [PubMed]
- Riedel, S. Edward Jenner and the history of smallpox and vaccination. Proc. (Bayl. Univ. Med. Cent.) 2005, 18, 21–25. [Google Scholar]
- Esparza, J. Has horsepox become extinct? Vet. Rec. 2013, 173, 272–273. [Google Scholar] [CrossRef] [PubMed]
- De Micheli, A.; Izaguirre-Avila, R. On the vaccination before and after Jenner. Rev. Invest. Clin. 2011, 63, 84–89. [Google Scholar] [PubMed]
- Botet, F.A. The royal philanthropic expedition of the vaccine (Xavier de Balmis/Josep Salvany). 1803–1806. Rev. Chil. Infectol. 2009, 26, 562–567. [Google Scholar]
- Arita, I.; Jezek, Z.; Ladnyi, I.D. (Eds.) World Health Organization: Geneva, Switzerland, 1988.
- W.H.O. The Global Eradication of Smallpox. Final Report of the Global Commision for the Certification of Smallpox Eradication; World Health Organization: Geneva, Switzerland, 1979–1980. [Google Scholar]
- Woodroofe, G.M.; Fenner, F. Genetic studies with mammalian poxviruses. IV. Hybridization between several different poxviruses. Virology 1960, 12, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Nakano, E.; Panicali, D.; Paoletti, E. Molecular genetics of vaccinia virus: Demonstration of marker rescue. Proc. Natl. Acad. Sci. USA 1982, 79, 1593–1596. [Google Scholar] [CrossRef] [PubMed]
- Weir, J.P.; Bajszar, G.; Moss, B. Mapping of the vaccinia virus thymidine kinase gene by marker rescue and by cell-free translation of selected mRNA. Proc. Natl. Acad. Sci. USA 1982, 79, 1210–1214. [Google Scholar] [CrossRef] [PubMed]
- Panicali, D.; Paoletti, E. Construction of poxviruses as cloning vectors: Insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. Proc. Natl. Acad. Sci. USA 1982, 79, 4927–4931. [Google Scholar] [CrossRef] [PubMed]
- Mackett, M.; Smith, G.L.; Moss, B. Vaccinia virus: A selectable eukaryotic cloning and expression vector. Proc. Natl. Acad. Sci. USA 1982, 79, 7415–7419. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.L.; Mackett, M.; Moss, B. Infectious vaccinia virus recombinants that express hepatitis B virus surface antigen. Nature 1983, 302, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.L.; Murphy, B.R.; Moss, B. Construction and characterization of an infectious vaccinia virus recombinant that expresses the influenza hemagglutinin gene and induces resistance to influenza virus infection in hamsters. Proc. Natl. Acad. Sci. USA 1983, 80, 7155–7159. [Google Scholar] [CrossRef] [PubMed]
- Panicali, D.; Davis, S.W.; Weinberg, R.L.; Paoletti, E. Construction of live vaccines by using genetically engineered poxviruses: Biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin. Proc. Natl. Acad. Sci. USA 1983, 80, 5364–5368. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, E.; Weinberg, R.L.; Davis, S.W.; Davis, M. Genetically engineered poxviruses: A novel approach to the construction of live vaccines. Vaccine 1984, 2, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Esposito, J.J.; Knight, J.C.; Shaddock, J.H.; Novembre, F.J.; Baer, G.M. Successful oral rabies vaccination of raccoons with raccoon poxvirus recombinants expressing rabies virus glycoprotein. Virology 1988, 165, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Moss, B. Reflections on the early development of poxvirus vectors. Vaccine 2013, 31, 4220–4222. [Google Scholar] [CrossRef] [PubMed]
- Goebel, S.J.; Johnson, G.P.; Perkus, M.E.; Davis, S.W.; Winslow, J.P.; Paoletti, E. The complete DNA sequence of vaccinia virus. Virology 1990, 179, 517–563. [Google Scholar] [CrossRef]
- Jenner, E. The Three Original Publications On Vaccination Against Smallpox; P.F. Collier & Son: New York, NY, USA, 1909–1914; Volume 38, Part 4 of 8. [Google Scholar]
- Baxby, D. Is cowpox misnamed? A review of 10 human cases. Br. Med. J. 1977, 1, 1379–1381. [Google Scholar] [CrossRef] [PubMed]
- Herrlich, A.; Mayr, A.; Mahnel, H.; Munz, E. Experimental studies on transformation of the variola virus into the vaccinia virus. Arch. Gesamte Virusforsch. 1963, 12, 579–599. [Google Scholar] [CrossRef] [PubMed]
- Dumbell, K.R.; Bedson, H.S. Adaptation of variola virus to growth in the rabbit. J. Pathol. Bacteriol. 1966, 91, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Downie, A.W. Smallpox. In Infectious Agents and Host Reactions; Mudd, S., Ed.; WB Saunders Co.: Philadelphia, PA, USA, 1970; pp. 487–518. [Google Scholar]
- Dekking, F. Cowpox and Vaccinia; Elsevier: London, UK, 1964. [Google Scholar]
- Qin, L.; Favis, N.; Famulski, J.; Evans, D.H. The evolution and evolutionary relationships between extant vaccinia virus strains. J. Virol. 2014. [Google Scholar] [CrossRef]
- Qin, L.; Upton, C.; Hazes, B.; Evans, D.H. Genomic analysis of the vaccinia virus strain variants found in Dryvax vaccine. J. Virol. 2011, 85, 13049–13060. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, S.; Sakiyama, T.; Hasegawa, H.; Saijo, M.; Maeda, A.; Kurane, I.; Maeno, G.; Kimura, J.; Hirama, C.; Yoshida, T.; et al. An attenuated LC16m8 smallpox vaccine: Analysis of full-genome sequence and induction of immune protection. J. Virol. 2005, 79, 11873–11891. [Google Scholar] [CrossRef] [PubMed]
- Osborne, J.D.; da Silva, M.; Frace, A.M.; Sammons, S.A.; Olsen-Rasmussen, M.; Upton, C.; Buller, R.M.; Chen, N.; Feng, Z.; Roper, R.L.; et al. Genomic differences of Vaccinia virus clones from Dryvax smallpox vaccine: The Dryvax-like ACAM2000 and the mouse neurovirulent Clone-3. Vaccine 2007, 25, 8807–8832. [Google Scholar] [CrossRef] [PubMed]
- Garcel, A.; Crance, J.M.; Drillien, R.; Garin, D.; Favier, A.L. Genomic sequence of a clonal isolate of the vaccinia virus Lister strain employed for smallpox vaccination in France and its comparison to other orthopoxviruses. J. Gen. Virol. 2007, 88, 1906–1916. [Google Scholar] [CrossRef] [PubMed]
- Carroll, D.S.; Emerson, G.L.; Li, Y.; Sammons, S.; Olson, V.; Frace, M.; Nakazawa, Y.; Czerny, C.P.; Tryland, M.; Kolodziejek, J.; et al. Chasing Jenner’s vaccine: Revisiting cowpox virus classification. PLOS ONE 2011, 6, e23086. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, R.C.; Wang, C.; Hatcher, E.L.; Lefkowitz, E.J. Orthopoxvirus genome evolution: The role of gene loss. Viruses 2010, 2, 1933–1967. [Google Scholar] [CrossRef] [PubMed]
- Creighton, C. Jenner and Vaccination, a Strange Chapter of Medical History; Swan sonnenschein & CO: London, UK, 1889. [Google Scholar]
- Drewitt, F.D. The Life of Edward Jenner; Cambridge University Press: New York, NY, USA, 1933. [Google Scholar]
- Jacobs, B.L.; Langland, J.O.; Kibler, K.V.; Denzler, K.L.; White, S.D.; Holechek, S.A.; Wong, S.; Huynh, T.; Baskin, C.R. Vaccinia virus vaccines: Past, present and future. Antivir. Res. 2009, 84, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Tulman, E.R.; Delhon, G.; Afonso, C.L.; Lu, Z.; Zsak, L.; Sandybaev, N.T.; Kerembekova, U.Z.; Zaitsev, V.L.; Kutish, G.F.; Rock, D.L. Genome of horsepox virus. J. Virol. 2006, 80, 9244–9258. [Google Scholar] [CrossRef] [PubMed]
- Studdert, M.J. Experimental vaccinia virus infection of horses. Aust. Vet. J. 1989, 66, 157–159. [Google Scholar] [CrossRef] [PubMed]
- Kempe, C.H.; Fulginiti, V.; Minamitani, M.; Shinefield, H. Smallpox vaccination of eczema patients with a strain of attenuated live vaccinia (CVI-78). Pediatrics 1968, 42, 980–985. [Google Scholar] [PubMed]
- Speers, W.C.; Wesley, R.B.; Neff, J.M.; Goldstein, J.; Lourie, B. Evaluation of two kinds of smallpox vaccine: CVI-78 and calf lymph vaccine. II. Clinical and serologic observations of response to revaccination with calf lymph vaccine. Pediatr. Res. 1975, 9, 628–632. [Google Scholar] [CrossRef] [PubMed]
- Wesley, R.B.; Speers, W.C.; Neff, J.M.; Ruben, F.L.; Lourie, B. Evaluation of two kinds of smallpox vaccine: CVI-78 and calf lymph vaccine. I. Clinical and serologic response to primary vaccination. Pediatr. Res. 1975, 9, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Parker, R.F.; Bronson, L.H.; Green, R.H. Further Studies of the Infectious Unit of Vaccinia. J. Exp. Med. 1941, 74, 263–281. [Google Scholar] [CrossRef] [PubMed]
- Talbot, T.R.; Stapleton, J.T.; Brady, R.C.; Winokur, P.L.; Bernstein, D.I.; Germanson, T.; Yoder, S.M.; Rock, M.T.; Crowe, J.E., Jr.; Edwards, K.M. Vaccination success rate and reaction profile with diluted and undiluted smallpox vaccine: A randomized controlled trial. JAMA 2004, 292, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Anon Note for Guidance on the Development of Vaccinia Virus Based Vaccines against Smallpox; The European Agency for the Evaluation of Medicinal Products: London, UK, 2002; pp. 1–19. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003900.pdf (accesed on 26th, february, 2015).
- Khliabich, G.N.; Sumarokov, A.A.; Karinskaia, G.A.; Shkol’nik, R.; Iaroslavskaia, N.V. Comparative study of the smallpox vaccines from B-51, EM-63 and L-IVP in a controlled epidemiological experiment. II. The characteristiics of the immunogenicity of the smallpox vaccines. Zh Mikrobiol. Epidemiol. Immunobiol. 1978, 9, 37–42. [Google Scholar] [PubMed]
- Kim, S.H.; Yeo, S.G.; Jang, H.C.; Park, W.B.; Lee, C.S.; Lee, K.D.; Kim, H.B.; Kim, N.J.; Kim, Y.T.; Jee, Y.; et al. Clinical responses to smallpox vaccine in vaccinia-naive and previously vaccinated populations: Undiluted and diluted Lancy-Vaxina vaccine in a single-blind, randomized, prospective trial. J. Infect. Dis. 2005, 192, 1066–1070. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Liang, M.; Evans, D.H. Genomic analysis of vaccinia virus strain TianTan provides new insights into the evolution and evolutionary relationships between Orthopoxviruses. Virology 2013, 442, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Alan, D.T.; Barret, L.R.S. Vaccines for Biodefense and Emerging and Neglected Diseases; Academic Press/Elsevier: Amsterdam, The Netherland, 2009. [Google Scholar]
- Baxby, D. Poxvirus hosts and reservoirs. Brief review. Arch. Virol. 1977, 55, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Hekker, A.C.; Bos, J.M.; Rai, N.K.; Keja, J.; Cuboni, G.; Emmet, B.; Djalins, J. Large-scale use of freeze-dried smallpox vaccine prepared in primary cultures of rabbit kidney cells. Bull. World Health Organ. 1976, 54, 279–284. [Google Scholar] [PubMed]
- Meyer, H. Summary Report on Firs, Second and Third Generation Smallpox Vaccines; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Haim, M.; Gdalevich, M.; Mimouni, D.; Ashkenazi, I.; Shemer, J. Adverse reactions to smallpox vaccine: The Israel Defense Force experience, 1991 to 1996. A comparison with previous surveys. Mil. Med. 2000, 165, 287–289. [Google Scholar] [PubMed]
- Orr, N.; Forman, M.; Marcus, H.; Lustig, S.; Paran, N.; Grotto, I.; Klement, E.; Yehezkelli, Y.; Robin, G.; Reuveny, S.; et al. Clinical and immune responses after revaccination of israeli adults with the Lister strain of vaccinia virus. J. Infect. Dis. 2004, 190, 1295–1302. [Google Scholar] [CrossRef] [PubMed]
- Ferrier-Rembert, A.; Drillien, R.; Meignier, B.; Garin, D.; Crance, J.M. Safety, immunogenicity and protective efficacy in mice of a new cell-cultured Lister smallpox vaccine candidate. Vaccine 2007, 25, 8290–8297. [Google Scholar] [CrossRef] [PubMed]
- Stittelaar, K.J.; van Amerongen, G.; Kondova, I.; Kuiken, T.; van Lavieren, R.F.; Pistoor, F.H.; Niesters, H.G.; van Doornum, G.; van der Zeijst, B.A.; Mateo, L.; et al. Modified vaccinia virus Ankara protects macaques against respiratory challenge with monkeypox virus. J. Virol. 2005, 79, 7845–7851. [Google Scholar] [CrossRef] [PubMed]
- Wiser, I.; Balicer, R.D.; Cohen, D. An update on smallpox vaccine candidates and their role in bioterrorism related vaccination strategies. Vaccine 2007, 25, 976–984. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, R.N.; Kennedy, J.S.; Clanton, D.J.; Plummer, E.A.; Hague, L.; Cruz, J.; Ennis, F.A.; Blackwelder, W.C.; Hopkins, R.J. Safety and immunogenicity of new cell-cultured smallpox vaccine compared with calf-lymph derived vaccine: A blind, single-centre, randomised controlled trial. Lancet 2005, 365, 398–409. [Google Scholar] [CrossRef] [PubMed]
- Weltzin, R.; Liu, J.; Pugachev, K.V.; Myers, G.A.; Coughlin, B.; Blum, P.S.; Nichols, R.; Johnson, C.; Cruz, J.; Kennedy, J.S.; et al. Clonal vaccinia virus grown in cell culture as a new smallpox vaccine. Nat. Med. 2003, 9, 1125–1130. [Google Scholar] [CrossRef] [PubMed]
- Monath, T.P.; Caldwell, J.R.; Mundt, W.; Fusco, J.; Johnson, C.S.; Buller, M.; Liu, J.; Gardner, B.; Downing, G.; Blum, P.S.; et al. ACAM2000 clonal Vero cell culture vaccinia virus (New York City Board of Health strain)—A second-generation smallpox vaccine for biological defense. Int. J. Infect. Dis. 2004, 8, S31–S44. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.C.; Kim, C.J.; Kim, K.H.; Lee, K.H.; Byun, Y.H.; Seong, B.L.; Saletti, G.; Czerkinsky, C.; Park, W.B.; Park, S.W.; et al. A randomized, double-blind, controlled clinical trial to evaluate the efficacy and safety of CJ-50300, a newly developed cell culture-derived smallpox vaccine, in healthy volunteers. Vaccine 2010, 28, 5845–5849. [Google Scholar] [CrossRef] [PubMed]
- Grabenstein, J.D.; Winkenwerder, W., Jr. US military smallpox vaccination program experience. JAMA 2003, 289, 3278–3282. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Chen, N.; Feng, Z.; Buller, R.M.; Osborne, J.; Harms, T.; Damon, I.; Upton, C.; Esteban, D.J. Genomic sequence and analysis of a vaccinia virus isolate from a patient with a smallpox vaccine-related complication. Virol. J. 2006, 3, e88. [Google Scholar] [CrossRef]
- Cheliapov, N.V.; Chernos, V.I.; Andzhaparidze, O.G. Analysis of antibody formation to the vaccinia virus in human subjects and rabbits in response to the administration of a recombinant vaccinia-hepatitis B vaccine. Vopr. Virusol. 1988, 33, 175–179. [Google Scholar] [PubMed]
- Chernos, V.I.; Cheliapov, N.V.; Antonova, T.P.; Rakhilina, L.E.; Unanov, S.S.; Al’tshtein, A.D.; Zakharova, L.G.; Fodor, I.I.; Bendukidze, K.A.; Komarov, F.I.; et al. Verification of the safety, inoculability, reactogenicity and antigenic properties of a live recombinant smallpox-hepatitis B vaccine in an experiment in volunteers. Vopr. Virusol. 1990, 35, 132–135. [Google Scholar] [PubMed]
- Cross, M.L.; Fleming, S.B.; Cowan, P.E.; Scobie, S.; Whelan, E.; Prada, D.; Mercer, A.A.; Duckworth, J.A. Vaccinia virus as a vaccine delivery system for marsupial wildlife. Vaccine 2011, 29, 4537–4543. [Google Scholar] [CrossRef] [PubMed]
- Clegg, J.C.; Lloyd, G. Vaccinia recombinant expressing Lassa-virus internal nucleocapsid protein protects guineapigs against Lassa fever. Lancet 1987, 2, 186–188. [Google Scholar] [CrossRef] [PubMed]
- Poon, L.L.; Leung, Y.H.; Nicholls, J.M.; Perera, P.Y.; Lichy, J.H.; Yamamoto, M.; Waldmann, T.A.; Peiris, J.S.; Perera, L.P. Vaccinia virus-based multivalent H5N1 avian influenza vaccines adjuvanted with IL-15 confer sterile cross-clade protection in mice. J. Immunol. 2009, 182, 3063–3071. [Google Scholar] [CrossRef] [PubMed]
- Valkenburg, S.A.; Li, O.T.; Mak, P.W.; Mok, C.K.; Nicholls, J.M.; Guan, Y.; Waldmann, T.A.; Peiris, J.S.; Perera, L.P.; Poon, L.L. IL-15 adjuvanted multivalent vaccinia-based universal influenza vaccine requires CD4+ T cells for heterosubtypic protection. Proc. Natl. Acad. Sci. USA 2014, 111, 5676–5681. [Google Scholar] [CrossRef] [PubMed]
- Kutinova, L.; Ludvikova, V.; Krystofova, J.; Otavova, M.; Simonova, V.; Nemeckova, S.; Hainz, P.; Vonka, V. Influence of the parental virus strain on the virulence and immunogenicity of recombinant vaccinia viruses expressing HBV preS2-S protein or VZV glycoprotein I. Vaccine 1996, 14, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Giavedoni, L.; Jones, L.; Mebus, C.; Yilma, T. A vaccinia virus double recombinant expressing the F and H genes of rinderpest virus protects cattle against rinderpest and causes no pock lesions. Proc. Natl. Acad. Sci. USA 1991, 88, 8011–8015. [Google Scholar] [CrossRef] [PubMed]
- Auperin, D.D.; Esposito, J.J.; Lange, J.V.; Bauer, S.P.; Knight, J.; Sasso, D.R.; McCormick, J.B. Construction of a recombinant vaccinia virus expressing the Lassa virus glycoprotein gene and protection of guinea pigs from a lethal Lassa virus infection. Virus Res. 1988, 9, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Merkel, T.J.; Perera, P.Y.; Kelly, V.K.; Verma, A.; Llewellyn, Z.N.; Waldmann, T.A.; Mosca, J.D.; Perera, L.P. Development of a highly efficacious vaccinia-based dual vaccine against smallpox and anthrax, two important bioterror entities. Proc. Natl. Acad. Sci. USA 2010, 107, 18091–18096. [Google Scholar] [CrossRef] [PubMed]
- Wiktor, T.J.; Macfarlan, R.I.; Reagan, K.J.; Dietzschold, B.; Curtis, P.J.; Wunner, W.H.; Kieny, M.P.; Lathe, R.; Lecocq, J.P.; Mackett, M.; et al. Protection from rabies by a vaccinia virus recombinant containing the rabies virus glycoprotein gene. Proc. Natl. Acad. Sci. USA 1984, 81, 7194–7198. [Google Scholar] [CrossRef] [PubMed]
- Pastoret, P.P.; Brochier, B. The development and use of a vaccinia-rabies recombinant oral vaccine for the control of wildlife rabies; a link between Jenner and Pasteur. Epidemiol. Infect. 1996, 116, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Gonczol, E.; de Taisne, C.; Hirka, G.; Berencsi, K.; Lin, W.C.; Paoletti, E.; Plotkin, S. High expression of human cytomegalovirus (HCMV)-gB protein in cells infected with a vaccinia-gB recombinant: The importance of the gB protein in HCMV immunity. Vaccine 1991, 9, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Bertagnoli, S.; Gelfi, J.; Petit, F.; Vautherot, J.F.; Rasschaert, D.; Laurent, S.; Le Gall, G.; Boilletot, E.; Chantal, J.; Boucraut-Baralon, C. Protection of rabbits against rabbit viral haemorrhagic disease with a vaccinia-RHDV recombinant virus. Vaccine 1996, 14, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Wild, T.F.; Bernard, A.; Spehner, D.; Drillien, R. Construction of vaccinia virus recombinants expressing several measles virus proteins and analysis of their efficacy in vaccination of mice. J. Gen. Virol. 1992, 73, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.X.; Goebel, S.; Davis, S.; Perkus, M.E.; Languet, B.; Desmettre, P.; Allen, G.; Paoletti, E. Expression in recombinant vaccinia virus of the equine herpesvirus 1 gene encoding glycoprotein gp13 and protection of immunized animals. J. Virol. 1989, 63, 4189–4198. [Google Scholar] [PubMed]
- Astagneau, P.; Chougnet, C.; Lepers, J.P.; Danielle, M.; Andriamangatiana-Rason, M.D.; Deloron, P. Antibodies to the 4-m repeat of the ring-infected erythrocyte surface antigen (Pf155/RESA) protect against Plasmodium falciparum malaria. Int. J. Epidemiol. 1994, 23, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Theisen, M.; Cox, G.; Hogh, B.; Jepsen, S.; Vuust, J. Immunogenicity of the Plasmodium falciparum glutamate-rich protein expressed by vaccinia virus. Infect. Immun. 1994, 62, 3270–3275. [Google Scholar] [PubMed]
- Rodriguez, D.; Gonzalez-Aseguinolaza, G.; Rodriguez, J.R.; Vijayan, A.; Gherardi, M.; Rueda, P.; Casal, J.I.; Esteban, M. Vaccine efficacy against malaria by the combination of porcine parvovirus-like particles and vaccinia virus vectors expressing CS of Plasmodium. PLOS ONE 2012, 7, e34445. [Google Scholar] [CrossRef] [PubMed]
- Goodman, A.G.; Heinen, P.P.; Guerra, S.; Vijayan, A.; Sorzano, C.O.; Gomez, C.E.; Esteban, M. A human multi-epitope recombinant vaccinia virus as a universal T cell vaccine candidate against influenza virus. PLOS ONE 2011, 6, e25938. [Google Scholar] [CrossRef] [PubMed]
- Gomez, C.E.; Rodriguez, D.; Rodriguez, J.R.; Abaitua, F.; Duarte, C.; Esteban, M. Enhanced CD8+ T cell immune response against a V3 loop multi-epitope polypeptide (TAB13) of HIV-1 Env after priming with purified fusion protein and booster with modified vaccinia virus Ankara (MVA-TAB) recombinant: A comparison of humoral and cellular immune responses with the vaccinia virus Western Reserve (WR) vector. Vaccine 2001, 20, 961–971. [Google Scholar] [CrossRef] [PubMed]
- Gherardi, M.M.; Najera, J.L.; Perez-Jimenez, E.; Guerra, S.; Garcia-Sastre, A.; Esteban, M. Prime-boost immunization schedules based on influenza virus and vaccinia virus vectors potentiate cellular immune responses against human immunodeficiency virus Env protein systemically and in the genitorectal draining lymph nodes. J. Virol. 2003, 77, 7048–7057. [Google Scholar] [CrossRef] [PubMed]
- Gomez, C.E.; Abaitua, F.; Rodriguez, D.; Esteban, M. Efficient CD8+ T cell response to the HIV-env V3 loop epitope from multiple virus isolates by a DNA prime/vaccinia virus boost (rWR and rMVA strains) immunization regime and enhancement by the cytokine IFN-gamma. Virus Res. 2004, 105, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Dondji, B.; Perez-Jimenez, E.; Goldsmith-Pestana, K.; Esteban, M.; McMahon-Pratt, D. Heterologous prime-boost vaccination with the LACK antigen protects against murine visceral leishmaniasis. Infect. Immun. 2005, 73, 5286–5289. [Google Scholar] [CrossRef] [PubMed]
- Ramos, I.; Alonso, A.; Marcen, J.M.; Peris, A.; Castillo, J.A.; Colmenares, M.; Larraga, V. Heterologous prime-boost vaccination with a non-replicative vaccinia recombinant vector expressing LACK confers protection against canine visceral leishmaniasis with a predominant Th1-specific immune response. Vaccine 2008, 26, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Grigorieva, I.M.; Grigoriev, V.G.; Zakharova, L.G.; Pashvykina, G.V.; Shevlyagin, V.Y.; Altstein, A.D. Immunogenicity of recombinant vaccinia viruses expressing hepatitis B virus surface antigen in mice. Immunol. Lett. 1993, 36, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Iacono-Connors, L.C.; Welkos, S.L.; Ivins, B.E.; Dalrymple, J.M. Protection against anthrax with recombinant virus-expressed protective antigen in experimental animals. Infect. Immun. 1991, 59, 1961–1965. [Google Scholar] [PubMed]
- Yasuda, A.; Kimura-Kuroda, J.; Ogimoto, M.; Miyamoto, M.; Sata, T.; Sato, T.; Takamura, C.; Kurata, T.; Kojima, A.; Yasui, K. Induction of protective immunity in animals vaccinated with recombinant vaccinia viruses that express PreM and E glycoproteins of Japanese encephalitis virus. J. Virol. 1990, 64, 2788–2795. [Google Scholar] [PubMed]
