The Role of Temperature in Transmission of Zoonotic Arboviruses
Abstract
:1. Introduction
2. Vector Competence
3. Life History Traits and Blood Feeding Behavior
4. Vector and Host Distributions
5. Viral Distribution
5.1. Indirect Effects
5.2. Climate Change
5.3. Case Study: Season-Specific Effects in West Nile Virus in Temperate Regions
5.3.1. Winter Temperatures
5.3.2. Spring Temperatures
5.3.3. Summer Temperatures
5.3.4. Fall Temperatures
5.4. Case Study: Barmah Forest Virus
5.5. Case Study: Ross River Virus
5.6. Case Study: Rift Valley Fever Virus
6. Concluding Remarks and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In IPCC Climate Change 2014: Synthesis Report; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Caminade, C.; McIntyre, K.M.; Jones, A.E. Impact of recent and future climate change on vector-borne diseases. Ann. N. Y. Acad. Sci. 2019, 1436, 157–173. [Google Scholar] [CrossRef] [PubMed]
- Mordecai, E.A.; Caldwell, J.M.; Grossman, M.K.; Lippi, C.A.; Johnson, L.R.; Neira, M.; Rohr, J.R.; Ryan, S.J.; Savage, V.; Shocket, M.S. Thermal biology of mosquito-borne disease. Ecol. Lett. 2019, 22, 1690–1708. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, N.P.; Staples, J.E.; Fischer, M. Eastern equine encephalitis virus in the United States, 2003–2016. Am. J. Trop. Med. Hyg. 2018, 98, 1472–1477. [Google Scholar] [CrossRef]
- Reisen, W.; Monath, T. Western equine encephalomyelitis. In The Arboviruses: Epidemiology and Ecology; CRC Press: Boca Raton, FL, USA, 1989; Volume 5, pp. 89–137. [Google Scholar]
- Suhrbier, A.; Jaffar-Bandjee, M.-C.; Gasque, P. Arthritogenic alphaviruses—An overview. Nat. Rev. Rheumatol. 2012, 8, 420–429. [Google Scholar] [CrossRef]
- Jacups, S.P.; Whelan, P.I.; Currie, B.J. Ross River virus and Barmah Forest virus infections: A review of history, ecology, and predictive models, with implications for tropical northern Australia. Vector Borne Zoonotic Dis. 2008, 8, 283–297. [Google Scholar] [CrossRef]
- Kelly-Hope, L.; Purdie, D.; Kay, B. Ross River virus disease in Australia, 1886–1998, with analysis of risk factors associated with outbreaks. J. Med. Entomol. 2004, 41, 133–150. [Google Scholar] [CrossRef]
- Tong, S.; Dale, P.; Nicholls, N.; Mackenzie, J.S.; Wolff, R.; McMichael, A.J. Climate Variability, Social and Environmental Factors, and Ross River Virus Transmission: Research Development and Future Research Needs. Environ. Health Perspect. 2008, 116, 1591–1597. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Dale, P.; Turner, L.; Tong, S. Projecting the impact of climate change on the transmission of Ross River virus: methodological challenges and research needs. Epidemiol. Infect. 2014, 142, 2013–2023. [Google Scholar] [CrossRef] [Green Version]
- Weaver, S.C.; Ferro, C.; Barrera, R.; Boshell, J.; Navarro, J.-C. Venezuelan equine encephalitis. Annu. Rev. Entomol. 2004, 49, 141–174. [Google Scholar] [CrossRef]
- Weaver, S.C.; Reisen, W.K. Present and future arboviral threats. Aniviral Res. 2010, 85, 328–345. [Google Scholar] [CrossRef] [Green Version]
- Haddow, A.D.; Odoi, A. The incidence risk, clustering, and clinical presentation of La Crosse virus infections in the eastern United States, 2003–2007. PLoS ONE 2009, 4, e6145. [Google Scholar] [CrossRef] [PubMed]
- Linthicum, K.J.; Britch, S.C.; Anyamba, A. Rift Valley fever: an emerging mosquito-borne disease. Annu. Rev. Entomol 2016, 61, 395–415. [Google Scholar] [CrossRef] [PubMed]
- Esser, H.J.; Mogling, R.; Cleton, N.B.; van der Jeugd, H.; Sprong, H.; Stroo, A.; Koopmans, M.P.G.; de Boer, W.F.; Reusken, C.B.E.M. Risk factors associated with sustained circulation of six zoonotic arboviruses: A systematic review for selection of surveillance sites in non-endemic areas. Parasit Vectors 2019, 12. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Morton, L.C.; Liu, Q. Climate change and mosquito-borne diseases in China: a review. Global. Health 2013, 9, 10. [Google Scholar] [CrossRef]
- Erlanger, T.E.; Weiss, S.; Keiser, J.; Utzinger, J.; Wiedenmayer, K. Past, present, and future of Japanese encephalitis. Emerg. Infect. Dis 2009, 15, 1–7. [Google Scholar] [CrossRef]
- Misra, U.K.; Kalita, J. Overview: Japanese encephalitis. Prog. Neurobiol. 2010, 91, 108–120. [Google Scholar] [CrossRef]
- Rosen, L. The Natural History of Japanese Encephalitis Virus. Annu. Rev. Microbiol. 1986, 40, 395–414. [Google Scholar] [CrossRef]
- Yi, L.; Xu, X.; Ge, W.; Xue, H.; Li, J.; Li, D.; Wang, C.; Wu, H.; Liu, X.; Zheng, D.; et al. The impact of climate variability on infectious disease transmission in China: Current knowledge and further directions. Environ. Res. 2019, 173, 255–261. [Google Scholar] [CrossRef]
- Selvey, L.A.; Dailey, L.; Lindsay, M.; Armstrong, P.; Tobin, S.; Koehler, A.P.; Markey, P.G.; Smith, D.W. The Changing Epidemiology of Murray Valley Encephalitis in Australia: The 2011 Outbreak and a Review of the Literature. PLoS Negl. Trop. Dis. 2014, 8, e2656. [Google Scholar] [CrossRef]
- Luby, J.P. St. Louis Encephalitis. Epidemiol. Rev. 1979, 1, 55–73. [Google Scholar] [CrossRef]
- Day, J.F. Predicting St. Louis Encephalitis Virus Epidemics: Lessons from Recent, and Not So Recent, Outbreaks. Annu. Rev. Entomol. 2001, 46, 111–138. [Google Scholar] [CrossRef] [PubMed]
- Hubalek, Z.; Halouzka, J. West Nile fever—A reemerging mosquito-borne viral disease in Europe. Emerg. Infect. Dis. 1999, 5, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Reisen, W.K. Ecology of West Nile virus in North America. Viruses 2013, 5, 2079–2105. [Google Scholar] [CrossRef]
- Chancey, C.; Grinev, A.; Volkova, E.; Rios, M. The global ecology and epidemiology of West Nile virus. BioMed. Res. Int. 2015, 2015. [Google Scholar] [CrossRef]
- Paz, S. Climate change impacts on West Nile virus transmission in a global context. Phil. Trans. R. Soc. B 2015, 370, 20130561. [Google Scholar] [CrossRef]
- Franz, A.; Kantor, A.; Passarelli, A.; Clem, R. Tissue barriers to arbovirus infection in mosquitoes. Viruses 2015, 7, 3741–3767. [Google Scholar] [CrossRef]
- Hardy, J.L.; Houk, E.J.; Kramer, L.D.; Reeves, W.C. Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu. Rev. Entomol. 1983, 28, 229–262. [Google Scholar] [CrossRef]
- Richards, S.L.; Lord, C.C.; Pesko, K.; Tabachnick, W.J. Environmental and biological factors influencing Culex pipiens quinquefasciatus Say (Diptera: Culicidae) vector competence for Saint Louis encephalitis virus. Am. J. Trop. Med. Hyg. 2009, 81, 264–272. [Google Scholar] [CrossRef]
- Danforth, M.E.; Reisen, W.K.; Barker, C.M. Extrinsic incubation rate is not accelerated in recent California strains of West Nile virus in Culex tarsalis (Diptera: Culicidae). J. Med. Entomol. 2015, 52, 1083–1089. [Google Scholar] [CrossRef]
- Vogels, C.B.F.; Hartemink, N.; Koenraadt, C.J.M. Modelling West Nile virus transmission risk in Europe: effect of temperature and mosquito biotypes on the basic reproduction number. Sci. Rep. 2017, 7, 5022. [Google Scholar] [CrossRef]
- Vogels, C.B.; Fros, J.J.; Göertz, G.P.; Pijlman, G.P.; Koenraadt, C.J. Vector competence of northern European Culex pipiens biotypes and hybrids for West Nile virus is differentially affected by temperature. Parasit Vectors 2016, 9, 393. [Google Scholar] [CrossRef] [PubMed]
- Turell, M.J.; Rossi, C.A.; Bailey, C.L. Effect of extrinsic incubation temperature on the ability of Aedes taeniorhynchus and Culex pipiens to transmit Rift Valley fever virus. Am. J. Trop. Med. Hyg. 1985, 34, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Turell, M. Effect of environmental temperature on the vector competence of Aedes fowleri for Rift Valley fever virus. Res. Virol. 1989, 140, 147–154. [Google Scholar] [CrossRef]
- Turell, M.J. Effect of environmental temperature on the vector competence of Aedes taeniorhynchus for Rift Valley fever and Venezuelan equine encephalitis viruses. Am. J. Trop. Med. Hyg. 1993, 49, 672–676. [Google Scholar] [CrossRef]
