Next Article in Journal
BK Virus Replication in the Glomerular Vascular Unit: Implications for BK Virus Associated Nephropathy
Next Article in Special Issue
Marine Morbilliviruses: Diversity and Interaction with Signaling Lymphocyte Activation Molecules
Previous Article in Journal
Genetic Variability of Chrysodeixis Includens Nucleopolyhedrovirus (ChinNPV) and the Insecticidal Characteristics of Selected Genotypic Variants
Previous Article in Special Issue
A New Genotype of Feline Morbillivirus Infects Primary Cells of the Lung, Kidney, Brain and Peripheral Blood
Open AccessReview

Evolution and Interspecies Transmission of Canine Distemper Virus—An Outlook of the Diverse Evolutionary Landscapes of a Multi-Host Virus

1
Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, sede Medellín 050012, Colombia
2
Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la Republica, Montevideo 11200, Uruguay
3
Department of Microbiology and Immunology, UIC College of Medicine, Chicago, IL 60612, USA
4
Facultad de Ciencias Exactas, Naturales y Agropecuarias. Universidad de Santander (UDES), sede Bucaramanga 680002, Colombia
*
Author to whom correspondence should be addressed.
Viruses 2019, 11(7), 582; https://doi.org/10.3390/v11070582
Received: 26 March 2019 / Revised: 13 May 2019 / Accepted: 18 May 2019 / Published: 26 June 2019
(This article belongs to the Special Issue Morbilliviruses)
  |  
PDF [582 KB, uploaded 26 June 2019]
  |     |  

Abstract

Canine distemper virus (CDV) is a worldwide distributed virus which belongs to the genus Morbillivirus within the Paramyxoviridae family. CDV spreads through the lymphatic, epithelial, and nervous systems of domestic dogs and wildlife, in at least six orders and over 20 families of mammals. Due to the high morbidity and mortality rates and broad host range, understanding the epidemiology of CDV is not only important for its control in domestic animals, but also for the development of reliable wildlife conservation strategies. The present review aims to give an outlook of the multiple evolutionary landscapes and factors involved in the transmission of CDV by including epidemiological data from multiple species in urban, wild and peri-urban settings, not only in domestic animal populations but at the wildlife interface. It is clear that different epidemiological scenarios can lead to the presence of CDV in wildlife even in the absence of infection in domestic populations, highlighting the role of CDV in different domestic or wild species without clinical signs of disease mainly acting as reservoirs (peridomestic and mesocarnivores) that are often found in peridomestic habits triggering CDV epidemics. Another scenario is driven by mutations, which generate genetic variation on which random drift and natural selection can act, shaping the genetic structure of CDV populations leading to some fitness compensations between hosts and driving the evolution of specialist and generalist traits in CDV populations. In this scenario, the highly variable protein hemagglutinin (H) determines the cellular and host tropism by binding to signaling lymphocytic activation molecule (SLAM) and nectin-4 receptors of the host; however, the multiple evolutionary events that may have facilitated CDV adaptation to different hosts must be evaluated by complete genome sequencing. This review is focused on the study of CDV interspecies transmission by examining molecular and epidemiological reports based on sequences of the hemagglutinin gene and the growing body of studies of the complete genome; emphasizing the importance of long-term multidisciplinary research that tracks CDV in the presence or absence of clinical signs in wild species, and helping to implement strategies to mitigate the infection. Integrated research incorporating the experience of wildlife managers, behavioral and conservation biologists, veterinarians, virologists, and immunologists (among other scientific areas) and the inclusion of several wild and domestic species is essential for understanding the intricate epidemiological dynamics of CDV in its multiple host infections. View Full-Text
Keywords: genome evolution; canine distemper virus; hemagglutinin gene; genotype genome evolution; canine distemper virus; hemagglutinin gene; genotype
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Duque-Valencia, J.; Sarute, N.; Olarte-Castillo, X.A.; Ruíz-Sáenz, J. Evolution and Interspecies Transmission of Canine Distemper Virus—An Outlook of the Diverse Evolutionary Landscapes of a Multi-Host Virus. Viruses 2019, 11, 582.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Viruses EISSN 1999-4915 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top