- Barrett, T.; Belsham, G.J.; Subbarao, S.M.; Evans, S.A. Immunization with a vaccinia recombinant expressing the F protein protects rabbits from challenge with a lethal dose of rinderpest virus. Virology 1989, 170, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Asano, K.; Tsukiyama, K.; Shibata, S.; Yamaguchi, K.; Momoki, T.; Maruyama, T.; Kohara, M.; Miki, K.; Sugimoto, M.; Yoshikawa, Y.; et al. Immunological and virological characterization of improved construction of recombinant vaccinia virus expressing rinderpest virus hemagglutinin. Arch. Virol. 1991, 116, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Rota, P.; Wyatt, L.; Tamin, A.; Rozenblatt, S.; Lerche, N.; Moss, B.; Bellini, W.; McChesney, M. Evaluation of recombinant vaccinia virus—Measles vaccines in infant rhesus macaques with preexisting measles antibody. Virology 2000, 276, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Vemulapalli, R.; Cravero, S.; Calvert, C.L.; Toth, T.E.; Sriranganathan, N.; Boyle, S.M.; Rossetti, O.L.; Schurig, G.G. Characterization of specific immune responses of mice inoculated with recombinant vaccinia virus expressing an 18-kilodalton outer membrane protein of Brucella abortus. Clin. Diagn. Lab. Immunol. 2000, 7, 114–118. [Google Scholar] [PubMed]
- Olmsted, R.A.; Buller, R.M.; Collins, P.L.; London, W.T.; Beeler, J.A.; Prince, G.A.; Chanock, R.M.; Murphy, B.R. Evaluation in non-human primates of the safety, immunogenicity and efficacy of recombinant vaccinia viruses expressing the F or G glycoprotein of respiratory syncytial virus. Vaccine 1988, 6, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Vennema, H.; de Groot, R.J.; Harbour, D.A.; Dalderup, M.; Gruffydd-Jones, T.; Horzinek, M.C.; Spaan, W.J. Immunogenicity of recombinant feline infectious peritonitis virus spike protein in mice and kittens. Adv. Exp. Med. Biol. 1990, 276, 217–222. [Google Scholar] [PubMed]
- Tripathy, D.N.; Schnitzlein, W.M.; Morris, P.J.; Janssen, D.L.; Zuba, J.K.; Massey, G.; Atkinson, C.T. Characterization of poxviruses from forest birds in Hawaii. J. Wildl. Dis. 2000, 36, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Bolte, A.; Meurer, J.; Kaleta, E. Avian host spectrum of avipoxviruses. Avian Pathol. 1999, 28, 415–432. [Google Scholar] [CrossRef]
- Afonso, C.L.; Tulman, E.R.; Lu, Z.; Zsak, L.; Kutish, G.F.; Rock, D.L. The genome of fowlpox virus. J. Virol. 2000, 74, 3815–3831. [Google Scholar] [CrossRef] [PubMed]
- Tulman, E.R.; Afonso, C.L.; Lu, Z.; Zsak, L.; Kutish, G.F.; Rock, D.L. The genome of canarypox virus. J. Virol. 2004, 78, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Sadasiv, E.C.; Chang, P.W.; Gulka, G. Morphogenesis of canary poxvirus and its entrance into inclusion bodies. Am. J. Vet. Res. 1985, 46, 529–535. [Google Scholar] [PubMed]
- Taylor, J.; Paoletti, E. Fowlpox virus as a vector in non-avian species. Vaccine 1988, 6, 466–468. [Google Scholar] [CrossRef] [PubMed]
- Weli, S.C.; Nilssen, O.; Traavik, T. Avipoxvirus multiplication in a mammalian cell line. Virus Res. 2005, 109, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Somogyi, P.; Frazier, J.; Skinner, M.A. Fowlpox virus host range restriction: Gene expression, DNA replication, and morphogenesis in nonpermissive mammalian cells. Virology 1993, 197, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Zanotto, C.; Pozzi, E.; Pacchioni, S.; Volonte, L.; de Giuli Morghen, C.; Radaelli, A. Canarypox and fowlpox viruses as recombinant vaccine vectors: A biological and immunological comparison. Antivir. Res. 2010, 88, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Baxby, D.; Paoletti, E. Potential use of non-replicating vectors as recombinant vaccines. Vaccine 1992, 10, 8–9. [Google Scholar] [CrossRef] [PubMed]
- Skinner, M.A.; Laidlaw, S.M.; Eldaghayes, I.; Kaiser, P.; Cottingham, M.G. Fowlpox virus as a recombinant vaccine vector for use in mammals and poultry. Expert Rev. Vaccines 2005, 4, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Franchini, G.; Gurunathan, S.; Baglyos, L.; Plotkin, S.; Tartaglia, J. Poxvirus-based vaccine candidates for HIV: Two decades of experience with special emphasis on canarypox vectors. Expert Rev. Vaccines 2004, 3, S75–S88. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Weinberg, R.; Languet, B.; Desmettre, P.; Paoletti, E. Recombinant fowlpox virus inducing protective immunity in non-avian species. Vaccine 1988, 6, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Weli, S.C.; Tryland, M. Avipoxviruses: Infection biology and their use as vaccine vectors. Virol. J. 2011, 8, e49. [Google Scholar] [CrossRef]
- Radaelli, A.; Gimelli, M.; Cremonesi, C.; Scarpini, C.; de Giuli Morghen, C. Humoral and cell-mediated immunity in rabbits immunized with live non-replicating avipox recombinants expressing the HIV-1SF2 env gene. Vaccine 1994, 12, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Coupar, B.E.; Purcell, D.F.; Thomson, S.A.; Ramshaw, I.A.; Kent, S.J.; Boyle, D.B. Fowlpox virus vaccines for HIV and SHIV clinical and pre-clinical trials. Vaccine 2006, 24, 1378–1388. [Google Scholar] [CrossRef] [PubMed]
- Dale, C.J.; de Rose, R.; Stratov, I.; Chea, S.; Montefiori, D.C.; Thomson, S.; Ramshaw, I.A.; Coupar, B.E.; Boyle, D.B.; Law, M.; et al. Efficacy of DNA and fowlpox virus priming/boosting vaccines for simian/human immunodeficiency virus. J. Virol. 2004, 78, 13819–13828. [Google Scholar] [CrossRef] [PubMed]
- Dale, C.J.; Zhao, A.; Jones, S.L.; Boyle, D.B.; Ramshaw, I.A.; Kent, S.J. Induction of HIV-1-specific T-helper responses and type 1 cytokine secretion following therapeutic vaccination of macaques with a recombinant fowlpoxvirus co-expressing interferon-gamma. J. Med. Primatol. 2000, 29, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Kent, S.J.; Zhao, A.; Dale, C.J.; Land, S.; Boyle, D.B.; Ramshaw, I.A. A recombinant avipoxvirus HIV-1 vaccine expressing interferon-gamma is safe and immunogenic in macaques. Vaccine 2000, 18, 2250–2256. [Google Scholar] [CrossRef] [PubMed]
- Zanotto, C.; Elli, V.; Basavecchia, V.; Brivio, A.; Paganini, M.; Pinna, D.; Vicenzi, E.; de Giuli Morghen, C.; Radaelli, A. Evaluation in rabbits of different anti-SHIV vaccine strategies based on DNA/fowlpox priming and virus-like particle boosting. FEMS Immunol. Med. Microbiol. 2003, 35, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Nacsa, J.; Radaelli, A.; Edghill-Smith, Y.; Venzon, D.; Tsai, W.P.; Morghen Cde, G.; Panicali, D.; Tartaglia, J.; Franchini, G. Avipox-based simian immunodeficiency virus (SIV) vaccines elicit a high frequency of SIV-specific CD4+ and CD8+ T-cell responses in vaccinia-experienced SIVmac251-infected macaques. Vaccine 2004, 22, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Quintana-Vazquez, D.; Vazquez-Blomquist, D.M.; Galban Rodriguez, E.; Herrera Buch, A.M.; Duarte Cano, C.A. A vaccination strategy consisting of Semliki-Forest-virus (SFV) DNA prime and fowlpox-virus boost significantly protects mice from a recombinant (HIV-1) vaccinia-virus infection. Biotechnol. Appl. Biochem. 2005, 41, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Shen, Z.; Li, X.; Bai, J.; Zeng, L.; Tian, M.; Song, Y.J.; Ye, M.; Du, S.; Ren, D.; et al. Protection against SHIV-KB9 infection by combining rDNA and rFPV vaccines based on HIV multiepitope and p24 protein in Chinese rhesus macaques. Clin. Dev. Immunol. 2012, 2012, e958404. [Google Scholar]
- Jiang, W.; Jin, N.; Cui, S.; Li, Z.; Zhang, L.; Zhang, H.; Wang, H.; Han, W. Construction and characterization of recombinant fowlpox virus coexpressing HIV-1(CN) gp120 and IL-2. J. Virol. Methods 2005, 130, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Bridge, S.H.; Sharpe, S.A.; Dennis, M.J.; Dowall, S.D.; Getty, B.; Anson, D.S.; Skinner, M.A.; Stewart, J.P.; Blanchard, T.J. Heterologous prime-boost-boost immunisation of Chinese cynomolgus macaques using DNA and recombinant poxvirus vectors expressing HIV-1 virus-like particles. Virol. J. 2011, 8, e429. [Google Scholar] [CrossRef]
- Kent, S.J.; Zhao, A.; Best, S.J.; Chandler, J.D.; Boyle, D.B.; Ramshaw, I.A. Enhanced T-cell immunogenicity and protective efficacy of a human immunodeficiency virus type 1 vaccine regimen consisting of consecutive priming with DNA and boosting with recombinant fowlpox virus. J. Virol. 1998, 72, 10180–10188. [Google Scholar] [PubMed]
- Emery, S.; Workman, C.; Puls, R.L.; Bloch, M.; Baker, D.; Bodsworth, N.; Anderson, J.; Crowe, S.M.; French, M.A.; Hoy, J.; et al. Randomized, placebo-controlled, phase I/IIa evaluation of the safety and immunogenicity of fowlpox virus expressing HIV gag-pol and interferon-gamma in HIV-1 infected subjects. Hum. Vaccine 2005, 1, 232–238. [Google Scholar] [CrossRef]
- Kelleher, A.D.; Puls, R.L.; Bebbington, M.; Boyle, D.; Ffrench, R.; Kent, S.J.; Kippax, S.; Purcell, D.F.; Thomson, S.; Wand, H.; et al. A randomized, placebo-controlled phase I trial of DNA prime, recombinant fowlpox virus boost prophylactic vaccine for HIV-1. AIDS 2006, 20, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Hemachandra, A.; Puls, R.L.; Sirivichayakul, S.; Kerr, S.; Thantiworasit, P.; Ubolyam, S.; Cooper, D.A.; Emery, S.; Phanuphak, P.; Kelleher, A.; et al. An HIV-1 clade A/E DNA prime, recombinant fowlpox virus boost vaccine is safe, but non-immunogenic in a randomized phase I/IIa trial in Thai volunteers at low risk of HIV infection. Hum. Vaccine 2010, 6, 835–840. [Google Scholar] [CrossRef]
- Keefer, M.C.; Frey, S.E.; Elizaga, M.; Metch, B.; de Rosa, S.C.; Barroso, P.F.; Tomaras, G.; Cardinali, M.; Goepfert, P.; Kalichman, A.; et al. A phase I trial of preventive HIV vaccination with heterologous poxviral-vectors containing matching HIV-1 inserts in healthy HIV-uninfected subjects. Vaccine 2011, 29, 1948–1958. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.L.; Wang, Y.F.; Tong, G.Z.; Zhang, P.J.; Miao, D.Y.; Zhi, H.D.; Wang, M. Protection of chickens from Newcastle disease and infectious laryngotracheitis with a recombinant fowlpox virus co-expressing the F, HN genes of Newcastle disease virus and gB gene of infectious laryngotracheitis virus. Avian Dis. 2008, 52, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Edbauer, C.; Rey-Senelonge, A.; Bouquet, J.F.; Norton, E.; Goebel, S.; Desmettre, P.; Paoletti, E. Newcastle disease virus fusion protein expressed in a fowlpox virus recombinant confers protection in chickens. J. Virol. 1990, 64, 1441–1450. [Google Scholar] [PubMed]
- Boursnell, M.E.; Green, P.F.; Campbell, J.I.; Deuter, A.; Peters, R.W.; Tomley, F.M.; Samson, A.C.; Emmerson, P.T.; Binns, M.M. A fowlpox virus vaccine vector with insertion sites in the terminal repeats: Demonstration of its efficacy using the fusion gene of Newcastle disease virus. Vet. Microbiol. 1990, 23, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, R.; Yanagida, N.; Saeki, S.; Saito, S.; Ohkawa, S.; Gotoh, H.; Kodama, K.; Kamogawa, K.; Sawaguchi, K.; Iritani, Y. Recombinant fowlpox viruses inducing protective immunity against Newcastle disease and fowlpox viruses. Vaccine 1990, 8, 486–490. [Google Scholar] [CrossRef]
- Edbauer, C.; Weinberg, R.; Taylor, J.; Rey-Senelonge, A.; Bouquet, J.F.; Desmettre, P.; Paoletti, E. Protection of chickens with a recombinant fowlpox virus expressing the Newcastle disease virus hemagglutinin-neuraminidase gene. Virology 1990, 179, 901–904. [Google Scholar] [CrossRef] [PubMed]
- Iritani, Y.; Aoyama, S.; Takigami, S.; Hayashi, Y.; Ogawa, R.; Yanagida, N.; Saeki, S.; Kamogawa, K. Antibody response to Newcastle disease virus (NDV) of recombinant fowlpox virus (FPV) expressing a hemagglutinin-neuraminidase of NDV into chickens in the presence of antibody to NDV or FPV. Avian Dis. 1991, 35, 659–661. [Google Scholar] [CrossRef] [PubMed]
- Nagy, E.; Krell, P.J.; Heckert, R.A.; Derbyshire, J.B. Vaccination of chickens with a recombinant fowlpox virus containing the hemagglutinin-neuraminidase gene of Newcastle disease virus under the control of the fowlpox virus thymidine kinase promoter. Can. J. Vet. Res. 1994, 58, 306–308. [Google Scholar] [PubMed]
- Karaca, K.; Sharma, J.M.; Winslow, B.J.; Junker, D.E.; Reddy, S.; Cochran, M.; McMillen, J. Recombinant fowlpox viruses coexpressing chicken type I IFN and Newcastle disease virus HN and F genes: Influence of IFN on protective efficacy and humoral responses of chickens following in ovo or post-hatch administration of recombinant viruses. Vaccine 1998, 16, 1496–1503. [Google Scholar] [CrossRef] [PubMed]
- Rautenschlein, S.; Sharma, J.M.; Winslow, B.J.; McMillen, J.; Junker, D.; Cochran, M. Embryo vaccination of turkeys against Newcastle disease infection with recombinant fowlpox virus constructs containing interferons as adjuvants. Vaccine 1999, 18, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Davison, S.; Gingerich, E.N.; Casavant, S.; Eckroade, R.J. Evaluation of the efficacy of a live fowlpox-vectored infectious laryngotracheitis/avian encephalomyelitis vaccine against ILT viral challenge. Avian Dis. 2006, 50, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Godoy, A.; Icard, A.; Martinez, M.; Mashchenko, A.; Garcia, M.; El-Attrachea, J. Detection of infectious laryngotracheitis virus antibodies by glycoprotein-specific ELISAs in chickens vaccinated with viral vector vaccines. Avian Dis. 2013, 57, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Vagnozzi, A.; Zavala, G.; Riblet, S.M.; Mundt, A.; Garcia, M. Protection induced by commercially available live-attenuated and recombinant viral vector vaccines against infectious laryngotracheitis virus in broiler chickens. Avian Pathol. 2012, 41, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Sun, Y.K.; Tian, Z.C.; Shi, X.M.; Tong, G.Z.; Liu, S.W.; Zhi, H.D.; Kong, X.G.; Wang, M. Protection of chickens against infectious bronchitis by a recombinant fowlpox virus co-expressing IBV-S1 and chicken IFNgamma. Vaccine 2009, 27, 7046–7052. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Yang, M.F.; Cui, B.A.; Cui, P.; Sheng, M.; Chen, G.; Wang, S.J.; Geng, J.W. Construction and immunogenicity of a recombinant fowlpox vaccine coexpressing S1 glycoprotein of infectious bronchitis virus and chicken IL-18. Vaccine 2010, 28, 8112–8119. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.M.; Zhao, Y.; Gao, H.B.; Jing, Z.; Wang, M.; Cui, H.Y.; Tong, G.Z.; Wang, Y.F. Evaluation of recombinant fowlpox virus expressing infectious bronchitis virus S1 gene and chicken interferon-gamma gene for immune protection against heterologous strains. Vaccine 2011, 29, 1576–1582. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Schnitzlein, W.M.; Tripathy, D.N.; Girshick, T.; Khan, M.I. Construction and immunogenicity studies of recombinant fowl poxvirus containing the S1 gene of Massachusetts 41 strain of infectious bronchitis virus. Avian Dis. 2002, 46, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Richard-Mazet, A.; Goutebroze, S.; le Gros, F.X.; Swayne, D.E.; Bublot, M. Immunogenicity and efficacy of fowlpox-vectored and inactivated avian influenza vaccines alone or in a prime-boost schedule in chickens with maternal antibodies. Vet. Res. 2014, 45, e107. [Google Scholar] [CrossRef]
- Bublot, M.; Pritchard, N.; Cruz, J.S.; Mickle, T.R.; Selleck, P.; Swayne, D.E. Efficacy of a fowlpox-vectored avian influenza H5 vaccine against Asian H5N1 highly pathogenic avian influenza virus challenge. Avian Dis. 2007, 51, 498–500. [Google Scholar] [CrossRef] [PubMed]
- Steensels, M.; Bublot, M.; van Borm, S.; de Vriese, J.; Lambrecht, B.; Richard-Mazet, A.; Chanavat-Bizzini, S.; Duboeuf, M.; le Gros, F.X.; van den Berg, T. Prime-boost vaccination with a fowlpox vector and an inactivated avian influenza vaccine is highly immunogenic in Pekin ducks challenged with Asian H5N1 HPAI. Vaccine 2009, 27, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Qiao, C.; Jiang, Y.; Tian, G.; Wang, X.; Li, C.; Xin, X.; Chen, H.; Yu, K. Recombinant fowlpox virus vector-based vaccine completely protects chickens from H5N1 avian influenza virus. Antivir. Res. 2009, 81, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Bublot, M.; Manvell, R.J.; Shell, W.; Brown, I.H. High level of protection induced by two fowlpox vector vaccines against a highly pathogenic avian influenza H5N1 challenge in specific-pathogen-free chickens. Avian Dis. 2010, 54, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Weinberg, R.; Kawaoka, Y.; Webster, R.G.; Paoletti, E. Protective immunity against avian influenza induced by a fowlpox virus recombinant. Vaccine 1988, 6, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Chen, S.; Ding, P.; Chai, M.; Xu, C.; Gan, J.; Peng, D.; Liu, X. The immune response of a recombinant fowlpox virus coexpressing the HA gene of the H5N1 highly pathogenic avian influenza virus and chicken interleukin 6 gene in ducks. Vaccine 2012, 30, 6279–6286. [Google Scholar] [CrossRef] [PubMed]
- Bertran, K.; Sa, E.S.M.; Pantin-Jackwood, M.J.; Swayne, D.E. Protection against H7N3 high pathogenicity avian influenza in chickens immunized with a recombinant fowlpox and an inactivated avian influenza vaccines. Vaccine 2013, 31, 3572–3576. [Google Scholar] [CrossRef] [PubMed]
- Mingxiao, M.; Ningyi, J.; Zhenguo, W.; Ruilin, W.; Dongliang, F.; Min, Z.; Gefen, Y.; Chang, L.; Leili, J.; Kuoshi, J.; et al. Construction and immunogenicity of recombinant fowlpox vaccines coexpressing HA of AIV H5N1 and chicken IL18. Vaccine 2006, 24, 4304–4311. [Google Scholar] [CrossRef] [PubMed]
- Bublot, M.; Pritchard, N.; Swayne, D.E.; Selleck, P.; Karaca, K.; Suarez, D.L.; Audonnet, J.C.; Mickle, T.R. Development and use of fowlpox vectored vaccines for avian influenza. Ann. N. Y. Acad. Sci. 2006, 1081, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Beard, C.W.; Schnitzlein, W.M.; Tripathy, D.N. Protection of chickens against highly pathogenic avian influenza virus (H5N2) by recombinant fowlpox viruses. Avian Dis. 1991, 35, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Webster, R.G.; Kawaoka, Y.; Taylor, J.; Weinberg, R.; Paoletti, E. Efficacy of nucleoprotein and haemagglutinin antigens expressed in fowlpox virus as vaccine for influenza in chickens. Vaccine 1991, 9, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Webster, R.G.; Taylor, J.; Pearson, J.; Rivera, E.; Paoletti, E. Immunity to Mexican H5N2 avian influenza viruses induced by a fowl pox-H5 recombinant. Avian Dis. 1996, 40, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Swayne, D.E.; Garcia, M.; Beck, J.R.; Kinney, N.; Suarez, D.L. Protection against diverse highly pathogenic H5 avian influenza viruses in chickens immunized with a recombinant fowlpox vaccine containing an H5 avian influenza hemagglutinin gene insert. Vaccine 2000, 18, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Boyle, D.B.; Selleck, P.; Heine, H.G. Vaccinating chickens against avian influenza with fowlpox recombinants expressing the H7 haemagglutinin. Aust. Vet. J. 2000, 78, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Qiao, C.L.; Yu, K.Z.; Jiang, Y.P.; Jia, Y.Q.; Tian, G.B.; Liu, M.; Deng, G.H.; Wang, X.R.; Meng, Q.W.; Tang, X.Y. Protection of chickens against highly lethal H5N1 and H7N1 avian influenza viruses with a recombinant fowlpox virus co-expressing H5 haemagglutinin and N1 neuraminidase genes. Avian Pathol. 2003, 32, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Qiao, C.; Yu, K.; Jiang, Y.; Li, C.; Tian, G.; Wang, X.; Chen, H. Development of a recombinant fowlpox virus vector-based vaccine of H5N1 subtype avian influenza. Dev. Biol. 2006, 124, 127–132. [Google Scholar]
- Niqueux, E.; Guionie, O.; Amelot, M.; Jestin, V. Prime-boost vaccination with recombinant H5-fowlpox and Newcastle disease virus vectors affords lasting protection in SPF Muscovy ducks against highly pathogenic H5N1 influenza virus. Vaccine 2013, 31, 4121–4128. [Google Scholar] [CrossRef] [PubMed]
- Haygreen, E.A.; Kaiser, P.; Burgess, S.C.; Davison, T.F. In ovo DNA immunisation followed by a recombinant fowlpox boost is fully protective to challenge with virulent IBDV. Vaccine 2006, 24, 4951–4961. [Google Scholar] [CrossRef] [PubMed]
- Bayliss, C.D.; Peters, R.W.; Cook, J.K.; Reece, R.L.; Howes, K.; Binns, M.M.; Boursnell, M.E. A recombinant fowlpox virus that expresses the VP2 antigen of infectious bursal disease virus induces protection against mortality caused by the virus. Arch. Virol. 1991, 120, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Heine, H.G.; Boyle, D.B. Infectious bursal disease virus structural protein VP2 expressed by a fowlpox virus recombinant confers protection against disease in chickens. Arch. Virol. 1993, 131, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Shaw, I.; Davison, T.F. Protection from IBDV-induced bursal damage by a recombinant fowlpox vaccine, fpIBD1, is dependent on the titre of challenge virus and chicken genotype. Vaccine 2000, 18, 3230–3241. [Google Scholar] [CrossRef] [PubMed]
- Butter, C.; Sturman, T.D.; Baaten, B.J.; Davison, T.F. Protection from infectious bursal disease virus (IBDV)-induced immunosuppression by immunization with a fowlpox recombinant containing IBDV-VP2. Avian Pathol. 2003, 32, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Nazerian, K.; Lee, L.F.; Yanagida, N.; Ogawa, R. Protection against Marek’s disease by a fowlpox virus recombinant expressing the glycoprotein B of Marek’s disease virus. J. Virol. 1992, 66, 1409–1413. [Google Scholar] [PubMed]
- Omar, A.R.; Schat, K.A.; Lee, L.F.; Hunt, H.D. Cytotoxic T lymphocyte response in chickens immunized with a recombinant fowlpox virus expressing Marek’s disease herpesvirus glycoprotein B. Vet. Immunol. Immunopathol. 1998, 62, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Peng, D.; Wu, X.; Xing, L.; Zhang, R. A recombinant fowlpox virus vaccine expressing glycoprotein B gene from CVI988/Rispens strain of MDV: Protection studies in different chickens. Acta Virol. 1999, 43, 201–204. [Google Scholar] [PubMed]