- Kilpatrick, A.M.; Meola, M.A.; Moudy, R.M.; Kramer, L.D. Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Pathog. 2008, 4, e1000092. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.L.; Richards, S.L.; Tabachnick, W.J.; Smartt, C.T. Effects of West Nile virus dose and extrinsic incubation temperature on temporal progression of vector competence in Culex pipiens quinquefasciatus. J. Am. Mosq. Control Assoc. 2010, 26, 103. [Google Scholar] [CrossRef]
- Richards, S.L.; Mores, C.N.; Lord, C.C.; Tabachnick, W.J. Impact of extrinsic incubation temperature and virus exposure on vector competence of Culex pipiens quinquefasciatus Say (Diptera: Culicidae) for West Nile virus. Vector Borne Zoonotic Dis. 2007, 7, 629–636. [Google Scholar] [CrossRef]
- Hurlbut, H.S. The effect of environmental temperature upon the transmission of St. Louis Encephalitis virus by Culex pipiens quinquefasciatus. J. Med. Entomol. 1973, 10, 1–12. [Google Scholar] [CrossRef]
- Cornel, A.J.; Jupp, P.G.; Blackburn, N.K. Environmental temperature on the vector competence of Culex univittatus (Diptera: Culicidae) for West Nile virus. J. Med. Entomol. 1993, 30, 449–456. [Google Scholar] [CrossRef]
- Takahashi, M. The effects of environmental and physiological conditions of Culex tritaeniorhynchus on the pattern of transmission of Japanese encephalitis virus. J. Med. Entomol. 1976, 13, 275–284. [Google Scholar] [CrossRef]
- Dohm, D.J.; O’Guinn, M.L.; Turell, M.J. Effect of environmental temperature on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus. J. Med. Entomol. 2002, 39, 221–225. [Google Scholar] [CrossRef]
- Reisen, W.K.; Fang, Y.; Martinez, V.M. Effects of Temperature on the Transmission of West Nile Virus by Culex tarsalis (Diptera: Culicidae). J. Med. Entomol. 2006, 43, 309–317. [Google Scholar] [CrossRef]
- Kay, B.; Jennings, C. Enhancement or modulation of the vector competence of Ochlerotatus vigilax (Diptera: Culicidae) for Ross River virus by temperature. J. Med. Entomol. 2002, 39, 99–105. [Google Scholar] [CrossRef]
- Kramer, L.D.; Hardy, J.L.; Presser, S.B. Effect of temperature of extrinsic incubation on the vector competence of Culex tarsalis for western equine encephalomyelitis virus. Am. J. Trop. Med. Hyg. 1983, 32, 1130–1139. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, R.; Sudia, W.D. The effects of temperature upon the extrinsic incubation of eastern equine encephalitis in mosquitoes. Am. J. Trop. Med. Hyg. 1955, 62, 295–305. [Google Scholar]
- Danforth, M.E.; Reisen, W.K.; Barker, C.M. The impact of cycling temperature on the transmission of West Nile virus. J. Med. Entomol. 2016, 53, 681–686. [Google Scholar] [CrossRef]
- Brubaker, J.F.; Turell, M.J. Effect of environmental temperature on the susceptibility of Culex pipiens (Diptera: Culicidae) to Rift Valley fever virus. J. Med. Entomol. 1998, 35, 918–921. [Google Scholar] [CrossRef] [PubMed]
- Ciota, A.T.; Styer, L.M.; Meola, M.A.; Kramer, L.D. The costs of infection and resistance as determinants of West Nile virus susceptibility in Culex mosquitoes. BMC Ecol. 2011, 11, 23. [Google Scholar] [CrossRef] [PubMed]
- Kramer, L.D.; Hardy, J.L.; Presser, S.B.; Houk, E.J. Dissemination barriers for western equine encephalomyelitis virus in Culex tarsalis infected after ingestion of low viral doses. Am. J. Trop. Med. Hyg. 1981, 30, 190–197. [Google Scholar] [CrossRef]
- Alto, B.W.; Wiggins, K.; Eastmond, B.; Ortiz, S.; Zirbel, K.; Lounibos, L.P. Diurnal temperature range and chikungunya virus infection in invasive mosquito vectors. J. Med. Entomol. 2018, 55, 217–224. [Google Scholar] [CrossRef]
- Ciota, A.T.; Chin, P.A.; Ehrbar, D.J.; Micieli, M.V.; Fonseca, D.M.; Kramer, L.D. Differential effects of temperature and mosquito genetics determine transmissibility of arboviruses by Aedes aegypti in Argentina. Am. J. Trop. Med. Hyg. 2018, 99, 417–424. [Google Scholar] [CrossRef]
- Tesla, B.; Demakovsky, L.R.; Mordecai, E.A.; Ryan, S.J.; Bonds, M.H.; Ngonghala, C.N.; Brindley, M.A.; Murdock, C.C. Temperature drives Zika virus transmission: evidence from empirical and mathematical models. Proc. Biol. Sci. 2018, 285, 20180795. [Google Scholar] [CrossRef] [Green Version]
- Gloria-Soria, A.; Armstrong, P.; Powell, J.; Turner, P. Infection rate of Aedes aegypti mosquitoes with dengue virus depends on the interaction between temperature and mosquito genotype. Proc. Biol. Sci. 2017, 284, 20171506. [Google Scholar] [CrossRef]
- Zouache, K.; Fontaine, A.; Vega-Rua, A.; Mousson, L.; Thiberge, J.-M.; Lourenco-De-Oliveira, R.; Caro, V.; Lambrechts, L.; Failloux, A.-B. Three-way interactions between mosquito population, viral strain and temperature underlying chikungunya virus transmission potential. Proc. Biol. Sci. 2014, 281, 20141078. [Google Scholar] [CrossRef]
- Lambrechts, L.; Paaijmans, K.P.; Fansiri, T.; Carrington, L.B.; Kramer, L.D.; Thomas, M.B.; Scott, T.W. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc. Natl. Acad. Sci. USA 2011, 108, 7460–7465. [Google Scholar] [CrossRef]
- Lambrechts, L.; Chevillon, C.; Albright, R.G.; Thaisomboonsuk, B.; Richardson, J.H.; Jarman, R.G.; Scott, T.W. Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors. BMC Evol. Biol. 2009, 9, 160. [Google Scholar] [CrossRef]
- Carrington, L.B.; Seifert, S.N.; Armijos, M.V.; Lambrechts, L.; Scott, T.W. Reduction of Aedes aegypti vector competence for dengue virus under large temperature fluctuations. Am. J. Trop. Med. Hyg. 2013, 88, 689–697. [Google Scholar] [CrossRef]
- Westbrook, C.J.; Reiskind, M.H.; Pesko, K.N.; Greene, K.E.; Lounibos, L.P. Larval environmental temperature and the susceptibility of Aedes albopictus Skuse (Diptera: Culicidae) to Chikungunya virus. Vector Borne Zoonotic Dis. 2010, 10, 241–247. [Google Scholar] [CrossRef]
- Kay, B.H.; Fanning, I.D.; Mottram, P. Rearing temperature influences flavivirus vector competence of mosquitoes. Med. Vet. Entomol. 1989, 3, 415–422. [Google Scholar] [CrossRef]
- Dodson, B.L.; Kramer, L.D.; Rasgon, J.L. Effects of larval rearing temperature on immature development and West Nile virus vector competence of Culex tarsalis. Parasit Vectors 2012, 5, 199. [Google Scholar] [CrossRef]
- Muturi, E.J.; Alto, B.W. Larval environmental temperature and insecticide exposure alter Aedes aegypti competence for arboviruses. Vector Borne Zoonotic Dis. 2011, 11, 1157–1163. [Google Scholar] [CrossRef] [PubMed]
- Muturi, E.J.; Blackshear, M., Jr.; Montgomery, A. Temperature and density-dependent effects of larval environment on Aedes aegypti competence for an alphavirus. J. Vector Ecol. 2012, 37, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Muturi, E.J.; Kim, C.; Alto, B.W.; Berenbaum, M.R.; Schuler, M.A. Larval environmental stress alters Aedes aegypti competence for Sindbis virus. Trop. Med. Int. Health 2011, 16, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Ciota, A.T.; Matacchiero, A.C.; Kilpatrick, A.M.; Kramer, L.D. The effect of temperature on life history traits of Culex mosquitoes. J. Med. Entomol. 2014, 51, 55–62. [Google Scholar] [CrossRef]
- Reisen, W.K. Effect of temperature on Culex tarsalis (Diptera: Culicidae) from the Coachella and San Joaquin valleys of California. J. Med. Entomol. 1995, 32, 636–645. [Google Scholar] [CrossRef]
- Shelton, R.M. The effect of temperatures on development of eight mosquito species. Mosq. News 1973, 33, 1–12. [Google Scholar]
- Paulson, S.; Hawley, W. Effect of body size on the vector competence of field and laboratory populations of Aedes triseriatus for La Crosse virus. J. Am. Mosq. Control Assoc. 1991, 7, 170–175. [Google Scholar]
- Muturi, E.J.; Nyakeriga, A.; Blackshear, M. Temperature-mediated differential expression of immune and stress-related genes in Aedes aegypti larvae. J. Am. Mosq. Control Assoc. 2012, 28, 79–83. [Google Scholar] [CrossRef]
