Next Article in Journal
A Comprehensive Superposition of Viral Polymerase Structures
Next Article in Special Issue
Proteomics Computational Analyses Suggest that the Antennavirus Glycoprotein Complex Includes a Class I Viral Fusion Protein (α-Penetrene) with an Internal Zinc-Binding Domain and a Stable Signal Peptide
Previous Article in Journal
Inhibitory Effects of Antiviral Drug Candidates on Canine Parvovirus in F81 cells
Previous Article in Special Issue
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Dromedary Camels in Africa and Middle East
Open AccessArticle

Isolation and Full-Length Sequence Analysis of a Pestivirus from Aborted Lamb Fetuses in Italy

1
Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy
2
Veterinary practitioner, Via Luigi Einaudi 35, 24049 Verdello (BG), Italy
*
Author to whom correspondence should be addressed.
Viruses 2019, 11(8), 744; https://doi.org/10.3390/v11080744
Received: 24 July 2019 / Revised: 8 August 2019 / Accepted: 10 August 2019 / Published: 13 August 2019
(This article belongs to the Special Issue Emerging Viruses: Surveillance, Prevention, Evolution and Control)
  |  
PDF [1667 KB, uploaded 13 August 2019]
  |     |  

Abstract

Pestiviruses are distributed worldwide and are responsible for a variety of economically important diseases. They are not very host-specific, and thus sheep can be infected by well-known pestiviruses like bovine viral diarrhea virus (BVDV) and border disease virus (BDV), as well as by other recently discovered pestivirus species. The aim of this study is to describe the isolation and characterization of four pestivirus strains detected in aborted lamb fetuses from a single farm in the Brescia province (Northern Italy). A total of twelve aborted fetuses were collected and examined. After necropsy, organs were tested for the presence of infectious agents known as potential causes of abortion (Brucella spp., Listeria spp., Coxiella burnetii, Chlamydophila spp., Mycoplasma spp., Neospora caninum, and Toxoplasma gondii), and submitted to viral identification by isolation on Madin Darby bovine kidney (MDBK) cell culture and by PCR assay for Schmallenberg virus and pan-pestivirus RT-PCR real time assay. Three viral strains (Ovine/IT/1756/2017, Ovine/IT/338710-2/2017, and Ovine/IT/338710-3/2017) were isolated in the absence of cytopathic effects (CPEs) in cell cultures and identified with RT-PCR. Another pestivirus strain (Ovine/IT/16235-2/2018) was detected by PCR, but was not successfully isolated. Complete sequence genomic data of the three isolated viruses showed that they were highly similar, differed genetically from known pestivirus species, and were closely related to classical swine fever virus (CSFV). Beyond the identification of new ovine pestiviruses, this study indicates that a systematic diagnostic approach is important to identify the presence and map the distribution of both known and emerging pestiviruses. View Full-Text
Keywords: pestivirus; phylogenetic analysis; sheep; Italy; aborted fetus pestivirus; phylogenetic analysis; sheep; Italy; aborted fetus
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Sozzi, E.; Lavazza, A.; Gaffuri, A.; Bencetti, F.C.; Prosperi, A.; Lelli, D.; Chiapponi, C.; Moreno, A. Isolation and Full-Length Sequence Analysis of a Pestivirus from Aborted Lamb Fetuses in Italy. Viruses 2019, 11, 744.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Viruses EISSN 1999-4915 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top