- Lee, L.E.; Witter, R.L.; Reddy, S.M.; Wu, P.; Yanagida, N.; Yoshida, S. Protection and synergism by recombinant fowl pox vaccines expressing multiple genes from Marek’s disease virus. Avian Dis. 2003, 47, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.F.; Bacon, L.D.; Yoshida, S.; Yanagida, N.; Zhang, H.M.; Witter, R.L. The efficacy of recombinant fowlpox vaccine protection against Marek’s disease: Its dependence on chicken line and B haplotype. Avian Dis. 2004, 48, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Trimarchi, C.; Weinberg, R.; Languet, B.; Guillemin, F.; Desmettre, P.; Paoletti, E. Efficacy studies on a canarypox-rabies recombinant virus. Vaccine 1991, 9, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Zanotto, C.; Pozzi, E.; Pacchioni, S.; Bissa, M.; De Giuli Morghen, C.; Radaelli, A. Construction and characterisation of a recombinant fowlpox virus that expresses the human papilloma virus L1 protein. J. Transl. Med. 2011, 9, e190. [Google Scholar] [CrossRef]
- Pozzi, E.; Basavecchia, V.; Zanotto, C.; Pacchioni, S.; Morghen Cde, G.; Radaelli, A. Construction and characterization of recombinant fowlpox viruses expressing human papilloma virus E6 and E7 oncoproteins. J. Virol. Methods 2009, 158, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Jin, N.; Zhang, H.; Jin, M.; Lu, H.; Ma, M.; Li, C.; Yin, G.; Wang, R.; Liu, Q. Construction and immunogenicity of a recombinant fowlpox virus containing the capsid and 3C protease coding regions of foot-and-mouth disease virus. J. Virol. Methods 2006, 136, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Jin, N.; Shen, G.; Zhu, G.; Liu, H.J.; Zheng, M.; Lu, H.; Huo, X.; Jin, M.; Yin, G.; et al. Immune responses of swine inoculated with a recombinant fowlpox virus co-expressing P12A and 3C of FMDV and swine IL-18. Vet. Immunol. Immunopathol. 2008, 121, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Li, P.H.; Zhang, M.T.; Zhang, Y.M. Construction of recombinant fowlpox virus expressing E0 gene of classical swine fever virus shimen strain and the animal immunity experiment. Bing Du Xue Bao 2008, 24, 59–63. [Google Scholar] [PubMed]
- Feng, F.; Teoh, C.Q.; Qiao, Q.; Boyle, D.; Jilbert, A.R. The development of persistent duck hepatitis B virus infection can be prevented using antiviral therapy combined with DNA or recombinant fowlpoxvirus vaccines. Vaccine 2010, 28, 7436–7443. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Jin, N.; Ma, M.; Jin, K.; Zheng, M.; Zhuang, T.; Lu, H.; Zhu, G.; Jin, H.; Jin, M.; et al. Immune responses of pigs inoculated with a recombinant fowlpox virus coexpressing GP5/GP3 of porcine reproductive and respiratory syndrome virus and swine IL-18. Vaccine 2007, 25, 4193–4202. [Google Scholar] [CrossRef] [PubMed]
- Qingzhong, Y.; Barrett, T.; Brown, T.D.; Cook, J.K.; Green, P.; Skinner, M.A.; Cavanagh, D. Protection against turkey rhinotracheitis pneumovirus (TRTV) induced by a fowlpox virus recombinant expressing the TRTV fusion glycoprotein (F). Vaccine 1994, 12, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.; Tenorio, E.; Gorham, J.; Yilma, T. Protective vaccination of ferrets against canine distemper with recombinant pox virus vaccines expressing the H or F genes of rinderpest virus. Am. J. Vet. Res. 1997, 58, 590–593. [Google Scholar] [PubMed]
- Cardona, C.J.; Reed, W.M.; Witter, R.L.; Silva, R.F. Protection of turkeys from hemorrhagic enteritis with a recombinant fowl poxvirus expressing the native hexon of hemorrhagic enteritis virus. Avian Dis. 1999, 43, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Wild, F.; Giraudon, P.; Spehner, D.; Drillien, R.; Lecocq, J.P. Fowlpox virus recombinant encoding the measles virus fusion protein: Protection of mice against fatal measles encephalitis. Vaccine 1990, 8, 441–442. [Google Scholar] [CrossRef] [PubMed]
- Bissa, M.; Pacchioni, S.M.; Zanotto, C.; de Giuli Morghen, C.; Illiano, E.; Granucci, F.; Zanoni, I.; Broggi, A.; Radaelli, A. Systemically administered DNA and fowlpox recombinants expressing four vaccinia virus genes although immunogenic do not protect mice against the highly pathogenic IHD-J vaccinia strain. Virus Res. 2013, 178, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Pacchioni, S.M.; Bissa, M.; Zanotto, C.; Morghen Cde, G.; Illiano, E.; Radaelli, A. L1R, A27L, A33R and B5R vaccinia virus genes expressed by fowlpox recombinants as putative novel orthopoxvirus vaccines. J. Transl. Med. 2013, 11, e95. [Google Scholar] [CrossRef]
- Ha, H.J.; Alley, M.; Howe, L.; Gartrell, B. Evaluation of the pathogenicity of avipoxvirus strains isolated from wild birds in New Zealand and the efficacy of a fowlpox vaccine in passerines. Vet. Microbiol. 2013, 165, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Jieyuan, J.; Spradbrow, P.B. Oral fowlpox vaccination in chickens. Zentralbl. Veterinarmed. B 1992, 39, 388–390. [Google Scholar] [PubMed]
- Peleg, B.A.; Samina, I.; Brenner, J. Vaccination of chickens with live fowl pox (FP) vaccine in oil. Zentralbl. Veterinarmed. B 1993, 40, 522–524. [Google Scholar] [PubMed]
- Zhang, G.Z.; Zhang, R.; Zhao, H.L.; Wang, X.T.; Zhang, S.P.; Li, X.J.; Qin, C.Z.; Lv, C.M.; Zhao, J.X.; Zhou, J.F. A safety assessment of a fowlpox-vectored Mycoplasma gallisepticum vaccine in chickens. Poult. Sci. 2010, 89, 1301–1306. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Li, J.; Zhang, X.; Zhao, Q.; Liu, Q.; Gong, P. Eimeria tenella: Construction of a recombinant fowlpox virus expressing rhomboid gene and its protective efficacy against homologous infection. Exp. Parasitol. 2008, 119, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Kingstad-Bakke, B.; Brewoo, J.N.; Mai le, Q.; Kawaoka, Y.; Osorio, J.E. Effects of route and coadministration of recombinant raccoon poxviruses on immune responses and protection against highly pathogenic avian influenza in mice. Vaccine 2012, 30, 6402–6408. [Google Scholar] [CrossRef] [PubMed]
- Mencher, J.S.; Smith, S.R.; Powell, T.D.; Stinchcomb, D.T.; Osorio, J.E.; Rocke, T.E. Protection of black-tailed prairie dogs (Cynomys ludovicianus) against plague after voluntary consumption of baits containing recombinant raccoon poxvirus vaccine. Infect. Immun. 2004, 72, 5502–5505. [Google Scholar] [CrossRef] [PubMed]
- Osorio, J.E.; Powell, T.D.; Frank, R.S.; Moss, K.; Haanes, E.J.; Smith, S.R.; Rocke, T.E.; Stinchcomb, D.T. Recombinant raccoon pox vaccine protects mice against lethal plague. Vaccine 2003, 21, 1232–8123. [Google Scholar] [CrossRef] [PubMed]
- Rocke, T.E.; Iams, K.P.; Dawe, S.; Smith, S.R.; Williamson, J.L.; Heisey, D.M.; Osorio, J.E. Further development of raccoon poxvirus-vectored vaccines against plague (Yersinia pestis). Vaccine 2009, 28, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Rocke, T.E.; Pussini, N.; Smith, S.R.; Williamson, J.; Powell, B.; Osorio, J.E. Consumption of baits containing raccoon pox-based plague vaccines protects black-tailed prairie dogs (Cynomys ludovicianus). Vector Borne Zoonotic Dis. 2010, 10, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Rocke, T.E.; Smith, S.R.; Stinchcomb, D.T.; Osorio, J.E. Immunization of black-tailed prairie dog against plague through consumption of vaccine-laden baits. J. Wildl. Dis. 2008, 44, 930–937. [Google Scholar] [CrossRef] [PubMed]
- DeMartini, J.C.; Bickle, H.M.; Brodie, S.J.; He, B.X.; Esposito, J.J. Raccoon poxvirus rabies virus glycoprotein recombinant vaccine in sheep. Arch. Virol. 1993, 133, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Fekadu, M.; Shaddock, J.H.; Sumner, J.W.; Sanderlin, D.W.; Knight, J.C.; Esposito, J.J.; Baer, G.M. Oral vaccination of skunks with raccoon poxvirus recombinants expressing the rabies glycoprotein or the nucleoprotein. J. Wildl. Dis. 1991, 27, 681–684. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Ngichabe, C.; Trimarchi, C.V.; Esposito, J.J.; Scott, F.W. Raccoon poxvirus live recombinant feline panleukopenia virus VP2 and rabies virus glycoprotein bivalent vaccine. Vaccine 1997, 15, 1466–1472. [Google Scholar] [CrossRef] [PubMed]
- Osorio, J.E.; Frank, R.S.; Moss, K.; Taraska, T.; Powell, T.; Stinchcomb, D.T. Raccoon poxvirus as a mucosal vaccine vector for domestic cats. J. Drug Target 2003, 11, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Lodmell, D.L.; Esposito, J.J.; Ewalt, L.C. Rabies virus antinucleoprotein antibody protects against rabies virus challenge in vivo and inhibits rabies virus replication in vitro. J. Virol. 1993, 67, 6080–6086. [Google Scholar] [PubMed]
- Hu, L.; Esposito, J.J.; Scott, F.W. Raccoon poxvirus feline panleukopenia virus VP2 recombinant protects cats against FPV challenge. Virology 1996, 218, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Wasmoen, T.L.; Kadakia, N.P.; Unfer, R.C.; Fickbohm, B.L.; Cook, C.P.; Chu, H.J.; Acree, W.M. Protection of cats from infectious peritonitis by vaccination with a recombinant raccoon poxvirus expressing the nucleocapsid gene of feline infectious peritonitis virus. Adv. Exp. Med. Biol. 1995, 380, 221–228. [Google Scholar] [PubMed]
- Rohde, J.; Amann, R.; Rziha, H.J. New Orf virus (Parapoxvirus) recombinant expressing H5 hemagglutinin protects mice against H5N1 and H1N1 influenza A virus. PLOS ONE 2013, 8, e83802. [Google Scholar] [CrossRef] [PubMed]
- Amann, R.; Rohde, J.; Wulle, U.; Conlee, D.; Raue, R.; Martinon, O.; Rziha, H.J. A new rabies vaccine based on a recombinant ORF virus (parapoxvirus) expressing the rabies virus glycoprotein. J. Virol. 2013, 87, 1618–1630. [Google Scholar] [CrossRef] [PubMed]
- Dory, D.; Fischer, T.; Beven, V.; Cariolet, R.; Rziha, H.J.; Jestin, A. Prime-boost immunization using DNA vaccine and recombinant Orf virus protects pigs against Pseudorabies virus (Herpes suid 1). Vaccine 2006, 24, 6256–6263. [Google Scholar] [CrossRef] [PubMed]
- Fischer, L.; Barzu, S.; Andreoni, C.; Buisson, N.; Brun, A.; Audonnet, J.C. DNA vaccination of neonate piglets in the face of maternal immunity induces humoral memory and protection against a virulent pseudorabies virus challenge. Vaccine 2003, 21, 1732–1741. [Google Scholar] [CrossRef] [PubMed]
- van Rooij, E.M.; Rijsewijk, F.A.; Moonen-Leusen, H.W.; Bianchi, A.T.; Rziha, H.J. Comparison of different prime-boost regimes with DNA and recombinant Orf virus based vaccines expressing glycoprotein D of pseudorabies virus in pigs. Vaccine 2010, 28, 1808–1813. [Google Scholar] [CrossRef] [PubMed]
- Henkel, M.; Planz, O.; Fischer, T.; Stitz, L.; Rziha, H.J. Prevention of virus persistence and protection against immunopathology after Borna disease virus infection of the brain by a novel Orf virus recombinant. J. Virol. 2005, 79, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Rohde, J.; Schirrmeier, H.; Granzow, H.; Rziha, H.J. A new recombinant Orf virus (ORFV, Parapoxvirus) protects rabbits against lethal infection with rabbit hemorrhagic disease virus (RHDV). Vaccine 2011, 29, 9256–9264. [Google Scholar] [CrossRef] [PubMed]
- Voigt, H.; Merant, C.; Wienhold, D.; Braun, A.; Hutet, E.; Le Potier, M.F.; Saalmuller, A.; Pfaff, E.; Buttner, M. Efficient priming against classical swine fever with a safe glycoprotein E2 expressing Orf virus recombinant (ORFV VrV-E2). Vaccine 2007, 25, 5915–5926. [Google Scholar] [CrossRef] [PubMed]
- Berhe, G.; Minet, C.; le Goff, C.; Barrett, T.; Ngangnou, A.; Grillet, C.; Libeau, G.; Fleming, M.; Black, D.N.; Diallo, A. Development of a dual recombinant vaccine to protect small ruminants against peste-des-petits-ruminants virus and capripoxvirus infections. J. Virol. 2003, 77, 1571–1577. [Google Scholar] [CrossRef] [PubMed]
- Caufour, P.; Rufael, T.; Lamien, C.E.; Lancelot, R.; Kidane, M.; Awel, D.; Sertse, T.; Kwiatek, O.; Libeau, G.; Sahle, M.; et al. Protective efficacy of a single immunization with capripoxvirus-vectored recombinant peste des petits ruminants vaccines in presence of pre-existing immunity. Vaccine 2014, 32, 3772–3779. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Hu, S.; Qu, L.; Hu, Q.; Zhang, Q.; Zhi, H.; Huang, K.; Bu, Z. A goat poxvirus-vectored peste-des-petits-ruminants vaccine induces long-lasting neutralization antibody to high levels in goats and sheep. Vaccine 2010, 28, 4742–4750. [Google Scholar] [CrossRef] [PubMed]
- Diallo, A. Control of peste des petits ruminants: Classical and new generation vaccines. Dev. Biol. 2003, 114, 113–119. [Google Scholar]
- Diallo, A.; Minet, C.; Berhe, G.; le Goff, C.; Black, D.N.; Fleming, M.; Barrett, T.; Grillet, C.; Libeau, G. Goat immune response to capripox vaccine expressing the hemagglutinin protein of peste des petits ruminants. Ann. N. Y. Acad. Sci. 2002, 969, 88–91. [Google Scholar] [CrossRef]
- Hosamani, M.; Singh, S.K.; Mondal, B.; Sen, A.; Bhanuprakash, V.; Bandyopadhyay, S.K.; Yadav, M.P.; Singh, R.K. A bivalent vaccine against goat pox and Peste des Petits ruminants induces protective immune response in goats. Vaccine 2006, 24, 6058–6064. [Google Scholar] [CrossRef] [PubMed]
- Romero, C.H.; Barrett, T.; Kitching, R.P.; Bostock, C.; Black, D.N. Protection of goats against peste des petits ruminants with recombinant capripoxviruses expressing the fusion and haemagglutinin protein genes of rinderpest virus. Vaccine 1995, 13, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Burgers, W.A.; Ginbot, Z.; Shen, Y.J.; Chege, G.K.; Soares, A.P.; Muller, T.L.; Bunjun, R.; Kiravu, A.; Munyanduki, H.; Douglass, N.; et al. The novel capripoxvirus vector lumpy skin disease virus efficiently boosts modified vaccinia Ankara human immunodeficiency virus responses in rhesus macaques. J. Gen. Virol. 2014, 95, 2267–2272. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.J.; Shephard, E.; Douglass, N.; Johnston, N.; Adams, C.; Williamson, C.; Williamson, A.L. A novel candidate HIV vaccine vector based on the replication deficient Capripoxvirus, Lumpy skin disease virus (LSDV). Virol. J. 2011, 8, 265. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Soi, R.K.; Rurangirwa, F.R.; McGuire, T.C.; Rwambo, P.M.; DeMartini, J.C.; Crawford, T.B. Protection of sheep against Rift Valley fever virus and sheep poxvirus with a recombinant capripoxvirus vaccine. Clin. Vaccine Immunol. 2010, 17, 1842–1849. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.B.; Ellis, C.E.; Espach, A.; Smith, S.J.; Greyling, R.R.; Viljoen, G.J. Protective immune responses induced by different recombinant vaccine regimes to Rift Valley fever. Vaccine 2006, 24, 7181–7189. [Google Scholar] [CrossRef] [PubMed]
- Ngichabe, C.K.; Wamwayi, H.M.; Barrett, T.; Ndungu, E.K.; Black, D.N.; Bostock, C.J. Trial of a capripoxvirus-rinderpest recombinant vaccine in African cattle. Epidemiol. Infect. 1997, 118, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Ngichabe, C.K.; Wamwayi, H.M.; Ndungu, E.K.; Mirangi, P.K.; Bostock, C.J.; Black, D.N.; Barrett, T. Long term immunity in African cattle vaccinated with a recombinant capripox-rinderpest virus vaccine. Epidemiol. Infect. 2002, 128, 343–349. [Google Scholar] [PubMed]
- Romero, C.H.; Barrett, T.; Chamberlain, R.W.; Kitching, R.P.; Fleming, M.; Black, D.N. Recombinant capripoxvirus expressing the hemagglutinin protein gene of rinderpest virus: Protection of cattle against rinderpest and lumpy skin disease viruses. Virology 1994, 204, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Romero, C.H.; Barrett, T.; Evans, S.A.; Kitching, R.P.; Gershon, P.D.; Bostock, C.; Black, D.N. Single capripoxvirus recombinant vaccine for the protection of cattle against rinderpest and lumpy skin disease. Vaccine 1993, 11, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Romero, C.H.; Barrett, T.; Kitching, R.P.; Carn, V.M.; Black, D.N. Protection of cattle against rinderpest and lumpy skin disease with a recombinant capripoxvirus expressing the fusion protein gene of rinderpest virus. Vet. Rec. 1994, 135, 152–154. [Google Scholar] [CrossRef] [PubMed]
- Perrin, A.; Albina, E.; Breard, E.; Sailleau, C.; Prome, S.; Grillet, C.; Kwiatek, O.; Russo, P.; Thiery, R.; Zientara, S.; Cetre-Sossah, C. Recombinant capripoxviruses expressing proteins of bluetongue virus: Evaluation of immune responses and protection in small ruminants. Vaccine 2007, 25, 6774–6783. [Google Scholar] [CrossRef] [PubMed]
- Wade-Evans, A.M.; Romero, C.H.; Mellor, P.; Takamatsu, H.; Anderson, J.; Thevasagayam, J.; Fleming, M.J.; Mertens, P.P.; Black, D.N. Expression of the major core structural protein (VP7) of bluetongue virus, by a recombinant capripox virus, provides partial protection of sheep against a virulent heterotypic bluetongue virus challenge. Virology 1996, 220, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Aspden, K.; van Dijk, A.A.; Bingham, J.; Cox, D.; Passmore, J.A.; Williamson, A.L. Immunogenicity of a recombinant lumpy skin disease virus (neethling vaccine strain) expressing the rabies virus glycoprotein in cattle. Vaccine 2002, 20, 2693–2701. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.X.; Ma, Z.; Fan, H.J.; Lu, C.P. Construction and immunogenicity of recombinant swinepox virus expressing capsid protein of PCV2. Vaccine 2012, 30, 6307–6313. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.X.; Ma, Z.; Yang, X.Q.; Fan, H.J.; Lu, C.P. A novel vaccine against Porcine circovirus type 2 (PCV2) and Streptococcus equi ssp. zooepidemicus (SEZ) co-infection. Vet. Microbiol. 2014, 171, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Zhu, H.; Lin, H.; Xu, J.; Lu, C. First insights into the protective effects of a recombinant swinepox virus expressing truncated MRP of Streptococcus suis type 2 in mice. Berl. Munch. Tierarztl. Wochenschr. 2012, 125, 144–152. [Google Scholar] [PubMed]
- Xu, J.; Huang, D.; Liu, S.; Lin, H.; Zhu, H.; Liu, B.; Chen, W.; Lu, C. Immune responses and protective efficacy of a recombinant swinepox virus co-expressing HA1 genes of H3N2 and H1N1 swine influenza virus in mice and pigs. Vet. Microbiol. 2013, 162, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yang, D.; Huang, D.; Liu, S.; Lin, H.; Zhu, H.; Liu, B.; Lu, C. Protection of guinea pigs by vaccination with a recombinant swinepox virus co-expressing HA1 genes of swine H1N1 and H3N2 influenza viruses. Arch. Virol. 2013, 158, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Huang, D.; Liu, S.; Lin, H.; Zhu, H.; Liu, B.; Lu, C. Immune responses and protection efficacy of a recombinant swinepox virus expressing HA1 against swine H3N2 influenza virus in mice and pigs. Virus Res. 2012, 167, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Top, S.; Foucras, G.; Deplanche, M.; Rives, G.; Calvalido, J.; Comtet, L.; Bertagnoli, S.; Meyer, G. Myxomavirus as a vector for the immunisation of sheep: Protection study against challenge with bluetongue virus. Vaccine 2012, 30, 1609–1616. [Google Scholar] [CrossRef] [PubMed]
- McCabe, V.J.; Spibey, N. Potential for broad-spectrum protection against feline calicivirus using an attenuated myxoma virus expressing a chimeric FCV capsid protein. Vaccine 2005, 23, 5380–5388. [Google Scholar] [CrossRef] [PubMed]
- McCabe, V.J.; Tarpey, I.; Spibey, N. Vaccination of cats with an attenuated recombinant myxoma virus expressing feline calicivirus capsid protein. Vaccine 2002, 20, 2454–2462. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Holland, M.; Janssens, P.; Kerr, P. Antibody response in the female rabbit reproductive tract to influenza haemagglutinin encoded by a recombinant myxoma virus. Virology 2003, 313, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Kerr, P.J.; Jackson, R.J. Myxoma virus as a vaccine vector for rabbits: Antibody levels to influenza virus haemagglutinin presented by a recombinant myxoma virus. Vaccine 1995, 13, 1722–1726. [Google Scholar] [CrossRef] [PubMed]
- Barcena, J.; Morales, M.; Vazquez, B.; Boga, J.A.; Parra, F.; Lucientes, J.; Pages-Mante, A.; Sanchez-Vizcaino, J.M.; Blasco, R.; Torres, J.M. Horizontal transmissible protection against myxomatosis and rabbit hemorrhagic disease by using a recombinant myxoma virus. J. Virol. 2000, 74, 1114–1123. [Google Scholar] [CrossRef] [PubMed]
- Bertagnoli, S.; Gelfi, J.; le Gall, G.; Boilletot, E.; Vautherot, J.F.; Rasschaert, D.; Laurent, S.; Petit, F.; Boucraut-Baralon, C.; Milon, A. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein. J. Virol. 1996, 70, 5061–5066. [Google Scholar] [PubMed]
- Torres, J.M.; Ramirez, M.A.; Morales, M.; Barcena, J.; Vazquez, B.; Espuna, E.; Pages-Mante, A.; Sanchez-Vizcaino, J.M. Safety evaluation of a recombinant myxoma-RHDV virus inducing horizontal transmissible protection against myxomatosis and rabbit haemorrhagic disease. Vaccine 2000, 19, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.M.; Sanchez, C.; Ramirez, M.A.; Morales, M.; Barcena, J.; Ferrer, J.; Espuna, E.; Pages-Mante, A.; Sanchez-Vizcaino, J.M. First field trial of a transmissible recombinant vaccine against myxomatosis and rabbit hemorrhagic disease. Vaccine 2001, 19, 4536–4543. [Google Scholar] [CrossRef] [PubMed]
- Hashizume, S.C. Special edition future of vaccination: Everything about attenuated vaccines. Basics of new attenuated vaccine strain LC16m8. Clin Virus 1975, 229–235. [Google Scholar]
- Kenner, J.; Cameron, F.; Empig, C.; Jobes, D.V.; Gurwith, M. LC16m8: An attenuated smallpox vaccine. Vaccine 2006, 24, 7009–7022. [Google Scholar] [CrossRef] [PubMed]
- Morita, M.; Aoyama, Y.; Arita, M.; Amona, H.; Yoshizawa, H.; Hashizume, S.; Komatsu, T.; Tagaya, I. Comparative studies of several vaccinia virus strains by intrathalamic inoculation into cynomolgus monkeys. Arch. Virol. 1977, 53, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Takahashi-Nishimaki, F.; Funahashi, S.; Miki, K.; Hashizume, S.; Sugimoto, M. Regulation of plaque size and host range by a vaccinia virus gene related to complement system proteins. Virology 1991, 181, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Empig, C.; Kenner, J.R.; Perret-Gentil, M.; Youree, B.E.; Bell, E.; Chen, A.; Gurwith, M.; Higgins, K.; Lock, M.; Rice, A.D.; et al. Highly attenuated smallpox vaccine protects rabbits and mice against pathogenic orthopoxvirus challenge. Vaccine 2006, 24, 3686–3694. [Google Scholar] [CrossRef] [PubMed]
- Meseda, C.A.; Mayer, A.E.; Kumar, A.; Garcia, A.D.; Campbell, J.; Listrani, P.; Manischewitz, J.; King, L.R.; Golding, H.; Merchlinsky, M.; et al. Comparative evaluation of the immune responses and protection engendered by LC16m8 and Dryvax smallpox vaccines in a mouse model. Clin. Vaccine Immunol. 2009, 16, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.N.; Cecchinato, V.; Andresen, V.; Heraud, J.M.; Hryniewicz, A.; Parks, R.W.; Venzon, D.; Chung, H.K.; Karpova, T.; McNally, J.; et al. Smallpox vaccine safety is dependent on T cells and not B cells. J. Infect. Dis. 2011, 203, 1043–1053. [Google Scholar] [CrossRef] [PubMed]