- Adelman, Z.N.; Anderson, M.A.; Wiley, M.R.; Murreddu, M.G.; Samuel, G.H.; Morazzani, E.M.; Myles, K.M. Cooler temperatures destabilize RNA interference and increase susceptibility of disease vector mosquitoes to viral infection. PLoS Negl. Trop. Dis. 2013, 7, e2239. [Google Scholar] [CrossRef]
- Spanoudis, C.G.; Andreadis, S.S.; Tsaknis, N.K.; Petrou, A.P.; Gkeka, C.D.; Savopoulou–Soultani, M. Effect of Temperature on Biological Parameters of the West Nile Virus Vector Culex pipiens form ‘molestus’ (Diptera: Culicidae) in Greece: Constant vs Fluctuating Temperatures. J. Med. Entomol. 2019, 56, 641–650. [Google Scholar] [CrossRef]
- Gunay, F.; Alten, B.; Ozsoy, E.D. Estimating reaction norms for predictive population parameters, age specific mortality, and mean longevity in temperature-dependent cohorts of Culex quinquefasciatus Say (Diptera: Culicidae). J. Vector Ecol. 2010, 35, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Milby, M.; Meyer, R. The influence of constant versus fluctuating water temperatures on the preimaginal development of Culex tarsalis. J. Am. Mosq. Control Assoc. 1986, 2, 7–10. [Google Scholar] [PubMed]
- Grech, M.G.; Sartor, P.D.; Almirón, W.R.; Ludueña-Almeida, F.F. Effect of temperature on life history traits during immature development of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) from Córdoba city, Argentina. Acta Trop. 2015, 146, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Alto, B.W.; Bettinardi, D. Temperature and dengue virus infection in mosquitoes: independent effects on the immature and adult stages. Am. J. Trop. Med. Hyg. 2013, 88, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Loetti, M.V.; Burroni, N.E.; Schweigmann, N.; De Garin, A. Effect of different thermal conditions on the pre-imaginal biology of Culex apicinus (Philippi, 1865) (Diptera: Culicidae). J. Vector Ecol. 2007, 32, 106–112. [Google Scholar] [CrossRef]
- Loetti, V.; Schweigmann, N.; Burroni, N. Temperature effects on the immature development time of Culex eduardoi Casal & García (Diptera: Culicidae). Neotrop. Entomol. 2011, 40, 138–142. [Google Scholar]
- Mpho, M.; Callaghan, A.; Holloway, G. Temperature and genotypic effects on life history and fluctuating asymmetry in a field strain of Culex pipiens. Heredity 2002, 88, 307. [Google Scholar] [CrossRef]
- Hagstrum, D.W.; Milliken, G.A. Modeling differences in insect developmental times between constant and fluctuating temperatures. Ann. Entomol. Soc. Am. 1991, 84, 369–379. [Google Scholar] [CrossRef]
- Abouzied, E.M. Life table analysis of Culex pipiens under simulated weather conditions in Egypt. J. Am. Mosq. Control Assoc. 2017, 33, 16–24. [Google Scholar] [CrossRef]
- Andreadis, S.S.; Dimotsiou, O.C.; Savopoulou-Soultani, M. Variation in adult longevity of Culex pipiens f. pipiens, vector of the West Nile Virus. Parasitol. Res. 2014, 113, 4315–4319. [Google Scholar] [CrossRef]
- Alto, B.W.; Richards, S.L.; Anderson, S.L.; Lord, C.C. Survival of West Nile virus-challenged Southern house mosquitoes, Culex pipiens quinquefasciatus, in relation to environmental temperatures. J. Vector Ecol. 2014, 39, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Reuss, F.; Wieser, A.; Niamir, A.; Bálint, M.; Kuch, U.; Pfenninger, M.; Müller, R. Thermal experiments with the Asian bush mosquito (Aedes japonicus japonicus) (Diptera: Culicidae) and implications for its distribution in Germany. Parasit Vectors 2018, 11, 81. [Google Scholar] [CrossRef] [PubMed]
- Westby, K.; Juliano, S. Simulated seasonal photoperiods and fluctuating temperatures have limited effects on blood feeding and life history in Aedes triseriatus (Diptera: Culicidae). J. Med. Entomol. 2015, 52, 896–906. [Google Scholar] [CrossRef] [PubMed]
- Reinhold, J.; Lazzari, C.; Lahondère, C. Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: A Review. Insects 2018, 9, 158. [Google Scholar] [CrossRef]
- Delatte, H.; Gimonneau, G.; Triboire, A.; Fontenille, D. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. J. Med. Entomol. 2009, 46, 33–41. [Google Scholar] [CrossRef]
- Ruybal, J.E.; Kramer, L.D.; Kilpatrick, A.M. Geographic variation in the response of Culex pipiens life history traits to temperature. Parasit Vectors 2016, 9, 116. [Google Scholar] [CrossRef]
- Eldridge, B.F. The effect of temperature and photoperiod on blood-feeding and ovarian development in mosquitoes of the Culex pipiens complex. Am. J. Trop. Med. Hyg. 1968, 17, 133–140. [Google Scholar] [CrossRef]
- Parker, A.C.; Rozeboom, L.E. The effect of temperature and illumination on mating of Culex pipiens pipiens L. and C p fatigans Wied. Am. J. Trop. Med. Hyg. 1960, 9, 331–335. [Google Scholar] [CrossRef]
- Kurokawa, K.; Kato, K.; Oda, T.; Uchida, K.; Eshita, Y.; Tahara, H.; Mine, M.; Ogawa, Y. Insemination rates of hybrids between Culex pipiens pipiens and Culex pipiens quinquefasciatus or Culex pipiens pallens at high temperature. J. Am. Mosq. Control Assoc. 2004, 20, 121–124. [Google Scholar]
- Olejnícek, J.; Gelbic, I. Differences in response to temperature and density between two strains of the mosquito, Culex pipiens molestus Forskal. J. Vector Ecol. 2000, 25, 136–145. [Google Scholar]
- Suman, D.; Tikar, S.; Mendki, M.; Sukumaran, D.; Agrawal, O.; Parashar, B.; Prakash, S. Variations in life tables of geographically isolated strains of the mosquito Culex quinquefasciatus. Med. Vet. Entomol. 2011, 25, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.W.; Lorenz, L.H. Reduction of Culiseta melanura fitness by eastern equine encephalomyelitis virus. Am. J. Trop. Med. Hyg. 1998, 59, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Moncayo, A.C.; Edman, J.D.; Turell, M.J. Effect of eastern equine encephalomyelitis virus on the survival of Aedes albopictus, Anopheles quadrimaculatus, and Coquillettidia perturbans (Diptera: Culicidae). J. Med. Entomo. 2000, 37, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Ciota, A.T.; Ehrbar, D.J.; Matacchiero, A.C.; Van Slyke, G.A.; Kramer, L.D. The evolution of virulence of West Nile virus in a mosquito vector: implications for arbovirus adaptation and evolution. BMC Evol. Biol. 2013, 13, 71. [Google Scholar] [CrossRef] [PubMed]
- Styer, L.M.; Meola, M.A.; Kramer, L.D. West Nile virus infection decreases fecundity of Culex tarsalis females. J. Med. Entomol. 2007, 44, 1074–1085. [Google Scholar] [CrossRef] [PubMed]
- Jackson, B.T.; Brewster, C.C.; Paulson, S.L. La Crosse virus infection alters blood feeding behavior in Aedes triseriatus and Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 2012, 49, 1424–1429. [Google Scholar] [CrossRef]
- Miller, R.H.; Masuoka, P.; Klein, T.A.; Kim, H.-C.; Somer, T.; Grieco, J. Ecological Niche Modeling to Estimate the Distribution of Japanese Encephalitis Virus in Asia. PLoS Negl. Trop. Dis. 2012, 6, e1678. [Google Scholar] [CrossRef]
- Lebl, K.; Brugger, K.; Rubel, F. Predicting Culex pipiens/restuans population dynamics by interval lagged weather data. Parasit Vectors 2013, 6, 129. [Google Scholar] [CrossRef]
- Root, T. Environmental factors associated with avian distributional boundaries. J. Biogeogr. 1988, 489–505. [Google Scholar] [CrossRef]
- Khaliq, I.; Hof, C.; Prinzinger, R.; Böhning-Gaese, K.; Pfenninger, M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. Biol. Sci. 2014, 281, 20141097. [Google Scholar] [CrossRef] [Green Version]
- Darsie, R.; Ward, R. Identification and Geographical Distribution of the Mosquitoes of North. America, North. of Mexico, 2nd ed.; University Press of Florida: Gainesville, FL, USA, 2005. [Google Scholar]
- Carpenter, S.J.; La Casse, W.J. Mosquitoes of North. America (North. of Mexico); Univ of California Press: Berkeley, CA, USA, 1955; ISBN 0-520-02638-1. [Google Scholar]
- ECDPC Mosquito Maps. European Centre for Disease Prevention and Control. Available online: https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/mosquito-maps (accessed on 30 October 2019).