- Saijo, M.; Ami, Y.; Suzaki, Y.; Nagata, N.; Iwata, N.; Hasegawa, H.; Ogata, M.; Fukushi, S.; Mizutani, T.; Sata, T.; et al. LC16m8, a highly attenuated vaccinia virus vaccine lacking expression of the membrane protein B5R, protects monkeys from monkeypox. J. Virol. 2006, 80, 5179–5188. [Google Scholar] [CrossRef] [PubMed]
- Yokote, H.; Shinmura, Y.; Kanehara, T.; Maruno, S.; Kuranaga, M.; Matsui, H.; Hashizume, S. Safety of attenuated smallpox vaccine LC16m8 in immunodeficient mice. Clin. Vaccine Immunol. 2014, 21, 1261–1266. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.S.; Gurwith, M.; Dekker, C.L.; Frey, S.E.; Edwards, K.M.; Kenner, J.; Lock, M.; Empig, C.; Morikawa, S.; Saijo, M.; et al. Safety and immunogenicity of LC16m8, an attenuated smallpox vaccine in vaccinia-naive adults. J. Infect. Dis. 2011, 204, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Fujii, T.; Kanatani, Y.; Saijo, M.; Morikawa, S.; Yokote, H.; Takeuchi, T.; Kuwabara, N. Clinical and immunological response to attenuated tissue-cultured smallpox vaccine LC16m8. JAMA 2009, 301, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Kidokoro, M.; Tashiro, M.; Shida, H. Genetically stable and fully effective smallpox vaccine strain constructed from highly attenuated vaccinia LC16m8. Proc. Natl. Acad. Sci. USA 2005, 102, 4152–4157. [Google Scholar] [CrossRef] [PubMed]
- Bell, E.; Shamim, M.; Whitbeck, J.C.; Sfyroera, G.; Lambris, J.D.; Isaacs, S.N. Antibodies against the extracellular enveloped virus B5R protein are mainly responsible for the EEV neutralizing capacity of vaccinia immune globulin. Virology 2004, 325, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.F.; Kanatani, Y.; Fujii, T.; Saito, T.; Yokote, H.; Smith, G.L. Serological responses in humans to the smallpox vaccine LC16m8. J. Gen. Virol. 2011, 92, 2405–2410. [Google Scholar] [CrossRef] [PubMed]
- Shinoda, K.; Xin, K.Q.; Kojima, Y.; Saha, S.; Okuda, K. Robust HIV-specific immune responses were induced by DNA vaccine prime followed by attenuated recombinant vaccinia virus (LC16m8 strain) boost. Clin. Immunol. 2006, 119, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Kitabatake, M.; Inoue, S.; Yasui, F.; Yokochi, S.; Arai, M.; Morita, K.; Shida, H.; Kidokoro, M.; Murai, F.; Le, M.Q.; et al. SARS-CoV spike protein-expressing recombinant vaccinia virus efficiently induces neutralizing antibodies in rabbits pre-immunized with vaccinia virus. Vaccine 2007, 25, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Tagaya, I.; Kitamura, T.; Sano, Y. A new mutant of dermovaccinia virus. Nature 1961, 192, 381–382. [Google Scholar] [CrossRef] [PubMed]
- Ishii, K.; Ueda, Y.; Matsuo, K.; Matsuura, Y.; Kitamura, T.; Kato, K.; Izumi, Y.; Someya, K.; Ohsu, T.; Honda, M.; et al. Structural analysis of vaccinia virus DIs strain: Application as a new replication-deficient viral vector. Virology 2002, 302, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Someya, K.; Xin, K.Q.; Matsuo, K.; Okuda, K.; Yamamoto, N.; Honda, M. A consecutive priming-boosting vaccination of mice with simian immunodeficiency virus (SIV) gag/pol DNA and recombinant vaccinia virus strain DIs elicits effective anti-SIV immunity. J. Virol. 2004, 78, 9842–9853. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, N.; Kanekiyo, M.; Hagiwara, Y.; Okamura, T.; Someya, K.; Matsuo, K.; Ami, Y.; Sato, S.; Yamamoto, N.; Honda, M. Mucosal administration of completely non-replicative vaccinia virus recombinant Dairen I strain elicits effective mucosal and systemic immunity. Scand. J. Immunol. 2008, 68, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Okamura, T.; Someya, K.; Matsuo, K.; Hasegawa, A.; Yamamoto, N.; Honda, M. Recombinant vaccinia DIs expressing simian immunodeficiency virus gag and pol in mammalian cells induces efficient cellular immunity as a safe immunodeficiency virus vaccine candidate. Microbiol. Immunol. 2006, 50, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Someya, K.; Ami, Y.; Nakasone, T.; Izumi, Y.; Matsuo, K.; Horibata, S.; Xin, K.Q.; Yamamoto, H.; Okuda, K.; Yamamoto, N.; et al. Induction of positive cellular and humoral immune responses by a prime-boost vaccine encoded with simian immunodeficiency virus gag/pol. J. Immunol. 2006, 176, 1784–1795. [Google Scholar] [CrossRef] [PubMed]
- Lai, A.C.; Pogo, B.G. Characterization of vaccinia virus deletion mutants isolated from persistently infected Friend erythroleukemia cells. Virus Res. 1989, 12, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Paez, E.; Dallo, S.; Esteban, M. Virus attenuation and identification of structural proteins of vaccinia virus that are selectively modified during virus persistence. J. Virol. 1987, 61, 2642–2647. [Google Scholar] [PubMed]
- Paez, E.; Dallo, S.; Esteban, M. Generation of a dominant 8-MDa deletion at the left terminus of vaccinia virus DNA. Proc. Natl. Acad. Sci. USA 1985, 82, 3365–3369. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Sampedro, L.; Gomez, C.E.; Mejias-Perez, E.; Perez-Jimenez, E.; Oliveros, J.C.; Esteban, M. Attenuated and replication-competent vaccinia virus strains M65 and M101 with distinct biology and immunogenicity as potential vaccine candidates against pathogens. J. Virol. 2013, 87, 6955–6974. [Google Scholar] [CrossRef] [PubMed]
- McMahon-Pratt, D.; Rodriguez, D.; Rodriguez, J.R.; Zhang, Y.; Manson, K.; Bergman, C.; Rivas, L.; Rodriguez, J.F.; Lohman, K.L.; Ruddle, N.H.; et al. Recombinant vaccinia viruses expressing GP46/M-2 protect against Leishmania infection. Infect. Immun. 1993, 61, 3351–3359. [Google Scholar] [PubMed]
- Hochstein-Mintzel, V.; Hanichen, T.; Huber, H.C.; Stickl, H. An attenuated strain of vaccinia virus (MVA). Successful intramuscular immunization against vaccinia and variola (author’s transl). Zentralbl. Bakteriol. Orig. A 1975, 230, 283–297. [Google Scholar] [PubMed]
- Mayr, A.; Stickl, H.; Muller, H.K.; Danner, K.; Singer, H. The smallpox vaccination strain MVA: marker, genetic structure, experience gained with the parenteral vaccination and behavior in organisms with a debilitated defence mechanism (author’s transl). Zentralbl. Bakteriol. B 1978, 167, 375–390. [Google Scholar] [PubMed]
- Antoine, G.; Scheiflinger, F.; Dorner, F.; Falkner, F.G. The complete genomic sequence of the modified vaccinia Ankara strain: Comparison with other orthopoxviruses. Virology 1998, 244, 365–396. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H.; Sutter, G.; Mayr, A. Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. J. Gen. Virol. 1991, 72, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, T.J.; Alcami, A.; Andrea, P.; Smith, G.L. Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: Implications for use as a human vaccine. J. Gen. Virol. 1998, 79, 1159–1167. [Google Scholar] [PubMed]
- Wyatt, L.S.; Carroll, M.W.; Czerny, C.P.; Merchlinsky, M.; Sisler, J.R.; Moss, B. Marker rescue of the host range restriction defects of modified vaccinia virus Ankara. Virology 1998, 251, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Sutter, G.; Moss, B. Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc. Natl. Acad. Sci. USA 1992, 89, 10847–10851. [Google Scholar] [CrossRef] [PubMed]
- Hochstein-Mintzel, V.; Huber, H.C.; Stickl, H. Virulence and immunogenicity of a modified vaccinia virus (strain MVA) (author’s transl). Z. Immunitatsforsch. Exp. Klin. Immunol. 1972, 144, 104–156. [Google Scholar] [PubMed]
- McCurdy, L.H.; Larkin, B.D.; Martin, J.E.; Graham, B.S. Modified vaccinia Ankara: Potential as an alternative smallpox vaccine. Clin. Infect. Dis. 2004, 38, 1749–1753. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.H.; Wyatt, L.S.; Newman, F.K.; Earl, P.L.; Chun, S.; Hernandez, J.E.; Molina, D.M.; Hirst, S.; Moss, B.; Frey, S.E.; et al. Antibody profiling by proteome microarray reveals the immunogenicity of the attenuated smallpox vaccine modified vaccinia virus ankara is comparable to that of Dryvax. J. Virol. 2008, 82, 652–663. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, L.S.; Earl, P.L.; Eller, L.A.; Moss, B. Highly attenuated smallpox vaccine protects mice with and without immune deficiencies against pathogenic vaccinia virus challenge. Proc. Natl. Acad. Sci. USA 2004, 101, 4590–4595. [Google Scholar] [CrossRef] [PubMed]
- Earl, P.L.; Americo, J.L.; Wyatt, L.S.; Eller, L.A.; Montefiori, D.C.; Byrum, R.; Piatak, M.; Lifson, J.D.; Amara, R.R.; Robinson, H.L.; et al. Recombinant modified vaccinia virus Ankara provides durable protection against disease caused by an immunodeficiency virus as well as long-term immunity to an orthopoxvirus in a non-human primate. Virology 2007, 366, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Earl, P.L.; Americo, J.L.; Wyatt, L.S.; Eller, L.A.; Whitbeck, J.C.; Cohen, G.H.; Eisenberg, R.J.; Hartmann, C.J.; Jackson, D.L.; Kulesh, D.A.; et al. Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox. Nature 2004, 428, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Earl, P.L.; Americo, J.L.; Wyatt, L.S.; Espenshade, O.; Bassler, J.; Gong, K.; Lin, S.; Peters, E.; Rhodes, L., Jr.; Spano, Y.E.; et al. Rapid protection in a monkeypox model by a single injection of a replication-deficient vaccinia virus. Proc. Natl. Acad. Sci. USA 2008, 105, 10889–10894. [Google Scholar] [CrossRef] [PubMed]
- Frey, S.E.; Newman, F.K.; Kennedy, J.S.; Sobek, V.; Ennis, F.A.; Hill, H.; Yan, L.K.; Chaplin, P.; Vollmar, J.; Chaitman, B.R.; et al. Clinical and immunologic responses to multiple doses of IMVAMUNE (Modified Vaccinia Ankara) followed by Dryvax challenge. Vaccine 2007, 25, 8562–8573. [Google Scholar] [CrossRef] [PubMed]
- Meseda, C.A.; Garcia, A.D.; Kumar, A.; Mayer, A.E.; Manischewitz, J.; King, L.R.; Golding, H.; Merchlinsky, M.; Weir, J.P. Enhanced immunogenicity and protective effect conferred by vaccination with combinations of modified vaccinia virus Ankara and licensed smallpox vaccine Dryvax in a mouse model. Virology 2005, 339, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.L.; Benfield, C.T.; Maluquer de Motes, C.; Mazzon, M.; Ember, S.W.; Ferguson, B.J.; Sumner, R.P. Vaccinia virus immune evasion: Mechanisms, virulence and immunogenicity. J. Gen. Virol. 2013, 94, 2367–2392. [Google Scholar] [CrossRef] [PubMed]
- Delaloye, J.; Roger, T.; Steiner-Tardivel, Q.G.; le Roy, D.; Knaup Reymond, M.; Akira, S.; Petrilli, V.; Gomez, C.E.; Perdiguero, B.; Tschopp, J.; et al. Innate immune sensing of modified vaccinia virus Ankara (MVA) is mediated by TLR2-TLR6, MDA-5 and the NALP3 inflammasome. PLOS Pathog. 2009, 5, e1000480. [Google Scholar] [CrossRef] [PubMed]
- Guerra, S.; Gonzalez, J.M.; Climent, N.; Reyburn, H.; Lopez-Fernandez, L.A.; Najera, J.L.; Gomez, C.E.; Garcia, F.; Gatell, J.M.; Gallart, T.; et al. Selective induction of host genes by MVA-B, a candidate vaccine against HIV/AIDS. J. Virol. 2010, 84, 8141–8152. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, M.H.; Kastenmuller, W.; Kandemir, J.D.; Brandt, F.; Suezer, Y.; Sutter, G. Modified vaccinia virus ankara triggers chemotaxis of monocytes and early respiratory immigration of leukocytes by induction of CCL2 expression. J. Virol. 2009, 83, 2540–2552. [Google Scholar] [CrossRef] [PubMed]
- Cosma, A.; Nagaraj, R.; Staib, C.; Diemer, C.; Wopfner, F.; Schatzl, H.; Busch, D.H.; Sutter, G.; Goebel, F.D.; Erfle, V. Evaluation of modified vaccinia virus Ankara as an alternative vaccine against smallpox in chronically HIV type 1-infected individuals undergoing HAART. AIDS Res. Hum. Retroviruses 2007, 23, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Elizaga, M.L.; Vasan, S.; Marovich, M.A.; Sato, A.H.; Lawrence, D.N.; Chaitman, B.R.; Frey, S.E.; Keefer, M.C. Prospective surveillance for cardiac adverse events in healthy adults receiving modified vaccinia Ankara vaccines: A systematic review. PLOS ONE 2013, 8, e54407. [Google Scholar] [CrossRef] [PubMed]
- Parrino, J.; McCurdy, L.H.; Larkin, B.D.; Gordon, I.J.; Rucker, S.E.; Enama, M.E.; Koup, R.A.; Roederer, M.; Bailer, R.T.; Moodie, Z.; et al. Safety, immunogenicity and efficacy of modified vaccinia Ankara (MVA) against Dryvax challenge in vaccinia-naive and vaccinia-immune individuals. Vaccine 2007, 25, 1513–1525. [Google Scholar] [CrossRef] [PubMed]
- Seaman, M.S.; Wilck, M.B.; Baden, L.R.; Walsh, S.R.; Grandpre, L.E.; Devoy, C.; Giri, A.; Noble, L.C.; Kleinjan, J.A.; Stevenson, K.E.; et al. Effect of vaccination with modified vaccinia Ankara (ACAM3000) on subsequent challenge with Dryvax. J. Infect. Dis. 2010, 201, 1353–1360. [Google Scholar] [CrossRef] [PubMed]
- Slifka, M.K. The Future of Smallpox Vaccination: Is MVA the key? Med. Immunol. 2005, 4, e2. [Google Scholar] [CrossRef][Green Version]
- Vollmar, J.; Arndtz, N.; Eckl, K.M.; Thomsen, T.; Petzold, B.; Mateo, L.; Schlereth, B.; Handley, A.; King, L.; Hulsemann, V.; et al. Safety and immunogenicity of IMVAMUNE, a promising candidate as a third generation smallpox vaccine. Vaccine 2006, 24, 2065–2070. [Google Scholar] [CrossRef] [PubMed]
- Von Krempelhuber, A.; Vollmar, J.; Pokorny, R.; Rapp, P.; Wulff, N.; Petzold, B.; Handley, A.; Mateo, L.; Siersbol, H.; Kollaritsch, H.; et al. A randomized, double-blind, dose-finding Phase II study to evaluate immunogenicity and safety of the third generation smallpox vaccine candidate IMVAMUNE. Vaccine 2010, 28, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Von Sonnenburg, F.; Perona, P.; Darsow, U.; Ring, J.; von Krempelhuber, A.; Vollmar, J.; Roesch, S.; Baedeker, N.; Kollaritsch, H.; Chaplin, P. Safety and immunogenicity of modified vaccinia Ankara as a smallpox vaccine in people with atopic dermatitis. Vaccine 2014, 32, 5696–5702. [Google Scholar] [CrossRef] [PubMed]
- Altenburg, A.F.; Kreijtz, J.H.; de Vries, R.D.; Song, F.; Fux, R.; Rimmelzwaan, G.F.; Sutter, G.; Volz, A. Modified vaccinia virus ankara (MVA) as production platform for vaccines against influenza and other viral respiratory diseases. Viruses 2014, 6, 2735–2761. [Google Scholar] [CrossRef] [PubMed]
- Boukhebza, H.; Bellon, N.; Limacher, J.M.; Inchauspe, G. Therapeutic vaccination to treat chronic infectious diseases: Current clinical developments using MVA-based vaccines. Hum. Vaccin. Immunother. 2012, 8, 1746–1757. [Google Scholar] [CrossRef] [PubMed]
- Cottingham, M.G.; Carroll, M.W. Recombinant MVA vaccines: Dispelling the myths. Vaccine 2013, 31, 4247–4251. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, S.C. Clinical development of Modified Vaccinia virus Ankara vaccines. Vaccine 2013, 31, 4241–4246. [Google Scholar] [CrossRef] [PubMed]
- Gomez, C.E.; Najera, J.L.; Krupa, M.; Perdiguero, B.; Esteban, M. MVA and NYVAC as vaccines against emergent infectious diseases and cancer. Curr. Gene Ther. 2011, 11, 189–217. [Google Scholar] [CrossRef] [PubMed]
- Gomez, C.E.; Perdiguero, B.; Garcia-Arriaza, J.; Esteban, M. Poxvirus vectors as HIV/AIDS vaccines in humans. Hum. Vaccin. Immunother. 2012, 8, 1192–1207. [Google Scholar] [CrossRef] [PubMed]
- Gomez, C.E.; Perdiguero, B.; Garcia-Arriaza, J.; Esteban, M. Clinical applications of attenuated MVA poxvirus strain. Expert Rev. Vaccines 2013, 12, 1395–1416. [Google Scholar] [CrossRef] [PubMed]
- Kreijtz, J.H.; Gilbert, S.C.; Sutter, G. Poxvirus vectors. Vaccine 2013, 31, 4217–4219. [Google Scholar] [CrossRef] [PubMed]
- Volz, A.; Sutter, G. Protective efficacy of Modified Vaccinia virus Ankara in preclinical studies. Vaccine 2013, 31, 4235–4240. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.R.; Dolin, R. Vaccinia viruses: Vaccines against smallpox and vectors against infectious diseases and tumors. Expert Rev. Vaccines 2011, 10, 1221–1240. [Google Scholar] [CrossRef] [PubMed]
- Wilck, M.B.; Seaman, M.S.; Baden, L.R.; Walsh, S.R.; Grandpre, L.E.; Devoy, C.; Giri, A.; Kleinjan, J.A.; Noble, L.C.; Stevenson, K.E.; et al. Safety and immunogenicity of modified vaccinia Ankara (ACAM3000): Effect of dose and route of administration. J. Infect. Dis. 2010, 201, 1361–1370. [Google Scholar] [CrossRef] [PubMed]
- Afolabi, M.O.; Ndure, J.; Drammeh, A.; Darboe, F.; Mehedi, S.R.; Rowland-Jones, S.L.; Borthwick, N.; Black, A.; Ambler, G.; John-Stewart, G.C.; et al. A phase I randomized clinical trial of candidate human immunodeficiency virus type 1 vaccine MVA.HIVA administered to Gambian infants. PLOS ONE 2013, 8, e78289. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, C.; Godoy-Ramirez, K.; Hejdeman, B.; Brave, A.; Gudmundsdotter, L.; Hallengard, D.; Currier, J.R.; Wieczorek, L.; Hasselrot, K.; Earl, P.L.; et al. Broad and potent cellular and humoral immune responses after a second late HIV-modified vaccinia virus ankara vaccination in HIV-DNA-primed and HIV-modified vaccinia virus Ankara-boosted Swedish vaccinees. AIDS Res. Hum. Retroviruses 2014, 30, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Mehendale, S.; Thakar, M.; Sahay, S.; Kumar, M.; Shete, A.; Sathyamurthi, P.; Verma, A.; Kurle, S.; Shrotri, A.; Gilmour, J.; et al. Safety and immunogenicity of DNA and MVA HIV-1 subtype C vaccine prime-boost regimens: A phase I randomised Trial in HIV-uninfected Indian volunteers. PLOS ONE 2013, 8, e55831. [Google Scholar] [CrossRef] [PubMed]
- Vasan, S.; Schlesinger, S.J.; Chen, Z.; Hurley, A.; Lombardo, A.; Than, S.; Adesanya, P.; Bunce, C.; Boaz, M.; Boyle, R.; et al. Phase 1 safety and immunogenicity evaluation of ADMVA, a multigenic, modified vaccinia Ankara-HIV-1 B’/C candidate vaccine. PLOS ONE 2010, 5, e8816. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Goepfert, P.A.; Elizaga, M.L.; Seaton, K.; Tomaras, G.D.; Montefiori, D.C.; Sato, A.; Hural, J.; DeRosa, S.C.; Kalams, S.A.; McElrath, M.J.; et al. Specificity and 6-month durability of immune responses induced by DNA and recombinant modified vaccinia Ankara vaccines expressing HIV-1 virus-like particles. J. Infect. Dis. 2014, 210, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Gorse, G.J.; Newman, M.J.; deCamp, A.; Hay, C.M.; de Rosa, S.C.; Noonan, E.; Livingston, B.D.; Fuchs, J.D.; Kalams, S.A.; Cassis-Ghavami, F.L. DNA and modified vaccinia virus Ankara vaccines encoding multiple cytotoxic and helper T-lymphocyte epitopes of human immunodeficiency virus type 1 (HIV-1) are safe but weakly immunogenic in HIV-1-uninfected, vaccinia virus-naive adults. Clin. Vaccine Immunol. 2012, 19, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Kutscher, S.; Allgayer, S.; Dembek, C.J.; Bogner, J.R.; Protzer, U.; Goebel, F.D.; Erfle, V.; Cosma, A. MVA-nef induces HIV-1-specific polyfunctional and proliferative T-cell responses revealed by the combination of short- and long-term immune assays. Gene Ther. 2010, 17, 1372–1383. [Google Scholar] [CrossRef] [PubMed]
- Antrobus, R.D.; Berthoud, T.K.; Mullarkey, C.E.; Hoschler, K.; Coughlan, L.; Zambon, M.; Hill, A.V.; Gilbert, S.C. Coadministration of seasonal influenza vaccine and MVA-NP+M1 simultaneously achieves potent humoral and cell-mediated responses. Mol. Ther. 2014, 22, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Kreijtz, J.H.; Goeijenbier, M.; Moesker, F.M.; van den Dries, L.; Goeijenbier, S.; de Gruyter, H.L.; Lehmann, M.H.; Mutsert, G.D.; van de Vijver, D.A.; Volz, A.; et al. Safety and immunogenicity of a modified-vaccinia-virus-Ankara-based influenza A H5N1 vaccine: A randomised, double-blind phase 1/2a clinical trial. Lancet Infect. Dis. 2014, 14, 1196–1207. [Google Scholar] [CrossRef] [PubMed]
- Cavenaugh, J.S.; Awi, D.; Mendy, M.; Hill, A.V.; Whittle, H.; McConkey, S.J. Partially randomized, non-blinded trial of DNA and MVA therapeutic vaccines based on hepatitis B virus surface protein for chronic HBV infection. PLOS ONE 2011, 6, e14626. [Google Scholar] [CrossRef] [PubMed]
- Depla, E.; van der Aa, A.; Livingston, B.D.; Crimi, C.; Allosery, K.; de Brabandere, V.; Krakover, J.; Murthy, S.; Huang, M.; Power, S.; et al. Rational design of a multiepitope vaccine encoding T-lymphocyte epitopes for treatment of chronic hepatitis B virus infections. J. Virol. 2008, 82, 435–450. [Google Scholar] [CrossRef] [PubMed]
- Di Bisceglie, A.M.; Janczweska-Kazek, E.; Habersetzer, F.; Mazur, W.; Stanciu, C.; Carreno, V.; Tanasescu, C.; Flisiak, R.; Romero-Gomez, M.; Fich, A.; et al. Efficacy of immunotherapy with TG4040, peg-interferon, and ribavirin in a Phase 2 study of patients with chronic HCV infection. Gastroenterology 2014, 147, 119–131.e3. [Google Scholar] [CrossRef] [PubMed]
- Fournillier, A.; Frelin, L.; Jacquier, E.; Ahlen, G.; Brass, A.; Gerossier, E.; Holmstrom, F.; Broderick, K.E.; Sardesai, N.Y.; Bonnefoy, J.Y.; et al. A heterologous prime/boost vaccination strategy enhances the immunogenicity of therapeutic vaccines for hepatitis C virus. J. Infect. Dis. 2013, 208, 1008–1019. [Google Scholar] [CrossRef] [PubMed]
- Abraham, J.D.; Himoudi, N.; Kien, F.; Berland, J.L.; Codran, A.; Bartosch, B.; Baumert, T.; Paranhos-Baccala, G.; Schuster, C.; Inchauspe, G.; et al. Comparative immunogenicity analysis of modified vaccinia Ankara vectors expressing native or modified forms of hepatitis C virus E1 and E2 glycoproteins. Vaccine 2004, 22, 3917–3928. [Google Scholar] [CrossRef] [PubMed]
- Gomez, C.E.; Perdiguero, B.; Cepeda, M.V.; Mingorance, L.; Garcia-Arriaza, J.; Vandermeeren, A.; Sorzano, C.O.; Esteban, M. High, broad, polyfunctional, and durable T cell immune responses induced in mice by a novel hepatitis C virus (HCV) vaccine candidate (MVA-HCV) based on modified vaccinia virus Ankara expressing the nearly full-length HCV genome. J. Virol. 2013, 87, 7282–7300. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Arriaza, J.; Cepeda, V.; Hallengard, D.; Sorzano, C.O.; Kummerer, B.M.; Liljestrom, P.; Esteban, M. A novel poxvirus-based vaccine, MVA-CHIKV, is highly immunogenic and protects mice against chikungunya infection. J. Virol. 2014, 88, 3527–3547. [Google Scholar] [CrossRef] [PubMed]
- Weger-Lucarelli, J.; Chu, H.; Aliota, M.T.; Partidos, C.D.; Osorio, J.E. A novel MVA vectored Chikungunya virus vaccine elicits protective immunity in mice. PLOS Negl. Trop. Dis. 2014, 8, e2970. [Google Scholar] [CrossRef] [PubMed]
- Van den Doel, P.; Volz, A.; Roose, J.M.; Sewbalaksing, V.D.; Pijlman, G.P.; van Middelkoop, I.; Duiverman, V.; van de Wetering, E.; Sutter, G.; Osterhaus, A.D.; et al. Recombinant modified vaccinia virus Ankara expressing glycoprotein E2 of Chikungunya virus protects AG129 mice against lethal challenge. PLOS Negl. Trop. Dis. 2014, 8, e3101. [Google Scholar] [CrossRef] [PubMed]
- Men, R.; Wyatt, L.; Tokimatsu, I.; Arakaki, S.; Shameem, G.; Elkins, R.; Chanock, R.; Moss, B.; Lai, C.J. Immunization of rhesus monkeys with a recombinant of modified vaccinia virus Ankara expressing a truncated envelope glycoprotein of dengue type 2 virus induced resistance to dengue type 2 virus challenge. Vaccine 2000, 18, 3113–3122. [Google Scholar] [CrossRef] [PubMed]
- Quinan, B.R.; Flesch, I.E.; Pinho, T.M.; Coelho, F.M.; Tscharke, D.C.; da Fonseca, F.G. An intact signal peptide on dengue virus E protein enhances immunogenicity for CD8(+) T cells and antibody when expressed from modified vaccinia Ankara. Vaccine 2014, 32, 2972–2979. [Google Scholar] [CrossRef] [PubMed]
- Stanley, D.A.; Honko, A.N.; Asiedu, C.; Trefry, J.C.; Lau-Kilby, A.W.; Johnson, J.C.; Hensley, L.; Ammendola, V.; Abbate, A.; Grazioli, F.; et al. Chimpanzee adenovirus vaccine generates acute and durable protective immunity against ebolavirus challenge. Nat. Med. 2014, 20, 1126–1129. [Google Scholar] [PubMed]
- Buttigieg, K.R.; Dowall, S.D.; Findlay-Wilson, S.; Miloszewska, A.; Rayner, E.; Hewson, R.; Carroll, M.W. A novel vaccine against Crimean-Congo Haemorrhagic Fever protects 100% of animals against lethal challenge in a mouse model. PLOS ONE 2014, 9, e91516. [Google Scholar] [CrossRef] [PubMed]
- Ba, L.; Yi, C.E.; Zhang, L.; Ho, D.D.; Chen, Z. Heterologous MVA-S prime Ad5-S boost regimen induces high and persistent levels of neutralizing antibody response against SARS coronavirus. Appl. Microbiol. Biotechnol. 2007, 76, 1131–1136. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, L.; Qin, C.; Ba, L.; Yi, C.E.; Zhang, F.; Wei, Q.; He, T.; Yu, W.; Yu, J.; et al. Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region. J. Virol. 2005, 79, 2678–2688. [Google Scholar] [CrossRef] [PubMed]
- Bisht, H.; Roberts, A.; Vogel, L.; Bukreyev, A.; Collins, P.L.; Murphy, B.R.; Subbarao, K.; Moss, B. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc. Natl. Acad. Sci. USA 2004, 101, 6641–6646. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Lu, B.; Yu, W.; Fang, Q.; Liu, L.; Zhuang, K.; Shen, T.; Wang, H.; Tian, P.; Zhang, L.; et al. A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination. PLOS ONE 2009, 4, e4180. [Google Scholar] [PubMed]
- Czub, M.; Weingartl, H.; Czub, S.; He, R.; Cao, J. Evaluation of modified vaccinia virus Ankara based recombinant SARS vaccine in ferrets. Vaccine 2005, 23, 2273–2279. [Google Scholar] [CrossRef] [PubMed]
- Schulze, K.; Staib, C.; Schatzl, H.M.; Ebensen, T.; Erfle, V.; Guzman, C.A. A prime-boost vaccination protocol optimizes immune responses against the nucleocapsid protein of the SARS coronavirus. Vaccine 2008, 26, 6678–6684. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Fux, R.; Provacia, L.B.; Volz, A.; Eickmann, M.; Becker, S.; Osterhaus, A.D.; Haagmans, B.L.; Sutter, G. Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies. J. Virol. 2013, 87, 11950–11954. [Google Scholar] [CrossRef] [PubMed]
- Hebben, M.; Duquesne, V.; Cronier, J.; Rossi, B.; Aubert, A. Modified vaccinia virus Ankara as a vaccine against feline coronavirus: Immunogenicity and efficacy. J. Feline Med. Surg. 2004, 6, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Olszewska, W.; Suezer, Y.; Sutter, G.; Openshaw, P.J. Protective and disease-enhancing immune responses induced by recombinant modified vaccinia Ankara (MVA) expressing respiratory syncytial virus proteins. Vaccine 2004, 23, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, L.S.; Whitehead, S.S.; Venanzi, K.A.; Murphy, B.R.; Moss, B. Priming and boosting immunity to respiratory syncytial virus by recombinant replication-defective vaccinia virus MVA. Vaccine 1999, 18, 392–397. [Google Scholar] [CrossRef] [PubMed]
- De Waal, L.; Wyatt, L.S.; Yuksel, S.; van Amerongen, G.; Moss, B.; Niesters, H.G.; Osterhaus, A.D.; de Swart, R.L. Vaccination of infant macaques with a recombinant modified vaccinia virus Ankara expressing the respiratory syncytial virus F and G genes does not predispose for immunopathology. Vaccine 2004, 22, 923–926. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Gil, E.; Lorenzo, G.; Hevia, E.; Borrego, B.; Eiden, M.; Groschup, M.; Gilbert, S.C.; Brun, A. A single immunization with MVA expressing GnGc glycoproteins promotes epitope-specific CD8+-T cell activation and protects immune-competent mice against a lethal RVFV infection. PLOS Negl. Trop. Dis. 2013, 7, e2309. [Google Scholar] [CrossRef] [PubMed]
- Busquets, N.; Lorenzo, G.; Lopez-Gil, E.; Rivas, R.; Solanes, D.; Galindo-Cardiel, I.; Abad, F.X.; Rodriguez, F.; Bensaid, A.; Warimwe, G.; et al. Efficacy assessment of an MVA vectored Rift Valley Fever vaccine in lambs. Antivir. Res. 2014, 108, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Weyer, J.; Rupprecht, C.E.; Mans, J.; Viljoen, G.J.; Nel, L.H. Generation and evaluation of a recombinant modified vaccinia virus Ankara vaccine for rabies. Vaccine 2007, 25, 4213–4222. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.H.; Bang, H.S.; Cho, H.W.; Chung, Y.H. Different contribution of co-stimulatory molecules B7.1 and B7.2 to the immune response to recombinant modified vaccinia virus ankara vaccine expressing prM/E proteins of Japanese encephalitis virus and two hepatitis B virus vaccines. Acta Virol. 2007, 51, 125–130. [Google Scholar] [PubMed]
- Nam, J.H.; Wyatt, L.S.; Chae, S.L.; Cho, H.W.; Park, Y.K.; Moss, B. Protection against lethal Japanese encephalitis virus infection of mice by immunization with the highly attenuated MVA strain of vaccinia virus expressing JEV prM and E genes. Vaccine 1999, 17, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.H.; Cha, S.L.; Cho, H.W. Immunogenicity of a recombinant MVA and a DNA vaccine for Japanese encephalitis virus in swine. Microbiol. Immunol. 2002, 46, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Feng, X.; Zheng, Q.; Hou, H.; Cao, R.; Zhou, B.; Liu, Q.; Liu, X.; Pang, R.; Zhao, J.; et al. Multiple linear epitopes (B-cell, CTL and Th) of JEV expressed in recombinant MVA as multiple epitope vaccine induces a protective immune response. Virol. J. 2012, 9, e204. [Google Scholar] [CrossRef]
- Weidinger, G.; Ohlmann, M.; Schlereth, B.; Sutter, G.; Niewiesk, S. Vaccination with recombinant modified vaccinia virus Ankara protects against measles virus infection in the mouse and cotton rat model. Vaccine 2001, 19, 2764–2768. [Google Scholar] [CrossRef] [PubMed]
- Stittelaar, K.J.; Kuiken, T.; de Swart, R.L.; van Amerongen, G.; Vos, H.W.; Niesters, H.G.; van Schalkwijk, P.; van der Kwast, T.; Wyatt, L.S.; Moss, B.; et al. Safety of modified vaccinia virus Ankara (MVA) in immune-suppressed macaques. Vaccine 2001, 19, 3700–3709. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; la Rosa, C.; Maas, R.; Ly, H.; Brewer, J.; Mekhoubad, S.; Daftarian, P.; Longmate, J.; Britt, W.J.; Diamond, D.J. Recombinant modified vaccinia virus Ankara expressing a soluble form of glycoprotein B causes durable immunity and neutralizing antibodies against multiple strains of human cytomegalovirus. J. Virol. 2004, 78, 3965–3976. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; la Rosa, C.; Lacey, S.F.; Maas, R.; Mekhoubad, S.; Britt, W.J.; Diamond, D.J. Attenuated poxvirus expressing three immunodominant CMV antigens as a vaccine strategy for CMV infection. J. Clin. Virol. 2006, 35, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; la Rosa, C.; Li, Z.; Ly, H.; Krishnan, A.; Martinez, J.; Britt, W.J.; Diamond, D.J. Vaccine properties of a novel marker gene-free recombinant modified vaccinia Ankara expressing immunodominant CMV antigens pp65 and IE1. Vaccine 2007, 25, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Abel, K.; Martinez, J.; Yue, Y.; Lacey, S.F.; Wang, Z.; Strelow, L.; Dasgupta, A.; Li, Z.; Schmidt, K.A.; Oxford, K.L.; et al. Vaccine-induced control of viral shedding following rhesus cytomegalovirus challenge in rhesus macaques. J. Virol. 2011, 85, 2878–2890. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Wang, Z.; Abel, K.; Li, J.; Strelow, L.; Mandarino, A.; Eberhardt, M.K.; Schmidt, K.A.; Diamond, D.J.; Barry, P.A. Evaluation of recombinant modified vaccinia Ankara virus-based rhesus cytomegalovirus vaccines in rhesus macaques. Med. Microbiol. Immunol. 2008, 197, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhou, W.; Srivastava, T.; la Rosa, C.; Mandarino, A.; Forman, S.J.; Zaia, J.A.; Britt, W.J.; Diamond, D.J. A fusion protein of HCMV IE1 exon4 and IE2 exon5 stimulates potent cellular immunity in an MVA vaccine vector. Virology 2008, 377, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Manuel, E.R.; Wang, Z.; Li, Z.; La Rosa, C.; Zhou, W.; Diamond, D.J. Intergenic region 3 of modified vaccinia ankara is a functional site for insert gene expression and allows for potent antigen-specific immune responses. Virology 2010, 403, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Wussow, F.; Yue, Y.; Martinez, J.; Deere, J.D.; Longmate, J.; Herrmann, A.; Barry, P.A.; Diamond, D.J. A vaccine based on the rhesus cytomegalovirus UL128 complex induces broadly neutralizing antibodies in rhesus macaques. J. Virol. 2013, 87, 1322–1332. [Google Scholar] [CrossRef] [PubMed]
- Wussow, F.; Chiuppesi, F.; Martinez, J.; Campo, J.; Johnson, E.; Flechsig, C.; Newell, M.; Tran, E.; Ortiz, J.; la Rosa, C.; et al. Human Cytomegalovirus Vaccine Based on the Envelope gH/gL Pentamer Complex. PLOS Pathog. 2014, 10, e1004524. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, M.F.; del Medico Zajac, M.P.; Zanetti, F.A.; Valera, A.R.; Zabal, O.; Calamante, G. Recombinant MVA expressing secreted glycoprotein D of BoHV-1 induces systemic and mucosal immunity in animal models. Viral Immunol. 2011, 24, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Huemer, H.P.; Strobl, B.; Nowotny, N. Use of apathogenic vaccinia virus MVA expressing EHV-1 gC as basis of a combined recombinant MVA/DNA vaccination scheme. Vaccine 2000, 18, 1320–1326. [Google Scholar] [CrossRef] [PubMed]
- Meseda, C.A.; Stout, R.R.; Weir, J.P. Evaluation of a needle-free delivery platform for prime-boost immunization with DNA and modified vaccinia virus ankara vectors expressing herpes simplex virus 2 glycoprotein D. Viral Immunol. 2006, 19, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, L.S.; Shors, S.T.; Murphy, B.R.; Moss, B. Development of a replication-deficient recombinant vaccinia virus vaccine effective against parainfluenza virus 3 infection in an animal model. Vaccine 1996, 14, 1451–1458. [Google Scholar] [CrossRef] [PubMed]
- Durbin, A.P.; Cho, C.J.; Elkins, W.R.; Wyatt, L.S.; Moss, B.; Murphy, B.R. Comparison of the immunogenicity and efficacy of a replication-defective vaccinia virus expressing antigens of human parainfluenza virus type 3 (HPIV3) with those of a live attenuated HPIV3 vaccine candidate in rhesus monkeys passively immunized with PIV3 antibodies. J. Infect. Dis. 1999, 179, 1345–1351. [Google Scholar] [CrossRef] [PubMed]
- Durbin, A.P.; Wyatt, L.S.; Siew, J.; Moss, B.; Murphy, B.R. The immunogenicity and efficacy of intranasally or parenterally administered replication-deficient vaccinia-parainfluenza virus type 3 recombinants in rhesus monkeys. Vaccine 1998, 16, 1324–1330. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.; Harris, S.A.; Satti, I.; Poulton, I.D.; Poyntz, H.C.; Tanner, R.; Rowland, R.; Griffiths, K.L.; Fletcher, H.A.; McShane, H. Comparing the safety and immunogenicity of a candidate TB vaccine MVA85A administered by intramuscular and intradermal delivery. Vaccine 2013, 31, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Tameris, M.; Geldenhuys, H.; Luabeya, A.K.; Smit, E.; Hughes, J.E.; Vermaak, S.; Hanekom, W.A.; Hatherill, M.; Mahomed, H.; McShane, H.; et al. The candidate TB vaccine, MVA85A, induces highly durable Th1 responses. PLOS ONE 2014, 9, e87340. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tameris, M.D.; Hatherill, M.; Landry, B.S.; Scriba, T.J.; Snowden, M.A.; Lockhart, S.; Shea, J.E.; McClain, J.B.; Hussey, G.D.; Hanekom, W.A.; et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: A randomised, placebo-controlled phase 2b trial. Lancet 2013, 381, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo Ortiz, J.M.; del Medico Zajac, M.P.; Zanetti, F.A.; Molinari, M.P.; Gravisaco, M.J.; Calamante, G.; Wilkowsky, S.E. Vaccine strategies against Babesia bovis based on prime-boost immunizations in mice with modified vaccinia Ankara vector and recombinant proteins. Vaccine 2014, 32, 4625–4632. [Google Scholar] [CrossRef] [PubMed]
- Brewoo, J.N.; Powell, T.D.; Stinchcomb, D.T.; Osorio, J.E. Efficacy and safety of a modified vaccinia Ankara (MVA) vectored plague vaccine in mice. Vaccine 2010, 28, 5891–5899. [Google Scholar] [CrossRef] [PubMed]
- Ogwang, C.; Afolabi, M.; Kimani, D.; Jagne, Y.J.; Sheehy, S.H.; Bliss, C.M.; Duncan, C.J.; Collins, K.A.; Garcia Knight, M.A.; Kimani, E.; et al. Safety and immunogenicity of heterologous prime-boost immunisation with Plasmodium falciparum malaria candidate vaccines, ChAd63 ME-TRAP and MVA ME-TRAP, in healthy Gambian and Kenyan adults. PLOS ONE 2013, 8, e57726. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, S.H.; Ewer, K.J.; Bliss, C.M.; Edwards, N.J.; Rampling, T.; Anagnostou, N.A.; de Barra, E.; Havelock, T.; Bowyer, G.; Poulton, I.D.; et al. Evaluation of the Efficacy of ChAd63-MVA Vectored Vaccines Expressing CS & ME-TRAP Against Controlled Human Malaria Infection in Malaria Naive Individuals. J. Infect. Dis. 2015, 211, 1076–1086. [Google Scholar] [CrossRef] [PubMed]
- Sheehy, S.H.; Duncan, C.J.; Elias, S.C.; Biswas, S.; Collins, K.A.; O’Hara, G.A.; Halstead, F.D.; Ewer, K.J.; Mahungu, T.; Spencer, A.J.; et al. Phase Ia clinical evaluation of the safety and immunogenicity of the Plasmodium falciparum blood-stage antigen AMA1 in ChAd63 and MVA vaccine vectors. PLOS ONE 2012, 7, e31208. [Google Scholar] [CrossRef] [PubMed]
- Sheehy, S.H.; Duncan, C.J.; Elias, S.C.; Choudhary, P.; Biswas, S.; Halstead, F.D.; Collins, K.A.; Edwards, N.J.; Douglas, A.D.; Anagnostou, N.A.; et al. ChAd63-MVA-vectored blood-stage malaria vaccines targeting MSP1 and AMA1: Assessment of efficacy against mosquito bite challenge in humans. Mol. Ther. 2012, 20, 2355–2368. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Choudhary, P.; Elias, S.C.; Miura, K.; Milne, K.H.; de Cassan, S.C.; Collins, K.A.; Halstead, F.D.; Bliss, C.M.; Ewer, K.J.; et al. Assessment of humoral immune responses to blood-stage malaria antigens following ChAd63-MVA immunization, controlled human malaria infection and natural exposure. PLOS ONE 2014, 9, e107903. [Google Scholar] [CrossRef] [PubMed]
- Elias, S.C.; Choudhary, P.; de Cassan, S.C.; Biswas, S.; Collins, K.A.; Halstead, F.D.; Bliss, C.M.; Ewer, K.J.; Hodgson, S.H.; Duncan, C.J.; et al. Analysis of human B-cell responses following ChAd63-MVA MSP1 and AMA1 immunization and controlled malaria infection. Immunology 2014, 141, 628–644. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, S.H.; Choudhary, P.; Elias, S.C.; Milne, K.H.; Rampling, T.W.; Biswas, S.; Poulton, I.D.; Miura, K.; Douglas, A.D.; Alanine, D.G.; et al. Combining Viral Vectored and Protein-in-adjuvant Vaccines Against the Blood-stage Malaria Antigen AMA1: Report on a Phase 1a Clinical Trial. Mol. Ther. 2014, 22, 2142–2154. [Google Scholar] [CrossRef] [PubMed]
- Sheehy, S.H.; Duncan, C.J.; Elias, S.C.; Collins, K.A.; Ewer, K.J.; Spencer, A.J.; Williams, A.R.; Halstead, F.D.; Moretz, S.E.; Miura, K.; et al. Phase Ia clinical evaluation of the Plasmodium falciparum blood-stage antigen MSP1 in ChAd63 and MVA vaccine vectors. Mol. Ther. 2011, 19, 2269–2276. [Google Scholar] [CrossRef] [PubMed]
- Dunachie, S.J.; Berthoud, T.; Keating, S.M.; Hill, A.V.; Fletcher, H.A. MIG and the regulatory cytokines IL-10 and TGF-beta1 correlate with malaria vaccine immunogenicity and efficacy. PLOS ONE 2010, 5, e12557. [Google Scholar] [CrossRef] [PubMed]
- Porter, D.W.; Thompson, F.M.; Berthoud, T.K.; Hutchings, C.L.; Andrews, L.; Biswas, S.; Poulton, I.; Prieur, E.; Correa, S.; Rowland, R.; et al. A human Phase I/IIa malaria challenge trial of a polyprotein malaria vaccine. Vaccine 2011, 29, 7514–7522. [Google Scholar] [CrossRef] [PubMed]
- Perez-Jimenez, E.; Kochan, G.; Gherardi, M.M.; Esteban, M. MVA-LACK as a safe and efficient vector for vaccination against leishmaniasis. Microbes Infect. 2006, 8, 810–822. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Sampedro, L.; Gomez, C.E.; Mejias-Perez, E.; Sorzano, C.O.; Esteban, M. High quality long-term CD4+ and CD8+ effector memory populations stimulated by DNA-LACK/MVA-LACK regimen in Leishmania major BALB/c model of infection. PLOS ONE 2012, 7, e38859. [Google Scholar] [CrossRef] [PubMed]
- Ramos, I.; Alonso, A.; Peris, A.; Marcen, J.M.; Abengozar, M.A.; Alcolea, P.J.; Castillo, J.A.; Larraga, V. Antibiotic resistance free plasmid DNA expressing LACK protein leads towards a protective Th1 response against Leishmania infantum infection. Vaccine 2009, 27, 6695–6703. [Google Scholar] [CrossRef] [PubMed]
- Stober, C.B.; Lange, U.G.; Roberts, M.T.; Alcami, A.; Blackwell, J.M. Heterologous priming-boosting with DNA and modified vaccinia virus Ankara expressing tryparedoxin peroxidase promotes long-term memory against Leishmania major in susceptible BALB/c Mice. Infect. Immun. 2007, 75, 852–860. [Google Scholar] [CrossRef] [PubMed]
- Carson, C.; Antoniou, M.; Ruiz-Arguello, M.B.; Alcami, A.; Christodoulou, V.; Messaritakis, I.; Blackwell, J.M.; Courtenay, O. A prime/boost DNA/Modified vaccinia virus Ankara vaccine expressing recombinant Leishmania DNA encoding TRYP is safe and immunogenic in outbred dogs, the reservoir of zoonotic visceral leishmaniasis. Vaccine 2009, 27, 1080–1086. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, A.; Castilho, T.M.; Park, E.; Goldsmith-Pestana, K.; Blackwell, J.M.; McMahon-Pratt, D. TLR1/2 activation during heterologous prime-boost vaccination (DNA-MVA) enhances CD8+ T Cell responses providing protection against Leishmania (Viannia). PLOS Negl. Trop. Dis. 2011, 5, e1204. [Google Scholar] [CrossRef] [PubMed]
- Roque-Resendiz, J.L.; Rosales, R.; Herion, P. MVA ROP2 vaccinia virus recombinant as a vaccine candidate for toxoplasmosis. Parasitology 2004, 128, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Garg, N.J. TcVac3 induced control of Trypanosoma cruzi infection and chronic myocarditis in mice. PLOS ONE 2013, 8, e59434. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, E.; Taylor, J.; Tartaglia, J.; Ross, L. Marek’s disease virus recombinant poxvirus vaccine. U.S. Patent 5,759,552, 2 June 1998. [Google Scholar]
- Mayr, A.; Malicki, K. Attenuation of virulent fowl pox virus in tissue culture and characteristics of the attenuated virus. Zentralbl. Veterinarmed. B 1966, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Laidlaw, S.M.; Skinner, M.A. Comparison of the genome sequence of FP9, an attenuated, tissue culture-adapted European strain of Fowlpox virus, with those of virulent American and European viruses. J. Gen. Virol. 2004, 85, 305–322. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, E.; Perkus, M.E.; Taylor, J.; Tartaglia, J.; Norton, E.K.; Riviere, M.; de Taisne, C.; Limbach, K.J.; Johnson, G.P.; Pincus, S.E. Alvac canarypox virus recombinants comprising heterlogous inserts. U.S. Patent 5,756,1036, 26 May 1998. [Google Scholar]
- Van Rompay, K.K.; Abel, K.; Lawson, J.R.; Singh, R.P.; Schmidt, K.A.; Evans, T.; Earl, P.; Harvey, D.; Franchini, G.; Tartaglia, J.; et al. Attenuated poxvirus-based simian immunodeficiency virus (SIV) vaccines given in infancy partially protect infant and juvenile macaques against repeated oral challenge with virulent SIV. J. Acquir. Immune Defic. Syndr. 2005, 38, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Pal, R.; Venzon, D.; Letvin, N.L.; Santra, S.; Montefiori, D.C.; Miller, N.R.; Tryniszewska, E.; Lewis, M.G.; VanCott, T.C.; Hirsch, V.; et al. ALVAC-SIV-gag-pol-env-based vaccination and macaque major histocompatibility complex class I (A * 01) delay simian immunodeficiency virus SIVmac-induced immunodeficiency. J. Virol. 2002, 76, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Pal, R.; Venzon, D.; Santra, S.; Kalyanaraman, V.S.; Montefiori, D.C.; Hocker, L.; Hudacik, L.; Rose, N.; Nacsa, J.; Edghill-Smith, Y.; et al. Systemic immunization with an ALVAC-HIV-1/protein boost vaccine strategy protects rhesus macaques from CD4+ T-cell loss and reduces both systemic and mucosal simian-human immunodeficiency virus SHIVKU2 RNA levels. J. Virol. 2006, 80, 3732–3742. [Google Scholar] [CrossRef] [PubMed]
- Andersson, S.; Makitalo, B.; Thorstensson, R.; Franchini, G.; Tartaglia, J.; Limbach, K.; Paoletti, E.; Putkonen, P.; Biberfeld, G. Immunogenicity and protective efficacy of a human immunodeficiency virus type 2 recombinant canarypox (ALVAC) vaccine candidate in cynomolgus monkeys. J. Infect. Dis. 1996, 174, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Girard, M.; van der Ryst, E.; Barre-Sinoussi, F.; Nara, P.; Tartaglia, J.; Paoletti, E.; Blondeau, C.; Jennings, M.; Verrier, F.; Meignier, B.; et al. Challenge of chimpanzees immunized with a recombinant canarypox-HIV-1 virus. Virology 1997, 232, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Marovich, M.A. ALVAC-HIV vaccines: Clinical trial experience focusing on progress in vaccine development. Expert Rev. Vaccines 2004, 3, S99–S104. [Google Scholar] [CrossRef] [PubMed]
- De Bruyn, G.; Rossini, A.J.; Chiu, Y.L.; Holman, D.; Elizaga, M.L.; Frey, S.E.; Burke, D.; Evans, T.G.; Corey, L.; Keefer, M.C. Safety profile of recombinant canarypox HIV vaccines. Vaccine 2004, 22, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, S.A.; Cadoz, M.; Meignier, B.; Meric, C.; Leroy, O.; Excler, J.L.; Tartaglia, J.; Paoletti, E.; Gonczol, E.; Chappuis, G. The safety and use of canarypox vectored vaccines. Dev. Biol. Stand. 1995, 84, 165–170. [Google Scholar] [PubMed]
- Rerks-Ngarm, S.; Pitisuttithum, P.; Nitayaphan, S.; Kaewkungwal, J.; Chiu, J.; Paris, R.; Premsri, N.; Namwat, C.; de Souza, M.; Adams, E.; et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 2009, 361, 2209–2220. [Google Scholar] [CrossRef] [PubMed]