- Foley, D.H.; Wilkerson, R.C.; Birney, I.; Harrison, S.; Christensen, J.; Rueda, L.M. MosquitoMap and the Mal-area calculator: new web tools to relate mosquito species distribution with vector borne disease. Int. J. Health Geogr. 2010, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, M.U.G.; Sinka, M.E.; Duda, K.A.; Mylne, A.Q.N.; Shearer, F.M.; Barker, C.M.; Moore, C.G.; Carvalho, R.G.; Coelho, G.E.; Van Bortel, W.; et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 2015, 4, e08347. [Google Scholar] [CrossRef] [PubMed]
- Natureserve. NatureServe Web Service. Arlington, VA, USA. Available online: http://services.natureserve.org (accessed on 4 October 2019).
- Natureserve. NatureServe Explorer: An Online Encyclopedia of Life (Web Application). Version 7.0. NatureServe, Arlington, VA, USA. Available online: http://explorer.natureserve.org (accessed on 4 October 2019).
- GBIF. GBIF: The Global Biodiversity Information Facility: What is GBIF? 2019. Available online: https://www.gbif.org/what-is-gbif (accessed on 4 October 2019).
- Robbins, C.S.; Bystrak, D.; Geissler, P.H. The Breeding Bird Survey: Its First Fifteen Years, 1965–1979; Patuxent Wildlife Research Center: Laurel, MD, USA, 1986.
- Sauer, J.R.; Niven, D.K.; Hines, J.E.; Ziolkowski, D.J., Jr.; Fallon, J.E.; Link, W.A. The North American Breeding Bird Survey, Results and Analyses 1966–2015; Version 2.07.2017; USGS Patuxent Wildlife Research Center: Laurel, MD, USA, 2017.
- Sullivan, B.L.; Wood, C.L.; Iliff, M.J.; Bonney, R.E.; Fink, D.; Kelling, S. eBird: A citizen-based bird observation network in the biological sciences. Biol. Conserv. 2009, 142, 2282–2292. [Google Scholar] [CrossRef]
- Dhileepan, K. Mosquito seasonality and arboviral disease incidence in Murray valley, southeast Australia. Med. Vet. Entomol. 1996, 10, 375–384. [Google Scholar] [CrossRef]
- Chuang, T.-W.; Knepper, R.G.; Stanuszek, W.W.; Walker, E.D.; Wilson, M.L. Temporal and Spatial Patterns of West Nile Virus Transmission in Saginaw County, Michigan, 2003–2006. J. Med. Entomol. 2011, 48, 1047–1056. [Google Scholar] [CrossRef]
- Russell, R. Mosquito-borne arboviruses in Australia: the current scene and implications of climate change for human health. Int. J. Parasitol. 1998, 28, 955–969. [Google Scholar] [CrossRef]
- Morin, C.W.; Comrie, A.C. Regional and seasonal response of a West Nile virus vector to climate change. Proc. Natl. Acad. Sci. USA 2013, 110, 15620–15625. [Google Scholar] [CrossRef] [Green Version]
- Paz, S.; Albersheim, I. Influence of warming tendency on Culex pipiens population abundance and on the probability of West Nile Fever outbreaks (Israeli case study: 2001–2005). EcoHealth 2008, 5, 40–48. [Google Scholar] [CrossRef]
- Yoo, E.-H. Exploring space-time models for West Nile virus mosquito abundance data. Appl. Geogr. 2013, 45, 203–210. [Google Scholar] [CrossRef]
- Yoo, E.-H.; Chen, D.; Diao, C.; Russell, C. The Effects of Weather and Environmental Factors on West Nile Virus Mosquito Abundance in Greater Toronto Area. Earth Interact. 2016, 20, 1–22. [Google Scholar] [CrossRef]
- Rosa, R.; Marini, G.; Bolzoni, L.; Neteler, M.; Metz, M.; Delucchi, L.; Chadwick, E.A.; Balbo, L.; Mosca, A.; Giacobini, M.; et al. Early warning of West Nile virus mosquito vector: climate and land use models successfully explain phenology and abundance of Culex pipiens mosquitoes in north-western Italy. Parasit Vectors 2014, 7, 269. [Google Scholar] [CrossRef] [PubMed]
- Burkett-Cadena, N.D.; Bingham, A.M.; Hunt, B.; Morse, G.; Unnasch, T.R. Ecology of Culiseta melanura and Other Mosquitoes (Diptera: Culicidae) from Walton County, FL, During Winter Period 2013–2014. J. Med. Entomol. 2015, 52, 1074–1082. [Google Scholar] [CrossRef] [PubMed]
- Andreadis, T.G.; Shepard, J.J.; Thomas, M.C. Field observations on the overwintering ecology of Culiseta melanura in the Northeastern USA. J. Am. Mosq. Control Assoc. 2012, 28, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Hammami, P.; Tran, A.; Kemp, A.; Tshikae, P.; Kgori, P.; Chevalier, V.; Paweska, J.; Jori, F. Rift Valley fever vector diversity and impact of meteorological and environmental factors on Culex pipiens dynamics in the Okavango Delta, Botswana. Parasit Vectors 2016, 9, 434. [Google Scholar]
- Biteye, B.; Fall, A.G.; Ciss, M.; Seck, M.T.; Apolloni, A.; Fall, M.; Tran, A.; Gimonneau, G. Ecological distribution and population dynamics of Rift Valley fever virus mosquito vectors (Diptera, Culicidae) in Senegal. Parasit Vectors 2018, 11, 27. [Google Scholar] [CrossRef]
- Talla, C.; Diallo, D.; Dia, I.; Ba, Y.; Ndione, J.-A.; Morse, A.P.; Diop, A.; Diallo, M. Modelling hotspots of the two dominant Rift Valley fever vectors (Aedes vexans and Culex poicilipes) in Barkedji, Senegal. Parasit Vectors 2016, 9, 111. [Google Scholar] [CrossRef]
- Talla, C.; Diallo, D.; Dia, I.; Ba, Y.; Ndione, J.-A.; Sall, A.A.; Morse, A.; Diop, A.; Diallo, M. Statistical Modeling of the Abundance of Vectors of West African Rift Valley Fever in Barkedji, Senegal. PLoS ONE 2014, 9, e114047. [Google Scholar] [CrossRef]
- Conley, A.K.; Fuller, D.O.; Haddad, N.; Hassan, A.N.; Gad, A.M.; Beier, J.C. Modeling the distribution of the West Nile and Rift Valley Fever vector Culex pipiens in arid and semi-arid regions of the Middle East and North Africa. Parasit Vectors 2014, 7, 289. [Google Scholar] [CrossRef]
- Sallam, M.F.; Al Ahmed, A.M.; Abdel-Dayem, M.S.; Abdullah, M.A.R. Ecological Niche Modeling and Land Cover Risk Areas for Rift Valley Fever Vector, Culex tritaeniorhynchus Giles in Jazan, Saudi Arabia. PLoS ONE 2013, 8, e65786. [Google Scholar] [CrossRef]
- Nance, J.; Fryxell, R.T.; Lenhart, S. Modeling a single season of Aedes albopictus populations based on host-seeking data in response to temperature and precipitation in eastern Tennessee. J. Vector Ecol. 2018, 43, 138–147. [Google Scholar] [CrossRef]
- Ding, F.; Fu, J.; Jiang, D.; Hao, M.; Lin, G. Mapping the spatial distribution of Aedes aegypti and Aedes albopictus. Acta Trop. 2018, 178, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Alaniz, A.J.; Carvajal, M.A.; Bacigalupo, A.; Cattan, P.E. Global spatial assessment of Aedes aegypti and Culex quinquefasciatus: a scenario of Zika virus exposure. Epidemiol. Infect. 2019, 147, e52. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.; Kenawy, M.A.; Rady, M.H.; Khaled, A.S.; Samy, A.M. Mapping the global potential distributions of two arboviral vectors Aedes aegypti and Ae. albopictus under changing climate. PLoS ONE 2018, 13, e0210122. [Google Scholar] [CrossRef] [PubMed]