- Steensels, M.; Van Borm, S.; Lambrecht, B.; De Vriese, J.; Le Gros, F.X.; Bublot, M.; van den Berg, T. Efficacy of an inactivated and a fowlpox-vectored vaccine in Muscovy ducks against an Asian H5N1 highly pathogenic avian influenza viral challenge. Avian Dis. 2007, 51, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Karaca, K.; Swayne, D.E.; Grosenbaugh, D.; Bublot, M.; Robles, A.; Spackman, E.; Nordgren, R. Immunogenicity of fowlpox virus expressing the avian influenza virus H5 gene (TROVAC AIV-H5) in cats. Clin. Diagn. Lab. Immunol. 2005, 12, 1340–1342. [Google Scholar] [PubMed]
- Hghihghi, H.R.; Read, L.R.; Mohammadi, H.; Pei, Y.; Ursprung, C.; Nagy, E.; Behboudi, S.; Haeryfar, S.M.; Sharif, S. Characterization of host responses against a recombinant fowlpox virus-vectored vaccine expressing the hemagglutinin antigen of an avian influenza virus. Clin. Vaccine Immunol. 2010, 17, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Kyriakis, C.S.; de Vleeschauwer, A.; Barbe, F.; Bublot, M.; Van Reeth, K. Safety, immunogenicity and efficacy of poxvirus-based vector vaccines expressing the haemagglutinin gene of a highly pathogenic H5N1 avian influenza virus in pigs. Vaccine 2009, 27, 2258–2264. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Christensen, L.; Gettig, R.; Goebel, J.; Bouquet, J.F.; Mickle, T.R.; Paoletti, E. Efficacy of a recombinant fowl pox-based Newcastle disease virus vaccine candidate against velogenic and respiratory challenge. Avian Dis. 1996, 40, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Hel, Z.; Nacsa, J.; Tryniszewska, E.; Tsai, W.P.; Parks, R.W.; Montefiori, D.C.; Felber, B.K.; Tartaglia, J.; Pavlakis, G.N.; Franchini, G. Containment of simian immunodeficiency virus infection in vaccinated macaques: Correlation with the magnitude of virus-specific pre- and postchallenge CD4+ and CD8+ T cell responses. J. Immunol. 2002, 169, 4778–4787. [Google Scholar] [CrossRef] [PubMed]
- Cox, W.I.; Tartaglia, J.; Paoletti, E. Induction of cytotoxic T lymphocytes by recombinant canarypox (ALVAC) and attenuated vaccinia (NYVAC) viruses expressing the HIV-1 envelope glycoprotein. Virology 1993, 195, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Pialoux, G.; Excler, J.L.; Riviere, Y.; Gonzalez-Canali, G.; Feuillie, V.; Coulaud, P.; Gluckman, J.C.; Matthews, T.J.; Meignier, B.; Kieny, M.P.; et al. A prime-boost approach to HIV preventive vaccine using a recombinant canarypox virus expressing glycoprotein 160 (MN) followed by a recombinant glycoprotein 160 (MN/LAI). The AGIS Group, and l’Agence Nationale de Recherche sur le SIDA. AIDS Res. Hum. Retroviruses 1995, 11, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Fleury, B.; Janvier, G.; Pialoux, G.; Buseyne, F.; Robertson, M.N.; Tartaglia, J.; Paoletti, E.; Kieny, M.P.; Excler, J.L.; Riviere, Y. Memory cytotoxic T lymphocyte responses in human immunodeficiency virus type 1 (HIV-1)-negative volunteers immunized with a recombinant canarypox expressing gp 160 of HIV-1 and boosted with a recombinant gp160. J. Infect. Dis. 1996, 174, 734–738. [Google Scholar] [CrossRef] [PubMed]
- Egan, M.A.; Pavlat, W.A.; Tartaglia, J.; Paoletti, E.; Weinhold, K.J.; Clements, M.L.; Siliciano, R.F. Induction of human immunodeficiency virus type 1 (HIV-1)-specific cytolytic T lymphocyte responses in seronegative adults by a nonreplicating, host-range-restricted canarypox vector (ALVAC) carrying the HIV-1MN env gene. J. Infect. Dis. 1995, 171, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Clements-Mann, M.L.; Weinhold, K.; Matthews, T.J.; Graham, B.S.; Gorse, G.J.; Keefer, M.C.; McElrath, M.J.; Hsieh, R.H.; Mestecky, J.; Zolla-Pazner, S.; et al. Immune responses to human immunodeficiency virus (HIV) type 1 induced by canarypox expressing HIV-1MN gp120, HIV-1SF2 recombinant gp120, or both vaccines in seronegative adults. NIAID AIDS Vaccine Evaluation Group. J. Infect. Dis. 1998, 177, 1230–1246. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, G.; Humphrey, W.; McElrath, M.J.; Excler, J.L.; Duliege, A.M.; Clements, M.L.; Corey, L.C.; Bolognesi, D.P.; Weinhold, K.J. Clade B-based HIV-1 vaccines elicit cross-clade cytotoxic T lymphocyte reactivities in uninfected volunteers. Proc. Natl. Acad. Sci. USA 1997, 94, 1396–1401. [Google Scholar] [CrossRef] [PubMed]
- Belshe, R.B.; Gorse, G.J.; Mulligan, M.J.; Evans, T.G.; Keefer, M.C.; Excler, J.L.; Duliege, A.M.; Tartaglia, J.; Cox, W.I.; McNamara, J.; et al. Induction of immune responses to HIV-1 by canarypox virus (ALVAC) HIV-1 and gp120 SF-2 recombinant vaccines in uninfected volunteers. NIAID AIDS Vaccine Evaluation Group. AIDS 1998, 12, 2407–2415. [Google Scholar] [CrossRef] [PubMed]
- Salmon-Ceron, D.; Excler, J.L.; Finkielsztejn, L.; Autran, B.; Gluckman, J.C.; Sicard, D.; Matthews, T.J.; Meignier, B.; Valentin, C.; el Habib, R.; et al. Safety and immunogenicity of a live recombinant canarypox virus expressing HIV type 1 gp120 MN MN tm/gag/protease LAI (ALVAC-HIV, vCP205) followed by a p24E-V3 MN synthetic peptide (CLTB-36) administered in healthy volunteers at low risk for HIV infection. AGIS Group and L’Agence Nationale de Recherches sur Le Sida. AIDS Res. Hum. Retroviruses 1999, 15, 633–645. [Google Scholar] [CrossRef] [PubMed]
- AIDS Vaccine Evaluation Group 022 Protocol Team. Cellular and humoral immune responses to a canarypox vaccine containing human immunodeficiency virus type 1 Env, Gag, and Pro in combination with rgp120: A phase 2 study in higher- and lower-risk volunteers. J. Infect. Dis. 2001, 183, 563–570. [Google Scholar]
- Belshe, R.B.; Stevens, C.; Gorse, G.J.; Buchbinder, S.; Weinhold, K.; Sheppard, H.; Stablein, D.; Self, S.; McNamara, J.; Frey, S.; et al. Safety and immunogenicity of a canarypox-vectored human immunodeficiency virus Type 1 vaccine with or without gp120: A phase 2 study in higher- and lower-risk volunteers. J. Infect. Dis. 2001, 183, 1343–1352. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Hudgens, M.; Corey, L.; McElrath, M.J.; Weinhold, K.; Montefiori, D.C.; Gorse, G.J.; Frey, S.E.; Keefer, M.C.; Evans, T.G.; et al. Safety and immunogenicity of a high-titered canarypox vaccine in combination with rgp120 in a diverse population of HIV-1-uninfected adults: AIDS Vaccine Evaluation Group Protocol 022A. J. Acquir. Immune Defic. Syndr. 2002, 29, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Kaleebu, P.; Hom, D.; Flores, J.; Agrawal, D.; Jones, N.; Serwanga, J.; Okello, M.; Walker, C.; Sheppard, H.; et al. Immunogenicity of a recombinant human immunodeficiency virus (HIV)-canarypox vaccine in HIV-seronegative Ugandan volunteers: Results of the HIV Network for Prevention Trials 007 Vaccine Study. J. Infect. Dis. 2003, 187, 887–895. [Google Scholar] [CrossRef] [PubMed]
- Eller, M.A.; Slike, B.M.; Cox, J.H.; Lesho, E.; Wang, Z.; Currier, J.R.; Darden, J.M.; Polonis, V.R.; Vahey, M.T.; Peel, S.; et al. A double-blind randomized phase I clinical trial targeting ALVAC-HIV vaccine to human dendritic cells. PLOS ONE 2011, 6, e24254. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.C.; McFarland, E.J.; Muresan, P.; Fenton, T.; McNamara, J.; Read, J.S.; Hawkins, E.; Bouquin, P.L.; Estep, S.G.; Tomaras, G.D.; et al. Safety and immunogenicity of an HIV-1 recombinant canarypox vaccine in newborns and infants of HIV-1-infected women. J. Infect. Dis. 2005, 192, 2129–2133. [Google Scholar] [CrossRef] [PubMed]
- Evans, T.G.; Keefer, M.C.; Weinhold, K.J.; Wolff, M.; Montefiori, D.; Gorse, G.J.; Graham, B.S.; McElrath, M.J.; Clements-Mann, M.L.; Mulligan, M.J.; et al. A canarypox vaccine expressing multiple human immunodeficiency virus type 1 genes given alone or with rgp120 elicits broad and durable CD8+ cytotoxic T lymphocyte responses in seronegative volunteers. J. Infect. Dis. 1999, 180, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Nitayaphan, S.; Pitisuttithum, P.; Karnasuta, C.; Eamsila, C.; de Souza, M.; Morgan, P.; Polonis, V.; Benenson, M.; VanCott, T.; Ratto-Kim, S.; et al. Safety and immunogenicity of an HIV subtype B and E prime-boost vaccine combination in HIV-negative Thai adults. J. Infect. Dis. 2004, 190, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Karnasuta, C.; Paris, R.M.; Cox, J.H.; Nitayaphan, S.; Pitisuttithum, P.; Thongcharoen, P.; Brown, A.E.; Gurunathan, S.; Tartaglia, J.; Heyward, W.L.; et al. Antibody-dependent cell-mediated cytotoxic responses in participants enrolled in a phase I/II ALVAC-HIV/AIDSVAX B/E prime-boost HIV-1 vaccine trial in Thailand. Vaccine 2005, 23, 2522–2529. [Google Scholar] [CrossRef] [PubMed]
- Thongcharoen, P.; Suriyanon, V.; Paris, R.M.; Khamboonruang, C.; de Souza, M.S.; Ratto-Kim, S.; Karnasuta, C.; Polonis, V.R.; Baglyos, L.; Habib, R.E.; et al. A phase 1/2 comparative vaccine trial of the safety and immunogenicity of a CRF01_AE (subtype E) candidate vaccine: ALVAC-HIV (vCP1521) prime with oligomeric gp160 (92TH023/LAI-DID) or bivalent gp120 (CM235/SF2) boost. J. Acquir. Immune Defic. Syndr. 2007, 46, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Pitisuttithum, P.; Rerks-Ngarm, S.; Bussaratid, V.; Dhitavat, J.; Maekanantawat, W.; Pungpak, S.; Suntharasamai, P.; Vanijanonta, S.; Nitayapan, S.; Kaewkungwal, J.; et al. Safety and reactogenicity of canarypox ALVAC-HIV (vCP1521) and HIV-1 gp120 AIDSVAX B/E vaccination in an efficacy trial in Thailand. PLOS ONE 2011, 6, e27837. [Google Scholar] [CrossRef] [PubMed]
- Kintu, K.; Andrew, P.; Musoke, P.; Richardson, P.; Asiimwe-Kateera, B.; Nakyanzi, T.; Wang, L.; Fowler, M.G.; Emel, L.; Ou, S.S.; et al. Feasibility and safety of ALVAC-HIV vCP1521 vaccine in HIV-exposed infants in Uganda: Results from the first HIV vaccine trial in infants in Africa. J. Acquir. Immune Defic. Syndr. 2013, 63, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kaleebu, P.; Njai, H.F.; Wang, L.; Jones, N.; Ssewanyana, I.; Richardson, P.; Kintu, K.; Emel, L.; Musoke, P.; Fowler, M.G.; et al. Immunogenicity of ALVAC-HIV vCP1521 in infants of HIV-1-infected women in Uganda (HPTN 027): The first pediatric HIV vaccine trial in Africa. J. Acquir. Immune Defic. Syndr. 2014, 65, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Excler, J.L.; Michael, N.L. Lessons from the RV144 Thai Phase III HIV-1 Vaccine Trial and the Search for Correlates of Protection. Annu. Rev. Med. 2015, 66, 423–437. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, D.I.; Schleiss, M.R.; Berencsi, K.; Gonczol, E.; Dickey, M.; Khoury, P.; Cadoz, M.; Meric, C.; Zahradnik, J.; Duliege, A.M.; et al. Effect of previous or simultaneous immunization with canarypox expressing cytomegalovirus (CMV) glycoprotein B (gB) on response to subunit gB vaccine plus MF59 in healthy CMV-seronegative adults. J. Infect. Dis. 2002, 185, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Adler, S.P.; Plotkin, S.A.; Gonczol, E.; Cadoz, M.; Meric, C.; Wang, J.B.; Dellamonica, P.; Best, A.M.; Zahradnik, J.; Pincus, S.; et al. A canarypox vector expressing cytomegalovirus (CMV) glycoprotein B primes for antibody responses to a live attenuated CMV vaccine (Towne). J. Infect. Dis. 1999, 180, 843–846. [Google Scholar] [CrossRef] [PubMed]
- Berencsi, K.; Gyulai, Z.; Gonczol, E.; Pincus, S.; Cox, W.I.; Michelson, S.; Kari, L.; Meric, C.; Cadoz, M.; Zahradnik, J.; et al. A canarypox vector-expressing cytomegalovirus (CMV) phosphoprotein 65 induces long-lasting cytotoxic T cell responses in human CMV-seronegative subjects. J. Infect. Dis. 2001, 183, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Meignier, B.; Tartaglia, J.; Languet, B.; VanderHoeven, J.; Franchini, G.; Trimarchi, C.; Paoletti, E. Biological and immunogenic properties of a canarypox-rabies recombinant, ALVAC-RG (vCP65) in non-avian species. Vaccine 1995, 13, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Fries, L.F.; Tartaglia, J.; Taylor, J.; Kauffman, E.K.; Meignier, B.; Paoletti, E.; Plotkin, S. Human safety and immunogenicity of a canarypox-rabies glycoprotein recombinant vaccine: An alternative poxvirus vector system. Vaccine 1996, 14, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Cadoz, M.; Strady, A.; Meignier, B.; Taylor, J.; Tartaglia, J.; Paoletti, E.; Plotkin, S. Immunisation with canarypox virus expressing rabies glycoprotein. Lancet 1992, 339, 1429–1432. [Google Scholar] [CrossRef] [PubMed]
- Pardo, M.C.; Bauman, J.E.; Mackowiak, M. Protection of dogs against canine distemper by vaccination with a canarypox virus recombinant expressing canine distemper virus fusion and hemagglutinin glycoproteins. Am. J. Vet. Res. 1997, 58, 833–836. [Google Scholar] [PubMed]
- Stephensen, C.B.; Welter, J.; Thaker, S.R.; Taylor, J.; Tartaglia, J.; Paoletti, E. Canine distemper virus (CDV) infection of ferrets as a model for testing Morbillivirus vaccine strategies: NYVAC- and ALVAC-based CDV recombinants protect against symptomatic infection. J. Virol. 1997, 71, 1506–1513. [Google Scholar] [PubMed]
- Welter, J.; Taylor, J.; Tartaglia, J.; Paoletti, E.; Stephensen, C.B. Vaccination against canine distemper virus infection in infant ferrets with and without maternal antibody protection, using recombinant attenuated poxvirus vaccines. J. Virol. 2000, 74, 6358–6367. [Google Scholar] [CrossRef] [PubMed]
- Welter, J.; Taylor, J.; Tartaglia, J.; Paoletti, E.; Stephensen, C.B. Mucosal vaccination with recombinant poxvirus vaccines protects ferrets against symptomatic CDV infection. Vaccine 1999, 17, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Siger, L.; Bowen, R.A.; Karaca, K.; Murray, M.J.; Gordy, P.W.; Loosmore, S.M.; Audonnet, J.C.; Nordgren, R.M.; Minke, J.M. Assessment of the efficacy of a single dose of a recombinant vaccine against West Nile virus in response to natural challenge with West Nile virus-infected mosquitoes in horses. Am. J. Vet. Res. 2004, 65, 1459–1462. [Google Scholar] [CrossRef] [PubMed]
- El Garch, H.; Minke, J.M.; Rehder, J.; Richard, S.; Edlund Toulemonde, C.; Dinic, S.; Andreoni, C.; Audonnet, J.C.; Nordgren, R.; Juillard, V. A West Nile virus (WNV) recombinant canarypox virus vaccine elicits WNV-specific neutralizing antibodies and cell-mediated immune responses in the horse. Vet. Immunol. Immunopathol. 2008, 123, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Minke, J.M.; Siger, L.; Cupillard, L.; Powers, B.; Bakonyi, T.; Boyum, S.; Nowotny, N.; Bowen, R. Protection provided by a recombinant ALVAC((R))-WNV vaccine expressing the prM/E genes of a lineage 1 strain of WNV against a virulent challenge with a lineage 2 strain. Vaccine 2011, 29, 4608–4612. [Google Scholar] [CrossRef] [PubMed]
- Minke, J.M.; Siger, L.; Karaca, K.; Austgen, L.; Gordy, P.; Bowen, R.; Renshaw, R.W.; Loosmore, S.; Audonnet, J.C.; Nordgren, B. Recombinant canarypoxvirus vaccine carrying the prM/E genes of West Nile virus protects horses against a West Nile virus-mosquito challenge. Arch. Virol. Suppl. 2004, 18, 221–230. [Google Scholar] [PubMed]
- Karaca, K.; Bowen, R.; Austgen, L.E.; Teehee, M.; Siger, L.; Grosenbaugh, D.; Loosemore, L.; Audonnet, J.C.; Nordgren, R.; Minke, J.M. Recombinant canarypox vectored West Nile virus (WNV) vaccine protects dogs and cats against a mosquito WNV challenge. Vaccine 2005, 23, 3808–3813. [Google Scholar] [CrossRef] [PubMed]
- Tartaglia, J.; Jarrett, O.; Neil, J.C.; Desmettre, P.; Paoletti, E. Protection of cats against feline leukemia virus by vaccination with a canarypox virus recombinant, ALVAC-FL. J. Virol. 1993, 67, 2370–2375. [Google Scholar] [PubMed]
- Poulet, H.; Brunet, S.; Boularand, C.; Guiot, A.L.; Leroy, V.; Tartaglia, J.; Minke, J.; Audonnet, J.C.; Desmettre, P. Efficacy of a canarypox virus-vectored vaccine against feline leukaemia. Vet. Rec. 2003, 153, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Hofmann-Lehmann, R.; Tandon, R.; Boretti, F.S.; Meli, M.L.; Willi, B.; Cattori, V.; Gomes-Keller, M.A.; Ossent, P.; Golder, M.C.; Flynn, J.N.; et al. Reassessment of feline leukaemia virus (FeLV) vaccines with novel sensitive molecular assays. Vaccine 2006, 24, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Tellier, M.C.; Pu, R.; Pollock, D.; Vitsky, A.; Tartaglia, J.; Paoletti, E.; Yamamoto, J.K. Efficacy evaluation of prime-boost protocol: Canarypoxvirus-based feline immunodeficiency virus (FIV) vaccine and inactivated FIV-infected cell vaccine against heterologous FIV challenge in cats. AIDS 1998, 12, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Minke, J.M.; Audonnet, J.C.; Fischer, L. Equine viral vaccines: The past, present and future. Vet. Res. 2004, 35, 425–443. [Google Scholar] [CrossRef] [PubMed]
- Soboll, G.; Hussey, S.B.; Minke, J.M.; Landolt, G.A.; Hunter, J.S.; Jagannatha, S.; Lunn, D.P. Onset and duration of immunity to equine influenza virus resulting from canarypox-vectored (ALVAC) vaccination. Vet. Immunol. Immunopathol. 2010, 135, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Paillot, R.; Kydd, J.H.; Sindle, T.; Hannant, D.; Edlund Toulemonde, C.; Audonnet, J.C.; Minke, J.M.; Daly, J.M. Antibody and IFN-gamma responses induced by a recombinant canarypox vaccine and challenge infection with equine influenza virus. Vet. Immunol. Immunopathol. 2006, 112, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Paillot, R.; Ellis, S.A.; Daly, J.M.; Audonnet, J.C.; Minke, J.M.; Davis-Poynter, N.; Hannant, D.; Kydd, J.H. Characterisation of CTL and IFN-gamma synthesis in ponies following vaccination with a NYVAC-based construct coding for EHV-1 immediate early gene, followed by challenge infection. Vaccine 2006, 24, 1490–1500. [Google Scholar] [CrossRef] [PubMed]
- Kanesa-thasan, N.; Smucny, J.J.; Hoke, C.H.; Marks, D.H.; Konishi, E.; Kurane, I.; Tang, D.B.; Vaughn, D.W.; Mason, P.W.; Shope, R.E. Safety and immunogenicity of NYVAC-JEV and ALVAC-JEV attenuated recombinant Japanese encephalitis virus—Poxvirus vaccines in vaccinia-nonimmune and vaccinia-immune humans. Vaccine 2000, 19, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Konishi, E.; Kurane, I.; Mason, P.W.; Shope, R.E.; Kanesa-Thasan, N.; Smucny, J.J.; Hoke, C.H., Jr.; Ennis, F.A. Induction of Japanese encephalitis virus-specific cytotoxic T lymphocytes in humans by poxvirus-based JE vaccine candidates. Vaccine 1998, 16, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Franchini, G.; Tartaglia, J.; Markham, P.; Benson, J.; Fullen, J.; Wills, M.; Arp, J.; Dekaban, G.; Paoletti, E.; Gallo, R.C. Highly attenuated HTLV type Ienv poxvirus vaccines induce protection against a cell-associated HTLV type I challenge in rabbits. AIDS Res. Hum. Retroviruses 1995, 11, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, A.J.; Quan, M.; Lourens, C.W.; Audonnet, J.C.; Minke, J.M.; Yao, J.; He, L.; Nordgren, R.; Gardner, I.A.; Maclachlan, N.J. Protective immunization of horses with a recombinant canarypox virus vectored vaccine co-expressing genes encoding the outer capsid proteins of African horse sickness virus. Vaccine 2009, 27, 4434–4438. [Google Scholar] [CrossRef] [PubMed]
- El Garch, H.; Crafford, J.E.; Amouyal, P.; Durand, P.Y.; Edlund Toulemonde, C.; Lemaitre, L.; Cozette, V.; Guthrie, A.; Minke, J.M. An African horse sickness virus serotype 4 recombinant canarypox virus vaccine elicits specific cell-mediated immune responses in horses. Vet. Immunol. Immunopathol. 2012, 149, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Fischer, L.; le Gros, F.X.; Mason, P.W.; Paoletti, E. A recombinant canarypox virus protects rabbits against a lethal rabbit hemorrhagic disease virus (RHDV) challenge. Vaccine 1997, 15, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Cohard, M.; Liu, Q.; Perkus, M.; Gordon, E.; Brotman, B.; Prince, A.M. Hepatitis C virus-specific CTL responses in PBMC from chimpanzees with chronic hepatitis C: Determination of CTL and CTL precursor frequencies using a recombinant canarypox virus (ALVAC). J. Immunol. Methods 1998, 214, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Boone, J.D.; Balasuriya, U.B.; Karaca, K.; Audonnet, J.C.; Yao, J.; He, L.; Nordgren, R.; Monaco, F.; Savini, G.; Gardner, I.A.; et al. Recombinant canarypox virus vaccine co-expressing genes encoding the VP2 and VP5 outer capsid proteins of bluetongue virus induces high level protection in sheep. Vaccine 2007, 25, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Stittelaar, K.J.; Lacombe, V.; van Lavieren, R.; van Amerongen, G.; Simon, J.; Cozette, V.; Swayne, D.E.; Poulet, H.; Osterhaus, A.D. Cross-clade immunity in cats vaccinated with a canarypox-vectored avian influenza vaccine. Vaccine 2010, 28, 4970–4976. [Google Scholar] [CrossRef] [PubMed]
- Vordermeier, H.M.; Rhodes, S.G.; Dean, G.; Goonetilleke, N.; Huygen, K.; Hill, A.V.; Hewinson, R.G.; Gilbert, S.C. Cellular immune responses induced in cattle by heterologous prime-boost vaccination using recombinant viruses and bacille Calmette-Guerin. Immunology 2004, 112, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.J.; Hannan, C.M.; Gilbert, S.C.; Laidlaw, S.M.; Sheu, E.G.; Korten, S.; Sinden, R.; Butcher, G.A.; Skinner, M.A.; Hill, A.V. Enhanced CD8+ T cell immune responses and protection elicited against Plasmodium berghei malaria by prime boost immunization regimens using a novel attenuated fowlpox virus. J. Immunol. 2004, 172, 3094–3100. [Google Scholar] [CrossRef] [PubMed]
- Prieur, E.; Gilbert, S.C.; Schneider, J.; Moore, A.C.; Sheu, E.G.; Goonetilleke, N.; Robson, K.J.; Hill, A.V. A Plasmodium falciparum candidate vaccine based on a six-antigen polyprotein encoded by recombinant poxviruses. Proc. Natl. Acad. Sci. USA 2004, 101, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Bejon, P.; Mwacharo, J.; Kai, O.; Mwangi, T.; Milligan, P.; Todryk, S.; Keating, S.; Lang, T.; Lowe, B.; Gikonyo, C.; et al. A phase 2b randomised trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya. PLOS Clin. Trials 2006, 1, e29. [Google Scholar] [CrossRef] [PubMed]
- Bejon, P.; Mwacharo, J.; Kai, O.K.; Todryk, S.; Keating, S.; Lang, T.; Gilbert, S.C.; Peshu, N.; Marsh, K.; Hill, A.V. Immunogenicity of the candidate malaria vaccines FP9 and modified vaccinia virus Ankara encoding the pre-erythrocytic antigen ME-TRAP in 1–6 year old children in a malaria endemic area. Vaccine 2006, 24, 4709–4715. [Google Scholar] [CrossRef] [PubMed]