- Dickens, B.L.; Sun, H.; Jit, M.; Cook, A.R.; Carrasco, L.R. Determining environmental and anthropogenic factors which explain the global distribution of Aedes aegypti and Ae. albopictus. BMJ Glob. Health 2018, 3, e000801. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.; Meneses, B.M. An integrated approach for the assessment of the Aedes aegypti and Aedes albopictus global spatial distribution, and determination of the zones susceptible to the development of Zika virus. Acta Trop. 2017, 168, 80–90. [Google Scholar]
- Messina, J.P.; Kraemer, M.U.G.; Brady, O.J.; Pigott, D.M.; Shearer, F.M.; Weiss, D.J.; Golding, N.; Ruktanonchar, C.W.; Gething, P.W.; Cohn, E.; et al. Mapping global environmental suitability for Zika virus. eLife 2016, 5, e15272. [Google Scholar] [CrossRef]
- Campbell, L.P.; Luther, C.; Moo-Llanes, D.; Ramsey, J.M.; Danis-Lozano, R.; Peterson, A.T. Climate change influences on global distributions of dengue and chikungunya virus vectors. Philos. Trans. Royal Soc. B 2015, 370, 20140135. [Google Scholar] [CrossRef]
- Capinha, C.; Rocha, J.; Sousa, C.A. Macroclimate Determines the Global Range Limit of Aedes aegypti. EcoHealth 2014, 11, 420–428. [Google Scholar] [CrossRef]
- Khormi, H.M.; Kumar, L. Climate change and the potential global distribution of Aedes aegypti: spatial modelling using geographical information system and CLIMEX. Geospat Health 2014, 8, 405–415. [Google Scholar] [CrossRef]
- Medley, K.A. Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Glob. Ecol. Biogeogr 2010, 19, 122–133. [Google Scholar] [CrossRef]
- Samy, A.M.; Elaagip, A.H.; Kenawy, M.A.; Ayres, C.F.; Peterson, A.T.; Soliman, D.E. Climate change influences on the global potential distribution of the mosquito Culex quinquefasciatus, vector of West Nile virus and lymphatic filariasis. PLoS ONE 2016, 11, e0163863. [Google Scholar] [CrossRef] [PubMed]
- Farajollahi, A.; Fonseca, D.M.; Kramer, L.D.; Kilpatrick, A.M. “Bird biting” mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology. Infect. Genet. Evol. 2011, 11, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Hongoh, V.; Berrang-Ford, L.; Scott, M.E.; Lindsay, L.R. Expanding geographical distribution of the mosquito, Culex pipiens, in Canada under climate change. Appl. Geogr. 2012, 33, 53–62. [Google Scholar] [CrossRef]
- Pearson, R.G.; Dawson, T.P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Chaulk, A.C.; Carson, K.P.; Whitney, H.G.; Fonseca, D.M.; Chapman, T.W. The Arrival of the Northern House Mosquito Culex pipiens (Diptera: Culicidae) on Newfoundland’s Avalon Peninsula. J. Med. Entomol. 2016, 53, 1364–1369. [Google Scholar] [CrossRef]
- Morin, C.W.; Comrie, A.C. Modeled response of the West Nile virus vector Culex quinquefasciatus to changing climate using the dynamic mosquito simulation model. Int. J. Biometeorol. 2010, 54, 517–529. [Google Scholar] [CrossRef]
- Carroll, C.; Lawler, J.J.; Roberts, D.R.; Hamann, A. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change. PLoS ONE 2015, 10, e0140486. [Google Scholar] [CrossRef]
- Young, S.G.; Tullis, J.A.; Cothren, J. A remote sensing and GIS-assisted landscape epidemiology approach to West Nile virus. Appl. Geogr. 2013, 45, 241–249. [Google Scholar] [CrossRef]
- Keyel, A.C.; Elison Timm, O.; Backenson, P.B.; Prussing, C.; Quinones, S.; McDonough, K.A.; Vuille, M.; Conn, J.E.; Armstrong, P.M.; Andreadis, T.G.; et al. Seasonal temperatures and hydrological conditions improve the prediction of West Nile virus infection rates in Culex mosquitoes and human case counts in New York and Connecticut. PLoS ONE 2019, 14, e0217854. [Google Scholar] [CrossRef]
- Ruiz, M.O.; Chaves, L.F.; Hamer, G.L.; Sun, T.; Brown, W.M.; Walker, E.D.; Haramis, L.; Goldberg, T.L.; Kitron, U.D. Local impact of temperature and precipitation on West Nile virus infection in Culex species mosquitoes in northeast Illinois, USA. Parasit Vectors 2010, 3, 19. [Google Scholar] [CrossRef]
- DeFelice, N.B.; Schneider, Z.D.; Little, E.; Barker, C.; Caillouet, K.A.; Campbell, S.R.; Damian, D.; Irwin, P.; Jones, H.M.P.; Townsend, J.; et al. Use of temperature to improve West Nile virus forecasts. PLoS Comput. Biol. 2018, 14, e1006407. [Google Scholar] [CrossRef] [PubMed]
- Myer, M.H.; Campbell, S.R.; Johnston, J.M. Spatiotemporal modeling of ecological and sociological predictors of West Nile virus in Suffolk County, NY, mosquitoes. Ecosphere 2017, 8, e01854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myer, M.H.; Johnston, J.M. Spatiotemporal Bayesian modeling of West Nile virus: Identifying risk of infection in mosquitoes with local-scale predictors. Sci. Total Environ. 2019, 650, 2818–2829. [Google Scholar] [CrossRef] [PubMed]
- Little, E.; Campbell, S.R.; Shaman, J. Development and validation of a climate-based ensemble prediction model for West Nile Virus infection rates in Culex mosquitoes, Suffolk County, New York. Parasit Vectors 2016, 9, 443. [Google Scholar] [CrossRef] [PubMed]
- Manore, C.A.; Davis, J.K.; Christofferson, R.C.; Wesson, D.M.; Hyman, J.M.; Mores, C.N. Towards an early warning system for forecasting human West Nile virus incidence. PLoS Curr. 2014, 6. [Google Scholar] [CrossRef]
- Davis, J.K.; Vincent, G.P.; Hildreth, M.B.; Kightlinger, L.; Carlson, C.; Wimberly, M.C. Improving the prediction of arbovirus outbreaks: A comparison of climate-driven models for West Nile virus in an endemic region of the United States. Acta Trop. 2018, 185, 242–250. [Google Scholar]
- Stratton, M.D.; Ehrlich, H.Y.; Mor, S.M.; Naumova, E.N. A comparative analysis of three vector-borne diseases across Australia using seasonal and meteorological models. Sci. Rep. 2017, 7, 40186. [Google Scholar] [CrossRef] [Green Version]
- Soverow, J.E.; Wellenius, G.A.; Fisman, D.N.; Mittleman, M.A. Infectious disease in a warming world: how weather influenced West Nile virus in the United States (2001–2005). Environ. Health Perspect. 2009, 117, 1049. [Google Scholar] [CrossRef]
- Trawinski, P.; Mackay, D. Meteorologically conditioned time-series predictions of West Nile virus vector mosquitoes. Vector Borne Zoonotic Dis. 2008, 8, 505–522. [Google Scholar] [CrossRef]
- Poh, K.C.; Chaves, L.F.; Reyna-Nava, M.; Roberts, C.M.; Fredregill, C.; Bueno, R., Jr.; Debboun, M.; Hamer, G.L. The influence of weather and weather variability on mosquito abundance and infection with West Nile virus in Harris County, Texas, USA. Sci. Total Environ. 2019, 675, 260–272. [Google Scholar] [CrossRef]