- Walther, M.; Thompson, F.M.; Dunachie, S.; Keating, S.; Todryk, S.; Berthoud, T.; Andrews, L.; Andersen, R.F.; Moore, A.; Gilbert, S.C.; et al. Safety, immunogenicity, and efficacy of prime-boost immunization with recombinant poxvirus FP9 and modified vaccinia virus Ankara encoding the full-length Plasmodium falciparum circumsporozoite protein. Infect. Immun. 2006, 74, 2706–2716. [Google Scholar] [CrossRef] [PubMed]
- Bejon, P.; Peshu, N.; Gilbert, S.C.; Lowe, B.S.; Molyneux, C.S.; Forsdyke, J.; Lang, T.; Hill, A.V.; Marsh, K. Safety profile of the viral vectors of attenuated fowlpox strain FP9 and modified vaccinia virus Ankara recombinant for either of 2 preerythrocytic malaria antigens, ME-TRAP or the circumsporozoite protein, in children and adults in Kenya. Clin. Infect. Dis. 2006, 42, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Webster, D.P.; Dunachie, S.; Vuola, J.M.; Berthoud, T.; Keating, S.; Laidlaw, S.M.; McConkey, S.J.; Poulton, I.; Andrews, L.; Andersen, R.F.; et al. Enhanced T cell-mediated protection against malaria in human challenges by using the recombinant poxviruses FP9 and modified vaccinia virus Ankara. Proc. Natl. Acad. Sci. USA 2005, 102, 4836–4841. [Google Scholar] [CrossRef] [PubMed]
- Webster, D.P.; Dunachie, S.; McConkey, S.; Poulton, I.; Moore, A.C.; Walther, M.; Laidlaw, S.M.; Peto, T.; Skinner, M.A.; Gilbert, S.C.; et al. Safety of recombinant fowlpox strain FP9 and modified vaccinia virus Ankara vaccines against liver-stage P. falciparum malaria in non-immune volunteers. Vaccine 2006, 24, 3026–3034. [Google Scholar] [CrossRef] [PubMed]
- Imoukhuede, E.B.; Berthoud, T.; Milligan, P.; Bojang, K.; Ismaili, J.; Keating, S.; Nwakanma, D.; Keita, S.; Njie, F.; Sowe, M.; et al. Safety and immunogenicity of the malaria candidate vaccines FP9 CS and MVA CS in adult Gambian men. Vaccine 2006, 24, 6526–6533. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Charoenvit, Y.; Moreno, A.; Baraceros, M.F.; Banania, G.; Richie, N.; Abot, S.; Ganeshan, H.; Fallarme, V.; Patterson, N.B.; et al. Induction of multi-antigen multi-stage immune responses against Plasmodium falciparum in rhesus monkeys, in the absence of antigen interference, with heterologous DNA prime/poxvirus boost immunization. Malar. J. 2007, 6, e135. [Google Scholar] [CrossRef]
- Rogers, W.O.; Baird, J.K.; Kumar, A.; Tine, J.A.; Weiss, W.; Aguiar, J.C.; Gowda, K.; Gwadz, R.; Kumar, S.; Gold, M.; et al. Multistage multiantigen heterologous prime boost vaccine for Plasmodium knowlesi malaria provides partial protection in rhesus macaques. Infect. Immun. 2001, 69, 5565–5572. [Google Scholar] [CrossRef] [PubMed]
- Draper, S.J.; Cottingham, M.G.; Gilbert, S.C. Utilizing poxviral vectored vaccines for antibody induction-progress and prospects. Vaccine 2013, 31, 4223–4230. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.V.; Reyes-Sandoval, A.; O’Hara, G.; Ewer, K.; Lawrie, A.; Goodman, A.; Nicosia, A.; Folgori, A.; Colloca, S.; Cortese, R.; et al. Prime-boost vectored malaria vaccines: Progress and prospects. Hum. Vaccine 2010, 6, 78–83. [Google Scholar] [CrossRef]
- Izzi, V.; Buler, M.; Masuelli, L.; Giganti, M.G.; Modesti, A.; Bei, R. Poxvirus-based vaccines for cancer immunotherapy: New insights from combined cytokines/co-stimulatory molecules delivery and “uncommon” strains. Anti -Cancer Agents Med. Chem. 2014, 14, 183–189. [Google Scholar] [CrossRef]
- Pantaleo, G.; Esteban, M.; Jacobs, B.; Tartaglia, J. Poxvirus vector-based HIV vaccines. Curr. Opin. HIV AIDS 2010, 5, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Arriaza, J.; Esteban, M. Enhancing poxvirus vectors vaccine immunogenicity. Hum. Vaccin. Immunother. 2014, 10, 2235–2244. [Google Scholar] [CrossRef] [PubMed]
- Tartaglia, J.; Cox, W.I.; Taylor, J.; Perkus, M.; Riviere, M.; Meignier, B.; Paoletti, E. Highly attenuated poxvirus vectors. AIDS Res. Hum. Retroviruses 1992, 8, 1445–1447. [Google Scholar] [PubMed]
- Tartaglia, J.; Cox, W.I.; Pincus, S.; Paoletti, E. Safety and immunogenicity of recombinants based on the genetically-engineered vaccinia strain, NYVAC. Dev. Biol. Stand. 1994, 82, 125–129. [Google Scholar] [PubMed]
- Tartaglia, J.; Perkus, M.E.; Taylor, J.; Norton, E.K.; Audonnet, J.C.; Cox, W.I.; Davis, S.W.; van der Hoeven, J.; Meignier, B.; Riviere, M.; et al. NYVAC: A highly attenuated strain of vaccinia virus. Virology 1992, 188, 217–232. [Google Scholar] [CrossRef] [PubMed]
- Gomez, C.E.; Najera, J.L.; Jimenez, E.P.; Jimenez, V.; Wagner, R.; Graf, M.; Frachette, M.J.; Liljestrom, P.; Pantaleo, G.; Esteban, M. Head-to-head comparison on the immunogenicity of two HIV/AIDS vaccine candidates based on the attenuated poxvirus strains MVA and NYVAC co-expressing in a single locus the HIV-1BX08 gp120 and HIV-1(IIIB) Gag-Pol-Nef proteins of clade B. Vaccine 2007, 25, 2863–2885. [Google Scholar] [CrossRef] [PubMed]
- Mooij, P.; Balla-Jhagjhoorsingh, S.S.; Beenhakker, N.; van Haaften, P.; Baak, I.; Nieuwenhuis, I.G.; Heidari, S.; Wolf, H.; Frachette, M.J.; Bieler, K.; et al. Comparison of human and rhesus macaque T-cell responses elicited by boosting with NYVAC encoding human immunodeficiency virus type 1 clade C immunogens. J. Virol. 2009, 83, 5881–5889. [Google Scholar] [CrossRef] [PubMed]
- Mooij, P.; Balla-Jhagjhoorsingh, S.S.; Koopman, G.; Beenhakker, N.; van Haaften, P.; Baak, I.; Nieuwenhuis, I.G.; Kondova, I.; Wagner, R.; Wolf, H.; et al. Differential CD4+ versus CD8+ T-cell responses elicited by different poxvirus-based human immunodeficiency virus type 1 vaccine candidates provide comparable efficacies in primates. J. Virol. 2008, 82, 2975–2988. [Google Scholar] [CrossRef] [PubMed]
- Flynn, B.J.; Kastenmuller, K.; Wille-Reece, U.; Tomaras, G.D.; Alam, M.; Lindsay, R.W.; Salazar, A.M.; Perdiguero, B.; Gomez, C.E.; Wagner, R.; et al. Immunization with HIV Gag targeted to dendritic cells followed by recombinant New York vaccinia virus induces robust T-cell immunity in nonhuman primates. Proc. Natl. Acad. Sci. USA 2011, 108, 7131–7136. [Google Scholar] [CrossRef] [PubMed]
- Brockmeier, S.I.; Lager, K.M.; Mengeling, W.L. Successful pseudorabies vaccination in maternally immune piglets using recombinant vaccinia virus vaccines. Res. Vet. Sci. 1997, 62, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Brockmeier, S.L.; Lager, K.M.; Mengeling, W.L. Vaccination with recombinant vaccinia virus vaccines expressing glycoprotein genes of pseudorabies virus in the presence of maternal immunity. Vet. Microbiol. 1997, 58, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Gonin, P.; Oualikene, W.; Fournier, A.; Eloit, M. Comparison of the efficacy of replication-defective adenovirus and Nyvac poxvirus as vaccine vectors in mice. Vaccine 1996, 14, 1083–1087. [Google Scholar] [CrossRef] [PubMed]
- Brockmeier, S.L.; Lager, K.M.; Tartaglia, J.; Riviere, M.; Paoletti, E.; Mengeling, W.L. Vaccination of pigs against pseudorabies with highly attenuated vaccinia (NYVAC) recombinant viruses. Vet. Microbiol. 1993, 38, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Mengeling, W.L.; Brockmeier, S.L.; Lager, K.M. Evaluation of a recombinant vaccinia virus containing pseudorabies (PR) virus glycoprotein genes gp50, gII, and gIII as a PR vaccine for pigs. Arch. Virol. 1994, 134, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Brockmeier, S.L.; Mengeling, W.L. Comparison of the protective response induced by NYVAC vaccinia recombinants expressing either gp50 or gII and gp50 of pseudorabies virus. Can. J. Vet. Res. 1996, 60, 315–317. [Google Scholar] [PubMed]
- Hel, Z.; Tsai, W.P.; Thornton, A.; Nacsa, J.; Giuliani, L.; Tryniszewska, E.; Poudyal, M.; Venzon, D.; Wang, X.; Altman, J.; et al. Potentiation of simian immunodeficiency virus (SIV)-specific CD4(+) and CD8(+) T cell responses by a DNA-SIV and NYVAC-SIV prime/boost regimen. J. Immunol. 2001, 167, 7180–7191. [Google Scholar] [CrossRef] [PubMed]
- Benson, J.; Chougnet, C.; Robert-Guroff, M.; Montefiori, D.; Markham, P.; Shearer, G.; Gallo, R.C.; Cranage, M.; Paoletti, E.; Limbach, K.; et al. Recombinant vaccine-induced protection against the highly pathogenic simian immunodeficiency virus SIV(mac251): Dependence on route of challenge exposure. J. Virol. 1998, 72, 4170–4182. [Google Scholar] [PubMed]
- Stevceva, L.; Alvarez, X.; Lackner, A.A.; Tryniszewska, E.; Kelsall, B.; Nacsa, J.; Tartaglia, J.; Strober, W.; Franchini, G. Both mucosal and systemic routes of immunization with the live, attenuated NYVAC/simian immunodeficiency virus SIV(gpe) recombinant vaccine result in gag-specific CD8(+) T-cell responses in mucosal tissues of macaques. J. Virol. 2002, 76, 11659–11676. [Google Scholar] [CrossRef] [PubMed]
- Perdiguero, B.; Gomez, C.E.; Cepeda, V.; Sanchez-Sampedro, L.; Garcia-Arriaza, J.; Mejias-Perez, E.; Jimenez, V.; Sanchez, C.; Sorzano, C.O.; Oliveros, J.C.; et al. Virological and immunological characterization of novel NYVAC-based HIV/AIDS vaccine candidates expressing clade C trimeric soluble gp140(ZM96) and Gag(ZM96)-Pol-Nef(CN54) as VLPs. J. Virol. 2015, 89, 970–988. [Google Scholar] [CrossRef] [PubMed]
- Harari, A.; Bart, P.A.; Stohr, W.; Tapia, G.; Garcia, M.; Medjitna-Rais, E.; Burnet, S.; Cellerai, C.; Erlwein, O.; Barber, T.; et al. An HIV-1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses. J. Exp. Med. 2008, 205, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Bart, P.A.; Goodall, R.; Barber, T.; Harari, A.; Guimaraes-Walker, A.; Khonkarly, M.; Sheppard, N.C.; Bangala, Y.; Frachette, M.J.; Wagner, R.; et al. EV01: A phase I trial in healthy HIV negative volunteers to evaluate a clade C HIV vaccine, NYVAC-C undertaken by the EuroVacc Consortium. Vaccine 2008, 26, 3153–3161. [Google Scholar] [CrossRef] [PubMed]
- McCormack, S.; Stohr, W.; Barber, T.; Bart, P.A.; Harari, A.; Moog, C.; Ciuffreda, D.; Cellerai, C.; Cowen, M.; Gamboni, R.; et al. EV02: A Phase I trial to compare the safety and immunogenicity of HIV DNA-C prime-NYVAC-C boost to NYVAC-C alone. Vaccine 2008, 26, 3162–3174. [Google Scholar] [CrossRef] [PubMed]
- Levy, Y.; Ellefsen, K.; Stöehr, W.; Bart, P.A.; Lelièvere, J.D.; Launay, O.; Wolf, H.; Weber, J.; Chêne, G.; Pantaleo, G. Optimal priming of poxvirus vector (NYVAC)-based HIV vaccine regimens requires 3 DNA injection. Results of the randomized multicentre EV03/ANRS Vac20 Phase I/II Trial. Available online: http://www.immunologyresearch.ch/ial-vic-abstract-ev03-croi_2010.pdf (accessed on 26 February 2015).
- Perreau, M.; Welles, H.C.; Harari, A.; Hall, O.; Martin, R.; Maillard, M.; Dorta, G.; Bart, P.A.; Kremer, E.J.; Tartaglia, J.; et al. DNA/NYVAC vaccine regimen induces HIV-specific CD4 and CD8 T-cell responses in intestinal mucosa. J. Virol. 2011, 85, 9854–9862. [Google Scholar] [CrossRef] [PubMed]
- Harari, A.; Rozot, V.; Cavassini, M.; Bellutti Enders, F.; Vigano, S.; Tapia, G.; Castro, E.; Burnet, S.; Lange, J.; Moog, C.; et al. NYVAC immunization induces polyfunctional HIV-specific T-cell responses in chronically-infected, ART-treated HIV patients. Eur. J. Immunol. 2012, 42, 3038–3048. [Google Scholar] [CrossRef] [PubMed]
- Bart, P.A.; Huang, Y.; Karuna, S.T.; Chappuis, S.; Gaillard, J.; Kochar, N.; Shen, X.; Allen, M.A.; Ding, S.; Hural, J.; et al. HIV-specific humoral responses benefit from stronger prime in phase Ib clinical trial. J. Clin. Investig. 2014, 124, 4843–4856. [Google Scholar] [CrossRef] [PubMed]
- Kazanji, M.; Tartaglia, J.; Franchini, G.; de Thoisy, B.; Talarmin, A.; Contamin, H.; Gessain, A.; de The, G. Immunogenicity and protective efficacy of recombinant human T-cell leukemia/lymphoma virus type 1 NYVAC and naked DNA vaccine candidates in squirrel monkeys (Saimiri sciureus). J. Virol. 2001, 75, 5939–5948. [Google Scholar] [CrossRef] [PubMed]
- Franchini, G.; Benson, J.; Gallo, R.; Paoletti, E.; Tartaglia, J. Attenuated poxvirus vectors as carriers in vaccines against human T cell leukemia-lymphoma virus type I. AIDS Res. Hum. Retroviruses 1996, 12, 407–408. [Google Scholar] [CrossRef] [PubMed]
- Aidoo, M.; Lalvani, A.; Whittle, H.C.; Hill, A.V.; Robson, K.J. Recombinant vaccinia viruses for the characterization of Plasmodium falciparum-specific cytotoxic T lymphocytes: Recognition of processed antigen despite limited re-stimulation efficacy. Int. Immunol. 1997, 9, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Ockenhouse, C.F.; Sun, P.F.; Lanar, D.E.; Wellde, B.T.; Hall, B.T.; Kester, K.; Stoute, J.A.; Magill, A.; Krzych, U.; Farley, L.; et al. Phase I/IIa safety, immunogenicity, and efficacy trial of NYVAC-Pf7, a pox-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria. J. Infect. Dis. 1998, 177, 1664–1673. [Google Scholar] [CrossRef] [PubMed]
- Jentarra, G.M.; Heck, M.C.; Youn, J.W.; Kibler, K.; Langland, J.O.; Baskin, C.R.; Ananieva, O.; Chang, Y.; Jacobs, B.L. Vaccinia viruses with mutations in the E3L gene as potential replication-competent, attenuated vaccines: Scarification vaccination. Vaccine 2008, 26, 2860–2872. [Google Scholar] [CrossRef] [PubMed]
- Cottingham, M.G.; Andersen, R.F.; Spencer, A.J.; Saurya, S.; Furze, J.; Hill, A.V.; Gilbert, S.C. Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA). PLOS ONE 2008, 3, e1638. [Google Scholar] [CrossRef] [PubMed]
- Staib, C.; Kisling, S.; Erfle, V.; Sutter, G. Inactivation of the viral interleukin 1beta receptor improves CD8+ T-cell memory responses elicited upon immunization with modified vaccinia virus Ankara. J. Gen. Virol. 2005, 86, 1997–2006. [Google Scholar] [CrossRef] [PubMed]
- Zimmerling, S.; Waibler, Z.; Resch, T.; Sutter, G.; Schwantes, A. Interleukin-1beta receptor expressed by modified vaccinia virus Ankara interferes with interleukin-1beta activity produced in various virus-infected antigen-presenting cells. Virol. J. 2013, 10, e34. [Google Scholar] [CrossRef]
- Clark, R.H.; Kenyon, J.C.; Bartlett, N.W.; Tscharke, D.C.; Smith, G.L. Deletion of gene A41L enhances vaccinia virus immunogenicity and vaccine efficacy. J. Gen. Virol. 2006, 87, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Legrand, F.A.; Verardi, P.H.; Jones, L.A.; Chan, K.S.; Peng, Y.; Yilma, T.D. Induction of potent humoral and cell-mediated immune responses by attenuated vaccinia virus vectors with deleted serpin genes. J. Virol. 2004, 78, 2770–2779. [Google Scholar] [CrossRef] [PubMed]
- Falivene, J.; Del Medico Zajac, M.P.; Pascutti, M.F.; Rodriguez, A.M.; Maeto, C.; Perdiguero, B.; Gomez, C.E.; Esteban, M.; Calamante, G.; Gherardi, M.M. Improving the MVA vaccine potential by deleting the viral gene coding for the IL-18 binding protein. PLOS ONE 2012, 7, e32220. [Google Scholar] [CrossRef] [PubMed]
- Rehm, K.E.; Roper, R.L. Deletion of the A35 gene from Modified Vaccinia Virus Ankara increases immunogenicity and isotype switching. Vaccine 2011, 29, 3276–3283. [Google Scholar] [CrossRef] [PubMed]
- Sumner, R.P.; Ren, H.; Smith, G.L. Deletion of immunomodulator C6 from vaccinia virus strain Western Reserve enhances virus immunogenicity and vaccine efficacy. J. Gen. Virol. 2013, 94, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- Alcami, A.; Smith, G.L. Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. J. Virol. 1995, 69, 4633–4639. [Google Scholar] [PubMed]
- Alcami, A.; Smith, G.L. Cytokine receptors encoded by poxviruses: A lesson in cytokine biology. Immunol Today 1995, 16, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, B.J.; Benfield, C.T.; Ren, H.; Lee, V.H.; Frazer, G.L.; Strnadova, P.; Sumner, R.P.; Smith, G.L. Vaccinia virus protein N2 is a nuclear IRF3 inhibitor that promotes virulence. J. Gen. Virol. 2013, 94, 2070–2081. [Google Scholar] [CrossRef] [PubMed]
- Fahy, A.S.; Clark, R.H.; Glyde, E.F.; Smith, G.L. Vaccinia virus protein C16 acts intracellularly to modulate the host response and promote virulence. J. Gen. Virol. 2008, 89, 2377–2387. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.S.; Ilyinskii, P.; Philippon, V.; Gritz, L.; Yafal, A.G.; Zinnack, K.; Beaudry, K.R.; Manson, K.H.; Lifton, M.A.; Kuroda, M.J.; et al. Role of genes that modulate host immune responses in the immunogenicity and pathogenicity of vaccinia virus. J. Virol. 2005, 79, 6554–6559. [Google Scholar] [CrossRef] [PubMed]
- Dai, K.; Liu, Y.; Liu, M.; Xu, J.; Huang, W.; Huang, X.; Liu, L.; Wan, Y.; Hao, Y.; Shao, Y. Pathogenicity and immunogenicity of recombinant Tiantan Vaccinia Virus with deleted C12L and A53R genes. Vaccine 2008, 26, 5062–5071. [Google Scholar] [CrossRef] [PubMed]
- Dimier, J.; Ferrier-Rembert, A.; Pradeau-Aubreton, K.; Hebben, M.; Spehner, D.; Favier, A.L.; Gratier, D.; Garin, D.; Crance, J.M.; Drillien, R. Deletion of major nonessential genomic regions in the vaccinia virus Lister strain enhances attenuation without altering vaccine efficacy in mice. J. Virol. 2011, 85, 5016–5026. [Google Scholar] [CrossRef] [PubMed]
- Meisinger-Henschel, C.; Spath, M.; Lukassen, S.; Wolferstatter, M.; Kachelriess, H.; Baur, K.; Dirmeier, U.; Wagner, M.; Chaplin, P.; Suter, M.; et al. Introduction of the six major genomic deletions of modified vaccinia virus Ankara (MVA) into the parental vaccinia virus is not sufficient to reproduce an MVA-like phenotype in cell culture and in mice. J. Virol. 2010, 84, 9907–9919. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Arriaza, J.; Arnaez, P.; Gomez, C.E.; Sorzano, C.O.; Esteban, M. Improving Adaptive and Memory Immune Responses of an HIV/AIDS Vaccine Candidate MVA-B by Deletion of Vaccinia Virus Genes (C6L and K7R) Blocking Interferon Signaling Pathways. PLOS ONE 2013, 8, e66894. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Arriaza, J.; Najera, J.L.; Gomez, C.E.; Sorzano, C.O.; Esteban, M. Immunogenic profiling in mice of a HIV/AIDS vaccine candidate (MVA-B) expressing four HIV-1 antigens and potentiation by specific gene deletions. PLOS ONE 2010, 5, e12395. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Arriaza, J.; Najera, J.L.; Gomez, C.E.; Tewabe, N.; Sorzano, C.O.; Calandra, T.; Roger, T.; Esteban, M. A candidate HIV/AIDS vaccine (MVA-B) lacking vaccinia virus gene C6L enhances memory HIV-1-specific T-cell responses. PLOS ONE 2011, 6, e24244. [Google Scholar] [CrossRef] [PubMed]
- Gomez, C.E.; Perdiguero, B.; Najera, J.L.; Sorzano, C.O.; Jimenez, V.; Gonzalez-Sanz, R.; Esteban, M. Removal of vaccinia virus genes that block interferon type I and II pathways improves adaptive and memory responses of the HIV/AIDS vaccine candidate NYVAC-C in mice. J. Virol. 2012, 86, 5026–5038. [Google Scholar] [CrossRef] [PubMed]
- Perdiguero, B.; Gomez, C.E.; Di Pilato, M.; Sorzano, C.O.; Delaloye, J.; Roger, T.; Calandra, T.; Pantaleo, G.; Esteban, M. Deletion of the vaccinia virus gene A46R, encoding for an inhibitor of TLR signalling, is an effective approach to enhance the immunogenicity in mice of the HIV/AIDS vaccine candidate NYVAC-C. PLOS ONE 2013, 8, e74831. [Google Scholar] [CrossRef] [PubMed]
- Perdiguero, B.; Gomez, C.E.; Najera, J.L.; Sorzano, C.O.; Delaloye, J.; Gonzalez-Sanz, R.; Jimenez, V.; Roger, T.; Calandra, T.; Pantaleo, G.; Esteban, M. Deletion of the viral anti-apoptotic gene F1L in the HIV/AIDS vaccine candidate MVA-C enhances immune responses against HIV-1 antigens. PLOS ONE 2012, 7, e48524. [Google Scholar] [CrossRef] [PubMed]
- Garber, D.A.; O’Mara, L.A.; Gangadhara, S.; McQuoid, M.; Zhang, X.; Zheng, R.; Gill, K.; Verma, M.; Yu, T.; Johnson, B.; et al. Deletion of specific immune-modulatory genes from modified vaccinia virus Ankara-based HIV vaccines engenders improved immunogenicity in rhesus macaques. J. Virol. 2012, 86, 12605–12615. [Google Scholar] [CrossRef] [PubMed]
- Garber, D.A.; O’Mara, L.A.; Zhao, J.; Gangadhara, S.; An, I.; Feinberg, M.B. Expanding the repertoire of Modified Vaccinia Ankara-based vaccine vectors via genetic complementation strategies. PLOS ONE 2009, 4, e5445. [Google Scholar] [CrossRef] [PubMed]
- Delaloye, J.; Filali-Mouhim, A.; Cameron, M.J.; Haddad, E.K.; Harari, A.; Goulet, J.P.; Gomez, C.E.; Perdiguero, B.; Esteban, M.; Pantaleo, G.; et al. Interleukin 1- and type I interferon-dependent enhancement of the innate immune profile of a NYVAC-HIV-1 Env-Gag-Pol-Nef vaccine vector with dual deletion of type I and type II interferon-binding proteins. J. Virol. 2015, 89, 3819–3832. [Google Scholar] [CrossRef] [PubMed]
- Gomez, C.E.; Perdiguero, B.; Jimenez, V.; Filali-Mouhim, A.; Ghneim, K.; Haddad, E.K.; Quakkelaar, E.D.; Delaloye, J.; Harari, A.; Roger, T.; et al. Systems analysis of MVA-C induced immune response reveals its significance as a vaccine candidate against HIV/AIDS of clade C. PLOS ONE 2012, 7, e35485. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Arriaza, J.; Gomez, C.E.; Sorzano, C.O.; Esteban, M. Deletion of the vaccinia virus N2L gene encoding an inhibitor of IRF3 improves the immunogenicity of modified vaccinia virus Ankara expressing HIV-1 antigens. J. Virol. 2014, 88, 3392–3410. [Google Scholar] [CrossRef] [PubMed]
- Denzler, K.L.; Babas, T.; Rippeon, A.; Huynh, T.; Fukushima, N.; Rhodes, L.; Silvera, P.M.; Jacobs, B.L. Attenuated NYCBH vaccinia virus deleted for the E3L gene confers partial protection against lethal monkeypox virus disease in cynomolgus macaques. Vaccine 2011, 29, 9684–9690. [Google Scholar] [CrossRef] [PubMed]
- Denzler, K.L.; Rice, A.D.; MacNeill, A.L.; Fukushima, N.; Lindsey, S.F.; Wallace, G.; Burrage, A.M.; Smith, A.J.; Manning, B.R.; Swetnam, D.M.; et al. The NYCBH vaccinia virus deleted for the innate immune evasion gene, E3L, protects rabbits against lethal challenge by rabbitpox virus. Vaccine 2011, 29, 7659–7669. [Google Scholar] [CrossRef] [PubMed]
- Denzler, K.L.; Schriewer, J.; Parker, S.; Werner, C.; Hartzler, H.; Hembrador, E.; Huynh, T.; Holechek, S.; Buller, R.M.; Jacobs, B.L. The attenuated NYCBH vaccinia virus deleted for the immune evasion gene, E3L, completely protects mice against heterologous challenge with ectromelia virus. Vaccine 2011, 29, 9691–9696. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, S.; Liu, W.; Qiu, X.; Dong, L.; Peng, D.; Liu, X. Induction of potent immune responses by recombinant fowlpox virus with deleted ORF73 or ORF214. Wei Sheng Wu Xue Bao 2010, 50, 512–516. [Google Scholar] [PubMed]
- Kibler, K.V.; Gomez, C.E.; Perdiguero, B.; Wong, S.; Huynh, T.; Holechek, S.; Arndt, W.; Jimenez, V.; Gonzalez-Sanz, R.; Denzler, K.; et al. Improved NYVAC-based vaccine vectors. PLOS ONE 2011, 6, e25674. [Google Scholar] [CrossRef] [PubMed]