- Hartley, D.M.; Barker, C.M.; Le Menach, A.; Niu, T.; Gaff, H.D.; Reisen, W.K. Effects of Temperature on Emergence and Seasonality of West Nile Virus in California. Am. J. Trop. Med. Hyg. 2012, 86, 884–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kioutsioukis, I.; Stilianakis, N.I. Assessment of West nile virus transmission risk from a weather-dependent epidemiological model and a global sensitivity analysis framework. Acta Trop. 2019, 193, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Laperriere, V.; Brugger, K.; Rubel, F. Simulation of the seasonal cycles of bird, equine and human West Nile virus cases. Prev. Vet. Med. 2011, 98, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Lo Iacono, G.; Cunningham, A.A.; Bett, B.; Grace, D.; Redding, D.W.; Wood, J.L.N. Environmental limits of Rift Valley fever revealed using ecoepidemiological mechanistic models. Proc. Natl. Acad. Sci. USA 2018, 115, E7448–E7456. [Google Scholar] [CrossRef] [PubMed]
- Mpeshe, S.C.; Luboobi, L.S.; Nkansah-Gyekye, Y. Modeling the Impact of Climate Change on the Dynamics of Rift Valley Fever. Comput. Math. Method M. 2014. [Google Scholar] [CrossRef]
- Barker, C.M.; Niu, T.; Reisen, W.K.; Hartley, D.M. Data-Driven Modeling to Assess Receptivity for Rift Valley Fever Virus. PLoS Negl. Trop. Dis. 2013, 7, e2515. [Google Scholar] [CrossRef]
- Shocket, M.S.; Ryan, S.J.; Mordecai, E.A. Temperature explains broad patterns of Ross River virus transmission. eLife 2018, 7, e37762. [Google Scholar] [CrossRef]
- Barker, C.M. Models and Surveillance Systems to Detect and Predict West Nile Virus Outbreaks. J. Med. Entomol. 2019, 56, 1508–1515. [Google Scholar] [CrossRef]
- Naish, S.; Mengersen, K.; Hu, W.; Tong, S. Forecasting the Future Risk of Barmah Forest Virus Disease under Climate Change Scenarios in Queensland, Australia. PLoS ONE 2013, 8, e62843. [Google Scholar] [CrossRef]
- Naish, S.; Mengersen, K.; Tong, S. Spatial analysis of risk factors for transmission of the Barmah Forest virus in Queensland, Australia. Geospat. Health 2013, 8, 289–299. [Google Scholar] [CrossRef] [Green Version]
- Takeda, T.; Whitehouse, C.; Brewer, M.; Gettman, A.; Mather, T. Arbovirus surveillance in Rhode Island: Assessing potential ecologic and climatic correlates. J. Am. Mosq. Control Assoc. 2003, 19, 179–189. [Google Scholar] [PubMed]
- Brummer-Korvenkontio, M.; Vapalahti, O.; Kuusisto, P.; Saikku, P.; Manni, T.; Koskela, P.; Nygren, T.; Brummer-Korvenkontio, H.; Vaheri, A. Epidemiology of Sindbis virus infections in Finland 1981-96: possible factors explaining a peculiar disease pattern. Epidemiol. Infect. 2002, 129, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Uejio, C.K.; Kemp, A.; Comrie, A.C. Climatic Controls on West Nile Virus and Sindbis Virus Transmission and Outbreaks in South Africa. Vector Borne Zoonotic Dis. 2012, 12, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Barker, C.; Reisen, W.; Kramer, V. California state mosquito-borne virus surveillance and response plan: A retrospective evaluation using conditional simulations. Am. J. Trop. Med. Hyg. 2003, 68, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Sellers, R.; Maarouf, A. Weather factors in the prediction of western equine encephalitis epidemics in Manitoba. Epidemiol. Infect. 1993, 111, 373–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, C.M.; Johnson, W.O.; Eldridge, B.F.; Park, B.K.; Melton, F.; Reisen, W.K. Temporal connections between Culex tarsalis abundance and transmission of Western Equine Encephalomyelitis Virus in California. Am. J. Trop. Med. Hyg. 2010, 82, 1185–1193. [Google Scholar] [CrossRef]
- Unnasch, R.S.; Sprenger, T.; Katholi, C.R.; Cupp, E.W.; Hill, G.E.; Unnasch, T.R. A dynamic transmission model of eastern equine encephalitis virus. Ecol. Model 2006, 192, 425–440. [Google Scholar] [CrossRef] [Green Version]
- Skaff, N.K.; Armstrong, P.M.; Andreadis, T.G.; Cheruvelil, K.S. Wetland characteristics linked to broad-scale patterns in Culiseta melanura abundance and eastern equine encephalitis virus infection. Parasit Vectors 2017, 10, 501. [Google Scholar] [CrossRef] [Green Version]
- Hahn, M.B.; Monaghan, A.J.; Hayden, M.H.; Eisen, R.J.; Delorey, M.J.; Lindsey, N.P.; Nasci, R.S.; Fischer, M. Meteorological conditions associated with increased incidence of West Nile virus disease in the United States, 2004–2012. Am. J. Trop. Med. Hyg. 2015, 92, 1013–1022. [Google Scholar] [CrossRef]
- Shaman, J.; Harding, K.; Campbell, S.R. Meteorological and hydrological influences on the spatial and temporal prevalence of West Nile virus in Culex mosquitoes, Suffolk County, New York. J. Med. Entomol. 2011, 48, 867–875. [Google Scholar] [CrossRef]
- Liu, A.; Lee, V.; Galusha, D.; Slade, M.D.; Diuk-Wasser, M.; Andreadis, T.; Scotch, M.; Rabinowitz, P.M. Risk factors for human infection with West Nile Virus in Connecticut: A multi-year analysis. Int. J. Health Geogr. 2009, 8, 67. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.G. The Role of Hydrogeography and Climate in the Landscape Epidemiology of West Nile Virus in New York State from 2000 to 2010. PLoS ONE 2012, 7, e30620. [Google Scholar] [CrossRef] [PubMed]
- Sallam, M.; Michaels, S.; Riegel, C.; Pereira, R.; Zipperer, W.; Lockaby, B.; Koehler, P. Spatio-temporal distribution of vector-host contact (VHC) ratios and ecological niche modeling of the West Nile virus mosquito vector, Culex quinquefasciatus, in the City of New Orleans, LA, USA. Int. J. Environ. Res. Public Health 2017, 14, 892. [Google Scholar] [CrossRef] [PubMed]
- Tran, A.; Sudre, B.; Paz, S.; Rossi, M.; Desbrosse, A.; Chevalier, V.; Semenza, J.C. Environmental predictors of West Nile fever risk in Europe. Int. J. Health Geogr. 2014, 13, 26. [Google Scholar] [CrossRef] [PubMed]
- Paz, S. The West Nile Virus outbreak in Israel (2000) from a new perspective: The regional impact of climate change. Int. J. Environ. Health Res. 2006, 16, 1–13. [Google Scholar] [CrossRef]
- Platonov, A.E.; Tolpin, V.A.; Gridneva, K.A.; Titkov, A.V.; Platonova, O.V.; Kolyasnikova, N.M.; Busani, L.; Rezza, G. The Incidence of West Nile Disease in Russia in Relation to Climatic and Environmental Factors. Int. J. Environ. Res. Public Health 2014, 11, 1211–1232. [Google Scholar] [CrossRef] [Green Version]
- Platonov, A.E.; Fedorova, M.V.; Karan, L.S.; Shopenskaya, T.A.; Platonova, O.V.; Zhuravlev, V.I. Epidemiology of West Nile infection in Volgograd, Russia, in relation to climate change and mosquito (Diptera: Culicidae) bionomics. Parasitol. Res. 2008, 103, 45–53. [Google Scholar] [CrossRef]
- Bakonyi, T.; Ferenczi, E.; Erdelyi, K.; Kutasi, O.; Csoergo, T.; Seidel, B.; Weissenboeck, H.; Brugger, K.; Ban, E.; Nowotny, N. Explosive spread of a neuroinvasive lineage 2 West Nile virus in Central Europe, 2008/2009. Vet. Microbiol. 2013, 165, 61–70. [Google Scholar] [CrossRef]
- Marcantonio, M.; Rizzoli, A.; Metz, M.; Rosa, R.; Marini, G.; Chadwick, E.; Neteler, M. Identifying the Environmental Conditions Favouring West Nile Virus Outbreaks in Europe. PLoS ONE 2015, 10, e0121158. [Google Scholar] [CrossRef]