- Quakkelaar, E.D.; Redeker, A.; Haddad, E.K.; Harari, A.; McCaughey, S.M.; Duhen, T.; Filali-Mouhim, A.; Goulet, J.P.; Loof, N.M.; Ossendorp, F.; et al. Improved innate and adaptive immunostimulation by genetically modified HIV-1 protein expressing NYVAC vectors. PLOS ONE 2011, 6, e16819. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.J.; Ramsay, A.J.; Christensen, C.D.; Beaton, S.; Hall, D.F.; Ramshaw, I.A. Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. J. Virol. 2001, 75, 1205–1210. [Google Scholar] [CrossRef] [PubMed]
- Kerr, P.J.; Perkins, H.D.; Inglis, B.; Stagg, R.; McLaughlin, E.; Collins, S.V.; Van Leeuwen, B.H. Expression of rabbit IL-4 by recombinant myxoma viruses enhances virulence and overcomes genetic resistance to myxomatosis. Virology 2004, 324, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Stanford, M.M.; McFadden, G. The “supervirus”? Lessons from IL-4-expressing poxviruses. Trends Immunol. 2005, 26, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Najera, J.L.; Gomez, C.E.; Garcia-Arriaza, J.; Sorzano, C.O.; Esteban, M. Insertion of vaccinia virus C7L host range gene into NYVAC-B genome potentiates immune responses against HIV-1 antigens. PLOS ONE 2010, 5, e11406. [Google Scholar] [CrossRef] [PubMed]
- Kovarik, J.; Gaillard, M.; Martinez, X.; Bozzotti, P.; Lambert, P.H.; Wild, T.F.; Siegrist, C.A. Induction of adult-like antibody, Th1, and CTL responses to measles hemagglutinin by early life murine immunization with an attenuated vaccinia-derived NYVAC(K1L) viral vector. Virology 2001, 285, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Goepfert, P.A.; Horton, H.; McElrath, M.J.; Gurunathan, S.; Ferrari, G.; Tomaras, G.D.; Montefiori, D.C.; Allen, M.; Chiu, Y.L.; Spearman, P.; et al. High-dose recombinant Canarypox vaccine expressing HIV-1 protein, in seronegative human subjects. J. Infect. Dis. 2005, 192, 1249–1259. [Google Scholar] [CrossRef] [PubMed]
- Cleghorn, F.; Pape, J.W.; Schechter, M.; Bartholomew, C.; Sanchez, J.; Jack, N.; Metch, B.J.; Hansen, M.; Allen, M.; Cao, H.; et al. Lessons from a multisite international trial in the Caribbean and South America of an HIV-1 Canarypox vaccine (ALVAC-HIV vCP1452) with or without boosting with MN rgp120. J. Acquir. Immune Defic. Syndr. 2007, 46, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Russell, N.D.; Graham, B.S.; Keefer, M.C.; McElrath, M.J.; Self, S.G.; Weinhold, K.J.; Montefiori, D.C.; Ferrari, G.; Horton, H.; Tomaras, G.D.; et al. Phase 2 study of an HIV-1 canarypox vaccine (vCP1452) alone and in combination with rgp120: Negative results fail to trigger a phase 3 correlates trial. J. Acquir. Immune Defic. Syndr. 2007, 44, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yu, Q.; Stone, G.W.; Yue, F.Y.; Ngai, N.; Jones, R.B.; Kornbluth, R.S.; Ostrowski, M.A. CD40L expressed from the canarypox vector, ALVAC, can boost immunogenicity of HIV-1 canarypox vaccine in mice and enhance the in vitro expansion of viral specific CD8+ T cell memory responses from HIV-1-infected and HIV-1-uninfected individuals. Vaccine 2008, 26, 4062–4072. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, R.T.; O’Neill, D.; Bosch, R.J.; Chan, E.S.; Bucy, R.P.; Shopis, J.; Baglyos, L.; Adams, E.; Fox, L.; Purdue, L.; et al. A randomized therapeutic vaccine trial of canarypox-HIV-pulsed dendritic cells vs. canarypox-HIV alone in HIV-1-infected patients on antiretroviral therapy. Vaccine 2009, 27, 6088–6094. [Google Scholar] [CrossRef] [PubMed]
- Angel, J.B.; Routy, J.P.; Tremblay, C.; Ayers, D.; Woods, R.; Singer, J.; Bernard, N.; Kovacs, C.; Smaill, F.; Gurunathan, S.; et al. A randomized controlled trial of HIV therapeutic vaccination using ALVAC with or without Remune. AIDS 2011, 25, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Frey, S.E.; Peiperl, L.; McElrath, M.J.; Kalams, S.; Goepfert, P.A.; Keefer, M.C.; Baden, L.R.; Lally, M.A.; Mayer, K.; Blattner, W.A.; et al. Phase I/II randomized trial of safety and immunogenicity of LIPO-5 alone, ALVAC-HIV (vCP1452) alone, and ALVAC-HIV (vCP1452) prime/LIPO-5 boost in healthy, HIV-1-uninfected adult participants. Clin. Vaccine Immunol. 2014, 21, 1589–1599. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Ramanathan, M., Jr.; Barsoum, S.; Deschenes, G.R.; Ba, L.; Binley, J.; Schiller, D.; Bauer, D.E.; Chen, D.C.; Hurley, A.; et al. Safety and immunogenicity of ALVAC vCP1452 and recombinant gp160 in newly human immunodeficiency virus type 1-infected patients treated with prolonged highly active antiretroviral therapy. J. Virol. 2002, 76, 2206–2216. [Google Scholar] [CrossRef] [PubMed]
- Lanar, D.E.; Tine, J.A.; de Taisne, C.; Seguin, M.C.; Cox, W.I.; Winslow, J.P.; Ware, L.A.; Kauffman, E.B.; Gordon, D.; Ballou, W.R.; et al. Attenuated vaccinia virus-circumsporozoite protein recombinants confer protection against rodent malaria. Infect. Immun. 1996, 64, 1666–1671. [Google Scholar] [PubMed]
- Wyatt, L.S.; Earl, P.L.; Vogt, J.; Eller, L.A.; Chandran, D.; Liu, J.; Robinson, H.L.; Moss, B. Correlation of immunogenicities and in vitro expression levels of recombinant modified vaccinia virus Ankara HIV vaccines. Vaccine 2008, 26, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Cochran, M.A.; Puckett, C.; Moss, B. In vitro mutagenesis of the promoter region for a vaccinia virus gene: Evidence for tandem early and late regulatory signals. J. Virol. 1985, 54, 30–37. [Google Scholar] [PubMed]
- Earl, P.L.; Hugin, A.W.; Moss, B. Removal of cryptic poxvirus transcription termination signals from the human immunodeficiency virus type 1 envelope gene enhances expression and immunogenicity of a recombinant vaccinia virus. J. Virol. 1990, 64, 2448–2451. [Google Scholar] [PubMed]
- Fuerst, T.R.; Earl, P.L.; Moss, B. Use of a hybrid vaccinia virus-T7 RNA polymerase system for expression of target genes. Mol. Cell. Biol. 1987, 7, 2538–2544. [Google Scholar] [PubMed]
- Chakrabarti, S.; Sisler, J.R.; Moss, B. Compact, synthetic, vaccinia virus early/late promoter for protein expression. BioTechniques 1997, 23, 1094–1097. [Google Scholar] [PubMed]
- Moutaftsi, M.; Salek-Ardakani, S.; Croft, M.; Peters, B.; Sidney, J.; Grey, H.; Sette, A. Correlates of protection efficacy induced by vaccinia virus-specific CD8+ T-cell epitopes in the murine intranasal challenge model. Eur. J. Immunol. 2009, 39, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Sette, A.; Grey, H.; Oseroff, C.; Peters, B.; Moutaftsi, M.; Crotty, S.; Assarsson, E.; Greenbaum, J.; Kim, Y.; Kolla, R.; et al. Definition of epitopes and antigens recognized by vaccinia specific immune responses: Their conservation in variola virus sequences, and use as a model system to study complex pathogens. Vaccine 2009, 27, G21–G26. [Google Scholar] [CrossRef] [PubMed]
- Kastenmuller, W.; Gasteiger, G.; Gronau, J.H.; Baier, R.; Ljapoci, R.; Busch, D.H.; Drexler, I. Cross-competition of CD8+ T cells shapes the immunodominance hierarchy during boost vaccination. J. Exp. Med. 2007, 204, 2187–2198. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.B.; Corda, L.; Perry, G.M.; Pilato, D.; Giuberti, M.; Vullo, C. Deficiency of two red-cell flavin enzymes in a population in Sardinia: Was glutathione reductase deficiency specifically selected for by malaria? Am. J. Hum. Genet. 1995, 57, 674–681. [Google Scholar] [PubMed]
- Yang, Z.; Bruno, D.P.; Martens, C.A.; Porcella, S.F.; Moss, B. Simultaneous high-resolution analysis of vaccinia virus and host cell transcriptomes by deep RNA sequencing. Proc. Natl. Acad. Sci. USA 2010, 107, 11513–11518. [Google Scholar] [CrossRef] [PubMed]
- Orubu, T.; Alharbi, N.K.; Lambe, T.; Gilbert, S.C.; Cottingham, M.G. Expression and cellular immunogenicity of a transgenic antigen driven by endogenous poxviral early promoters at their authentic loci in MVA. PLOS ONE 2012, 7, e40167. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Jing, C.; Isshiki, M.; Matsuo, K.; Kidokoro, M.; Takamura, S.; Zhang, X.; Ohashi, T.; Shida, H. Immunogenicity and safety of the vaccinia virus LC16m8Delta vector expressing SIV Gag under a strong or moderate promoter in a recombinant BCG prime-recombinant vaccinia virus boost protocol. Vaccine 2013, 31, 3549–3557. [Google Scholar] [CrossRef] [PubMed]
- Isshiki, M.; Zhang, X.; Sato, H.; Ohashi, T.; Inoue, M.; Shida, H. Effects of different promoters on the virulence and immunogenicity of a HIV-1 Env-expressing recombinant vaccinia vaccine. Vaccine 2014, 32, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Baur, K.; Brinkmann, K.; Schweneker, M.; Patzold, J.; Meisinger-Henschel, C.; Hermann, J.; Steigerwald, R.; Chaplin, P.; Suter, M.; Hausmann, J. Immediate-early expression of a recombinant antigen by modified vaccinia virus ankara breaks the immunodominance of strong vector-specific B8R antigen in acute and memory CD8 T-cell responses. J. Virol. 2010, 84, 8743–8752. [Google Scholar] [CrossRef] [PubMed]
- Wennier, S.T.; Brinkmann, K.; Steinhausser, C.; Maylander, N.; Mnich, C.; Wielert, U.; Dirmeier, U.; Hausmann, J.; Chaplin, P.; Steigerwald, R. A novel naturally occurring tandem promoter in modified vaccinia virus ankara drives very early gene expression and potent immune responses. PLOS ONE 2013, 8, e73511. [Google Scholar] [CrossRef] [PubMed]
- Di Pilato, M.; Mejias-Perez, E.; Gomez, C.E.; Perdiguero, B.; Sorzano, C.O.; Esteban, M. New vaccinia virus promoter as a potential candidate for future vaccines. J. Gen. Virol. 2013, 94, 2771–2776. [Google Scholar] [CrossRef] [PubMed]
- Kirn, D.H.; Thorne, S.H. Targeted and armed oncolytic poxviruses: A novel multi-mechanistic therapeutic class for cancer. Nat. Rev. Cancer 2009, 9, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, H.L. The role of poxviruses in tumor immunotherapy. Surgery 2003, 134, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Schlom, J. Therapeutic cancer vaccines: Current status and moving forward. J. Natl. Cancer Inst. 2012, 104, 599–613. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, Y.; Hirai, Y.; Ishiwara, K.; Ikegami, I. Viral Treatment of Skin Cancers. Aust. J. Dermatol. 1963, 7, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Acres, R.B.; Hareuveni, M.; Balloul, J.M.; Kieny, M.P. Vaccinia virus MUC1 immunization of mice: Immune response and protection against the growth of murine tumors bearing the MUC1 antigen. J. Immunother. Emphas. Tumor Immunol. 1993, 14, 136–143. [Google Scholar] [CrossRef]
- Mulryan, K.; Ryan, M.G.; Myers, K.A.; Shaw, D.; Wang, W.; Kingsman, S.M.; Stern, P.L.; Carroll, M.W. Attenuated recombinant vaccinia virus expressing oncofetal antigen (tumor-associated antigen) 5T4 induces active therapy of established tumors. Mol. Cancer Ther. 2002, 1, 1129–1137. [Google Scholar] [PubMed]
- Hodge, J.W.; Schlom, J.; Donohue, S.J.; Tomaszewski, J.E.; Wheeler, C.W.; Levine, B.S.; Gritz, L.; Panicali, D.; Kantor, J.A. A recombinant vaccinia virus expressing human prostate-specific antigen (PSA): Safety and immunogenicity in a non-human primate. Int. J. Cancer J. Int. Cancer 1995, 63, 231–237. [Google Scholar] [CrossRef]
- Choi, Y.; Chang, J. Viral vectors for vaccine applications. Clin. Exp. Vaccine Res. 2013, 2, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Zajac, P.; Schutz, A.; Oertli, D.; Noppen, C.; Schaefer, C.; Heberer, M.; Spagnoli, G.C.; Marti, W.R. Enhanced generation of cytotoxic T lymphocytes using recombinant vaccinia virus expressing human tumor-associated antigens and B7 costimulatory molecules. Cancer Res. 1998, 58, 4567–4571. [Google Scholar] [PubMed]
- Adamina, M.; Rosenthal, R.; Weber, W.P.; Frey, D.M.; Viehl, C.T.; Bolli, M.; Huegli, R.W.; Jacob, A.L.; Heberer, M.; Oertli, D.; et al. Intranodal immunization with a vaccinia virus encoding multiple antigenic epitopes and costimulatory molecules in metastatic melanoma. Mol. Ther. 2010, 18, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Ramlau, R.; Quoix, E.; Rolski, J.; Pless, M.; Lena, H.; Levy, E.; Krzakowski, M.; Hess, D.; Tartour, E.; Chenard, M.P.; et al. A phase II study of Tg4010 (Mva-Muc1-Il2) in association with chemotherapy in patients with stage III/IV Non-small cell lung cancer. J. Thorac. oncol. 2008, 3, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.C.; Lynn, R.C.; Cheng, G.; Alexander, E.; Kapoor, V.; Moon, E.K.; Sun, J.; Fridlender, Z.G.; Isaacs, S.N.; Thorne, S.H.; et al. Treating tumors with a vaccinia virus expressing IFNbeta illustrates the complex relationships between oncolytic ability and immunogenicity. Mol. Ther. 2012, 20, 736–748. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, M.J.; Maguire, H.C., Jr.; Eisenlohr, L.C.; Laughlin, C.E.; Monken, C.E.; McCue, P.A.; Kovatich, A.J.; Lattime, E.C. Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther. 1999, 6, 409–422. [Google Scholar] [CrossRef] [PubMed]
- Chalikonda, S.; Kivlen, M.H.; O’Malley, M.E.; Eric Dong, X.D.; McCart, J.A.; Gorry, M.C.; Yin, X.Y.; Brown, C.K.; Zeh, H.J., 3rd; Guo, Z.S.; et al. Oncolytic virotherapy for ovarian carcinomatosis using a replication-selective vaccinia virus armed with a yeast cytosine deaminase gene. Cancer Gene Ther. 2008, 15, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Puhlmann, M.; Gnant, M.; Brown, C.K.; Alexander, H.R.; Bartlett, D.L. Thymidine kinase-deleted vaccinia virus expressing purine nucleoside phosphorylase as a vector for tumor-directed gene therapy. Hum. Gene Ther. 1999, 10, 649–657. [Google Scholar] [CrossRef]
- Jun, K.H.; Gholami, S.; Song, T.J.; Au, J.; Haddad, D.; Carson, J.; Chen, C.H.; Mojica, K.; Zanzonico, P.; Chen, N.G.; et al. A novel oncolytic viral therapy and imaging technique for gastric cancer using a genetically engineered vaccinia virus carrying the human sodium iodide symporter. J. Exp. Clin. Cancer Res. 2014, 33, e2. [Google Scholar] [CrossRef]
- Masuelli, L.; Marzocchella, L.; Focaccetti, C.; Lista, F.; Nardi, A.; Scardino, A.; Mattei, M.; Turriziani, M.; Modesti, M.; Forni, G.; et al. Local delivery of recombinant vaccinia virus encoding for neu counteracts growth of mammary tumors more efficiently than systemic delivery in neu transgenic mice. Cancer Immunol. Immunother. 2010, 59, 1247–1258. [Google Scholar] [CrossRef] [PubMed]
- Masuelli, L.; Fantini, M.; Benvenuto, M.; Sacchetti, P.; Giganti, M.G.; Tresoldi, I.; Lido, P.; Lista, F.; Cavallo, F.; Nanni, P.; et al. Intratumoral delivery of recombinant vaccinia virus encoding for ErbB2/Neu inhibits the growth of salivary gland carcinoma cells. J. Transl. Med. 2014, 12, e122. [Google Scholar] [CrossRef]
- Amato, R.J.; Drury, N.; Naylor, S.; Jac, J.; Saxena, S.; Cao, A.; Hernandez-McClain, J.; Harrop, R. Vaccination of prostate cancer patients with modified vaccinia ankara delivering the tumor antigen 5T4 (TroVax): A phase 2 trial. J. Immunother. 2008, 31, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Amato, R.J.; Hawkins, R.E.; Kaufman, H.L.; Thompson, J.A.; Tomczak, P.; Szczylik, C.; McDonald, M.; Eastty, S.; Shingler, W.H.; de Belin, J.; et al. Vaccination of metastatic renal cancer patients with MVA-5T4: A randomized, double-blind, placebo-controlled phase III study. Clin. Cancer Res. 2010, 16, 5539–5547. [Google Scholar] [CrossRef] [PubMed]
- Amato, R.J.; Stepankiw, M. Evaluation of MVA-5T4 as a novel immunotherapeutic vaccine in colorectal, renal and prostate cancer. Future Oncol. 2012, 8, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Ishizaki, H.; Song, G.Y.; Srivastava, T.; Carroll, K.D.; Shahabi, V.; Manuel, E.R.; Diamond, D.J.; Ellenhorn, J.D. Heterologous prime/boost immunization with p53-based vaccines combined with toll-like receptor stimulation enhances tumor regression. J. Immunother. 2010, 33, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Krupa, M.; Canamero, M.; Gomez, C.E.; Najera, J.L.; Gil, J.; Esteban, M. Immunization with recombinant DNA and modified vaccinia virus Ankara (MVA) vectors delivering PSCA and STEAP1 antigens inhibits prostate cancer progression. Vaccine 2011, 29, 1504–1513. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.; Judor, J.P.; Gauttier, V.; Geist, M.; Hoffman, C.; Rooke, R.; Vassaux, G.; Conchon, S. The immunogenicity of the tumor-associated antigen alpha-fetoprotein is enhanced by a fusion with a transmembrane domain. J. Biomed. Biotechnol. 2012, 2012, e878657. [Google Scholar] [CrossRef]
- Ishizaki, H.; Manuel, E.R.; Song, G.Y.; Srivastava, T.; Sun, S.; Diamond, D.J.; Ellenhorn, J.D. Modified vaccinia Ankara expressing survivin combined with gemcitabine generates specific antitumor effects in a murine pancreatic carcinoma model. Cancer Immunol. Immunother. 2011, 60, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Remy-Ziller, C.; Germain, C.; Spindler, A.; Hoffmann, C.; Silvestre, N.; Rooke, R.; Bonnefoy, J.Y.; Preville, X. Immunological characterization of a modified vaccinia virus Ankara vector expressing the human papillomavirus 16 E1 protein. Clin. Vaccine Immunol. 2014, 21, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Taylor, G.S.; Haigh, T.A.; Gudgeon, N.H.; Phelps, R.J.; Lee, S.P.; Steven, N.M.; Rickinson, A.B. Dual stimulation of Epstein-Barr Virus (EBV)-specific CD4+- and CD8+-T-cell responses by a chimeric antigen construct: Potential therapeutic vaccine for EBV-positive nasopharyngeal carcinoma. J. Virol. 2004, 78, 768–778. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Chatterjee, S.K. Cancer gene therapy using tumor cells infected with recombinant vaccinia virus expressing GM-CSF. Hum. Gene Ther. 1996, 7, 1853–1860. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.; Bhattacharya-Chatterjee, M.; O’Malley, B.W., Jr.; Chatterjee, S.K. Recombinant vaccinia virus expressing interleukin-2 invokes anti-tumor cellular immunity in an orthotopic murine model of head and neck squamous cell carcinoma. Mol. Ther. 2006, 13, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Nemeckova, S.; Smahel, M.; Hainz, P.; Mackova, J.; Zurkova, K.; Gabriel, P.; Indrova, M.; Kutinova, L. Combination of intratumoral injections of vaccinia virus MVA expressing GM-CSF and immunization with DNA vaccine prolongs the survival of mice bearing HPV16 induced tumors with downregulated expression of MHC class I molecules. Neoplasma 2007, 54, 326–333. [Google Scholar] [PubMed]
- McLaughlin, J.P.; Abrams, S.; Kantor, J.; Dobrzanski, M.J.; Greenbaum, J.; Schlom, J.; Greiner, J.W. Immunization with a syngeneic tumor infected with recombinant vaccinia virus expressing granulocyte-macrophage colony-stimulating factor (GM-CSF) induces tumor regression and long-lasting systemic immunity. J. Immunother. 1997, 20, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.X.; Chatterjee, S.K. Construction of recombinant vaccinia virus expressing GM-CSF and its use as tumor vaccine. Gene Ther. 1996, 3, 59–66. [Google Scholar] [PubMed]
- Dreicer, R.; Stadler, W.M.; Ahmann, F.R.; Whiteside, T.; Bizouarne, N.; Acres, B.; Limacher, J.M.; Squiban, P.; Pantuck, A. MVA-MUC1-IL2 vaccine immunotherapy (TG4010) improves PSA doubling time in patients with prostate cancer with biochemical failure. Investig. New Drugs 2009, 27, 379–386. [Google Scholar] [CrossRef]
- Mandl, S.J.; Rountree, R.B.; Dalpozzo, K.; Do, L.; Lombardo, J.R.; Schoonmaker, P.L.; Dirmeier, U.; Steigerwald, R.; Giffon, T.; Laus, R.; et al. > Immunotherapy with MVA-BN(R)-HER2 induces HER-2-specific Th1 immunity and alters the intratumoral balance of effector and regulatory T cells. Cancer Immunol. Immunother. 2012, 61, 19–29. [Google Scholar] [CrossRef] [PubMed]
- McCart, J.A.; Ward, J.M.; Lee, J.; Hu, Y.; Alexander, H.R.; Libutti, S.K.; Moss, B.; Bartlett, D.L. Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes. Cancer Res. 2001, 61, 8751–8757. [Google Scholar] [PubMed]
- Liu, Y.P.; Wang, J.; Avanzato, V.A.; Bakkum-Gamez, J.N.; Russell, S.J.; Bell, J.C.; Peng, K.W. Oncolytic vaccinia virotherapy for endometrial cancer. Gynecol. Oncol. 2014, 132, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Gnant, M.F.; Puhlmann, M.; Bartlett, D.L.; Alexander, H.R., Jr. Regional versus systemic delivery of recombinant vaccinia virus as suicide gene therapy for murine liver metastases. Ann. Surg. 1999, 230, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Foloppe, J.; Kintz, J.; Futin, N.; Findeli, A.; Cordier, P.; Schlesinger, Y.; Hoffmann, C.; Tosch, C.; Balloul, J.M.; Erbs, P. Targeted delivery of a suicide gene to human colorectal tumors by a conditionally replicating vaccinia virus. Gene Ther. 2008, 15, 1361–1371. [Google Scholar] [CrossRef] [PubMed]
- Erbs, P.; Findeli, A.; Kintz, J.; Cordier, P.; Hoffmann, C.; Geist, M.; Balloul, J.M. Modified vaccinia virus Ankara as a vector for suicide gene therapy. Cancer Gene Ther. 2008, 15, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Worschech, A.; Haddad, D.; Stroncek, D.F.; Wang, E.; Marincola, F.M.; Szalay, A.A. The immunologic aspects of poxvirus oncolytic therapy. Cancer Immunol. Immunother. 2009, 58, 1355–1362. [Google Scholar] [CrossRef] [PubMed]
- Gentschev, I.; Patil, S.S.; Adelfinger, M.; Weibel, S.; Geissinger, U.; Frentzen, A.; Chen, N.G.; Yu, Y.A.; Zhang, Q.; Ogilvie, G.; et al. Characterization and evaluation of a new oncolytic vaccinia virus strain LIVP6.1.1 for canine cancer therapy. Bioengineered 2013, 4, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Gholami, S.; Chen, C.H.; Lou, E.; Belin, L.J.; Fujisawa, S.; Longo, V.A.; Chen, N.G.; Gonen, M.; Zanzonico, P.B.; Szalay, A.A.; et al. Vaccinia virus GLV-1h153 in combination with 131I shows increased efficiency in treating triple-negative breast cancer. FASEB J. 2014, 28, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Chen, H.; Rojas, J.; Sampath, P.; Thorne, S.H. Oncolytic vaccinia virus demonstrates antiangiogenic effects mediated by targeting of VEGF. Int. J. Cancer 2014, 135, 1238–1246. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Wang, X.; Guo, Z.S.; Bartlett, D.L.; Gottschalk, S.M.; Song, X.T. T-cell engager-armed oncolytic vaccinia virus significantly enhances antitumor therapy. Mol. Ther. 2014, 22, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Oh, J.Y.; Park, B.H.; Lee, D.E.; Kim, J.S.; Park, H.E.; Roh, M.S.; Je, J.E.; Yoon, J.H.; Thorne, S.H.; et al. Systemic armed oncolytic and immunologic therapy for cancer with JX-594, a targeted poxvirus expressing GM-CSF. Mol. Ther. 2006, 14, 361–370. [Google Scholar] [CrossRef] [