- Davis, J.K.; Vincent, G.; Hildreth, M.B.; Kightlinger, L.; Carlson, C.; Wimberly, M.C. Integrating Environmental monitoring and mosquito surveillance to predict vector-borne disease: prospective forecasts of a West Nile virus outbreak. PLoS Curr. 2017, 9. [Google Scholar] [CrossRef]
- Gibbs, S.; Wimberly, M.; Madden, M.; Masour, J.; Yabsley, M.; Stallknecht, D. Factors affecting the geographic distribution of West Nile virus in Georgia, USA: 2002–2004. Vector Borne Zoonotic Dis. 2006, 6, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-C.; Epp, T.; Jenkins, E.; Waldner, C.; Curry, P.S.; Soos, C. Modeling Monthly Variation of Culex tarsalis (Diptera: Culicidae) Abundance and West Nile Virus Infection Rate in the Canadian Prairies. Int. J. Environ. Res. Public Health 2013, 10, 3033–3051. [Google Scholar] [CrossRef] [PubMed]
- Epp, T.Y.; Waldner, C.L.; Berke, O. Predicting Geographical Human Risk of West Nile Virus—Saskatchewan, 2003 and 2007. Can. J. Public Health 2009, 100, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Xu, Z.; Zhang, J.; Mao, D.; Luo, C.; He, Y.; Liang, G.; Lu, B.; Bisesi, M.S.; Sun, Q.; et al. Regional Impact of Climate on Japanese Encephalitis in Areas Located near the Three Gorges Dam. PLoS ONE 2014, 9, e84326. [Google Scholar] [CrossRef]
- Mogi, M. Relationship between number of human Japanese encephalitis cases and summer meteorological conditions in Nagasaki, Japan. Am. J. Trop. Med. Hyg. 1983, 32, 170–174. [Google Scholar] [CrossRef]
- Bi, P.; Zhang, Y.; Parton, K.A. Weather variables and Japanese encephalitis in the metropolitan area of Jinan city, China. J. Infect. 2007, 55, 551–556. [Google Scholar] [CrossRef]
- Lin, H.; Yang, L.; Liu, Q.; Wang, T.; Hossain, S.R.; Ho, S.C.; Tian, L. Time series analysis of Japanese encephalitis and weather in Linyi City, China. Int. J. Public Health 2012, 57, 289–296. [Google Scholar] [CrossRef]
- Lin, C.-L.; Chang, H.-L.; Lin, C.-Y.; Chen, K.-T. Seasonal Patterns of Japanese Encephalitis and Associated Meteorological Factors in Taiwan. Int. J. Environ. Res. Public Health 2017, 14, 1317. [Google Scholar] [CrossRef]
- Hsu, S.M.; Yen, A.M.F.; Chen, T.H.H. The impact of climate on Japanese encephalitis. Epidemiol. Infect. 2008, 136, 980–987. [Google Scholar] [CrossRef]
- Reiter, P. Weather, vector biology, and arboviral recrudescence. In The Arboviruses: Epidemiology and Ecology; Monath, T., Ed.; CRC Press: Boca Raton, FL, USA, 1988; Volume 1, pp. 245–255. [Google Scholar]
- Reisen, W.; Lothrop, H.; Chiles, R.; Cusack, R.; Green, E.; Fang, Y.; Kensington, M. Persistence and amplification of St. Louis encephalitis virus in the Coachella Valley of California, 2000–2001. J. Med. Entomol. 2002, 39, 793–805. [Google Scholar] [CrossRef]
- Reisen, W.; Hardy, J.; Presser, S.; Milby, M.; Meyer, R.; Durso, S.; Wargo, M.; Gordon, E. Mosquito and arbovirus ecology in southeastern California, 1986–1990. J. Med. Entomol. 1992, 29, 512–524. [Google Scholar] [CrossRef] [PubMed]
- Bi, P.; Tong, S.; Donald, K.; Parton, K.; Ni, J. Climate variability and transmission of Japanese encephalitis in Eastern China. Vector Borne Zoonotic Dis. 2003, 3, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, W.; Magalhaes, R.J.S.; Bi, P.; Ding, F.; Sun, H.; Li, S.; Yin, W.; Wei, L.; Liu, Q.; et al. The role of environmental factors in the spatial distribution of Japanese encephalitis in mainland China. Environ. Int. 2014, 73, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Prow, N. The changing epidemiology of Kunjin virus in Australia. Int. J. Environ. Res. Public Health 2013, 10, 6255–6272. [Google Scholar] [CrossRef] [PubMed]
- Jansen, C.; Ritchie, S.; van den Hurk, A. The role of Australian mosquito species in the transmission of endemic and exotic West Nile virus strains. Int. J. Environ. Res. Public Health 2013, 10, 3735–3752. [Google Scholar] [CrossRef] [PubMed]
- Hoover, K.C.; Barker, C.M. West Nile virus, climate change, and circumpolar vulnerability. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 283–300. [Google Scholar] [CrossRef]
- Harrigan, R.J.; Thomassen, H.A.; Buermann, W.; Smith, T.B. A continental risk assessment of West Nile virus under climate change. Glob. Chang. Biol. 2014, 20, 2417–2425. [Google Scholar] [CrossRef]
- Semenza, J.C.; Tran, A.; Espinosa, L.; Sudre, B.; Domanovic, D.; Paz, S. Climate change projections of West Nile virus infections in Europe: implications for blood safety practices. Environ. Health 2016, 15, S28. [Google Scholar] [CrossRef]
- Fros, J.J.; Geertsema, C.; Vogels, C.B.; Roosjen, P.P.; Failloux, A.-B.; Vlak, J.M.; Koenraadt, C.J.; Takken, W.; Pijlman, G.P. West Nile Virus: High Transmission Rate in North-Western European Mosquitoes Indicates Its Epidemic Potential and Warrants Increased Surveillance. PLoS Negl. Trop. Dis. 2015, 9, e0003956. [Google Scholar] [CrossRef]
- Chen, C.C.; Jenkins, E.; Epp, T.; Waldner, C.; Curry, P.S.; Soos, C. Climate change and West Nile virus in a highly endemic region of North America. Int. J. Environ. Res. Public Health 2013, 10, 3052–3071. [Google Scholar] [CrossRef]
- Paz, S.; Semenza, J.C. Environmental drivers of West Nile fever epidemiology in Europe and Western Asia—A review. Int. J. Environ. Res. Public Health 2013, 10, 3543–3562. [Google Scholar] [CrossRef] [PubMed]
- Reeves, W.C.; Hardy, J.L.; Reisen, W.K.; Milby, M.M. Potential effect of global warming on mosquito-borne arboviruses. J. Med. Entomol. 1994, 31, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Hess, A.; Cherubin, C.; LaMotte, L. Relation of temperature to activity of western and St. Louis encephalitis viruses. Am. J. Trop. Med. Hyg. 1963, 12, 657–667. [Google Scholar] [CrossRef]
- Borah, J.; Dutta, P.; Khan, S.A.; Mahanta, J. Association of Weather and Anthropogenic Factors for Transmission of Japanese Encephalitis in an Endemic Area of India. EcoHealth 2013, 10, 129–136. [Google Scholar] [CrossRef]
- Murty, U.S.; Rao, M.S.; Arunachalam, N. The effects of climatic factors on the distribution and abundance of Japanese encephalitis vectors in Kurnool district of Andhra Pradesh, India. J. Vector Dis. 2010, 47, 26–32. [Google Scholar]
- Upadhyayula, S.M.; Mutheneni, S.R.; Nayanoori, H.K.; Natarajan, A.; Goswami, P. Impact of weather variables on mosquitoes infected with Japanese encephalitis virus in Kurnool district, Andhra Pradesh. Asian Pac. J. Trop. Med. 2012, 5, 337–341. [Google Scholar] [CrossRef] [Green Version]
- Impoinvil, D.E.; Ooi, M.H.; Diggle, P.J.; Caminade, C.; Cardosa, M.J.; Morse, A.P.; Baylis, M.; Solomon, T. The Effect of Vaccination Coverage and Climate on Japanese Encephalitis in Sarawak, Malaysia. PLoS Negl. Trop. Dis. 2013, 7, e2334. [Google Scholar] [CrossRef]
- Hardy, J.L.; Rosen, L.; Reeves, W.C.; Scrivani, R.P.; Presser, S.B. Experimental transovarial transmission of St. Louis encephalitis virus by Culex and Aedes mosquitoes. Am. J. Trop. Med. Hyg. 1984, 33, 166–175. [Google Scholar] [CrossRef]
- Heinrich, N.; Saathoff, E.; Weller, N.; Clowes, P.; Kroidl, I.; Ntinginya, E.; Machibya, H.; Maboko, L.; Loescher, T.; Dobler, G.; et al. High Seroprevalence of Rift Valley Fever and Evidence for Endemic Circulation in Mbeya Region, Tanzania, in a Cross-Sectional Study. PLoS Negl. Trop. Dis. 2012, 6, e1557. [Google Scholar] [CrossRef]
- Anyamba, A.; Small, J.L.; Britch, S.C.; Tucker, C.J.; Pak, E.W.; Reynolds, C.A.; Crutchfield, J.; Linthicum, K.J. Recent Weather Extremes and Impacts on Agricultural Production and Vector-Borne Disease Outbreak Patterns. PLoS ONE 2014, 9, e92538. [Google Scholar] [CrossRef]
- Clements, A.C.A.; Pfeiffer, D.U.; Martin, V.; Pittiglio, C.; Best, N.; Thiongane, Y. Spatial risk assessment of Rift Valley fever in Senegal. Vector Borne Zoonotic Dis. 2007, 7, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Martin, V.; Chevalier, V.; Ceccato, P.; Anyamba, A.; De Simone, L.; Lubroth, J.; de la Rocque, S.; Domenech, J. The impact of climate change on the epidemiology and control of Rift Valley fever. Rev. Sci Tech. OIE 2008, 27, 413–426. [Google Scholar] [CrossRef]
- Metras, R.; Fournie, G.; Dommergues, L.; Camacho, A.; Cavalerie, L.; Merot, P.; Keeling, M.J.; Cetre-Sossah, C.; Cardinale, E.; Edmunds, W.J. Drivers for Rift Valley fever emergence in Mayotte: A Bayesian modelling approach. PLoS Negl. Trop. Dis. 2017, 11, e0005767. [Google Scholar] [CrossRef] [PubMed]
- Gatton, M.; Kay, B.; Ryan, P. Environmental predictors of Ross River virus disease outbreaks in Queensland, Australia. Am. J. Trop. Med. Hyg. 2005, 72, 792–799. [Google Scholar] [CrossRef]
- Impoinvil, D.E.; Solomon, T.; Schluter, W.W.; Rayamajhi, A.; Bichha, R.P.; Shakya, G.; Caminade, C.; Baylis, M. The Spatial Heterogeneity between Japanese Encephalitis Incidence Distribution and Environmental Variables in Nepal. PLoS ONE 2011, 6, e22192. [Google Scholar] [CrossRef]
- Cotar, A.I.; Falcuta, E.; Prioteasa, L.F.; Dinu, S.; Ceianu, C.S.; Paz, S. Transmission Dynamics of the West Nile Virus in Mosquito Vector Populations under the Influence of Weather Factors in the Danube Delta, Romania. EcoHealth 2016, 13, 796–807. [Google Scholar] [CrossRef]
- Shaman, J.; Day, J.F.; Stieglitz, M. Drought-induced amplification and epidemic transmission of West Nile virus in southern Florida. J. Med. Entomol. 2005, 42, 134–141. [Google Scholar] [CrossRef]
- Paull, S.H.; Horton, D.E.; Ashfaq, M.; Rastogi, D.; Kramer, L.D.; Diffenbaugh, N.S.; Kilpatrick, A.M. Drought and immunity determine the intensity of West Nile virus epidemics and climate change impacts. Proc. R. Soc. B 2017, 284, 20162078. [Google Scholar] [CrossRef]
- Johnson, B.J.; Sukhdeo, M.V.K. Drought-Induced Amplification of Local and Regional West Nile Virus Infection Rates in New Jersey. J. Med. Entomol. 2013, 50, 195–204. [Google Scholar] [CrossRef]
- Day, J.F.; Shaman, J. Using hydrologic conditions to forecast the risk of focal and epidemic arboviral transmission in peninsular Florida. J. Med. Entomol. 2008, 45, 458–465. [Google Scholar] [CrossRef]
- Shaman, J.; Day, J.F.; Stieglitz, M. Drought-induced amplification of Saint Louis encephalitis virus, Florida. Emerg Infect. Dis. 2002, 8, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Reisen, W.; Meyer, R.; Milby, M.; Presser, S.; Emmons, R.; Hardy, J.; Reeves, W. Ecological observations on the 1989 outbreak of St-Louis Encephalitis-virus in the southern San Joaquin Valley of California. J. Med. Entomol. 1992, 29, 472–482. [Google Scholar] [CrossRef]
- Day, J.F.; Shaman, J. Severe Winter Freezes Enhance St. Louis Encephalitis Virus Amplification and Epidemic Transmission in Peninsular Florida. J. Med. Entomol. 2009, 46, 1498–1506. [Google Scholar] [CrossRef] [PubMed]
- Day, J.F.; Stark, L.M. Avian serology in a St. Louis encephalitis epicenter before, during, and after a widespread epidemic in south Florida, USA. J. Med. Entomol. 1999, 36, 614–624. [Google Scholar] [CrossRef] [PubMed]
- Jourdain, E.; Olsen, B.; Lundkvist, A.; Hubálek, Z.; Šikutová, S.; Waldenström, J.; Karlsson, M.; Wahlström, M.; Jozan, M.; Falk, K.I. Surveillance for West Nile virus in wild birds from northern Europe. Vector Borne Zoonotic Dis. 2011, 11, 77–79. [Google Scholar] [CrossRef]
- Li, Y.-X.; Li, M.-H.; Fu, S.-H.; Chen, W.-X.; Liu, Q.-Y.; Zhang, H.-L.; Da, W.; Hu, S.-L.; Mu, S.D.L.; Bai, J.; et al. Japanese encephalitis, Tibet, China. Emerg Infect. Dis. 2011, 17, 934–936. [Google Scholar] [CrossRef]
- Ho, S.H.; Speldewinde, P.; Cook, A. A Bayesian Belief Network for Murray Valley encephalitis virus risk assessment in Western Australia. Int. J. Health Geogr. 2016, 15, 6. [Google Scholar] [CrossRef]
- Reisen, W.; Kramer, L.; Chiles, R.; Wolfe, T.; Green, E. Simulated overwintering of Encephalitis viruses in diapausing female Culex tarsalis (Diptera: Culicidae). J. Med. Entomol. 2002, 39, 226–233. [Google Scholar] [CrossRef]
- Montecino-Latorre, D.; Barker, C.M. Overwintering of West Nile virus in a bird community with a communal crow roost. Sci. Rep. 2018, 8, 6088. [Google Scholar] [CrossRef]
- Reisen, W.K.; Wheeler, S.S. Overwintering of West Nile Virus in the United States. J. Med. Entomol. 2019, 56, 1498–1507. [Google Scholar] [CrossRef]
- Andreadis, T.G.; Anderson, J.F.; Vossbrinck, C.R.; Main, A.J. Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999–2003. Vector Borne Zoonotic Dis. 2004, 4, 360–378. [Google Scholar] [CrossRef] [PubMed]
- Paz, S.; Malkinson, D.; Green, M.S.; Tsioni, G.; Papa, A.; Danis, K.; Sirbu, A.; Ceianu, C.; Katalin, K.; Ferenczi, E.; et al. Permissive Summer Temperatures of the 2010 European West Nile Fever Upsurge. PLoS ONE 2013, 8, e56398. [Google Scholar] [CrossRef] [PubMed]
- Ukawuba, I.; Shaman, J. Association of spring-summer hydrology and meteorology with human West Nile virus infection in West Texas, USA, 2002–2016. Parasit Vectors 2018, 11, 224. [Google Scholar] [CrossRef] [PubMed]
- Conte, A.; Candeloro, L.; Ippoliti, C.; Monaco, F.; De Massis, F.; Bruno, R.; Di Sabatino, D.; Luisa Danzetta, M.; Benjelloun, A.; Belkadi, B.; et al. Spatio-Temporal Identification of Areas Suitable for West Nile Disease in the Mediterranean Basin and Central Europe. PLoS ONE 2015, 10, e0146024. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, A.M.; Kramer, L.D.; Jones, M.J.; Marra, P.P.; Daszak, P. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol. 2006, 4, e82. [Google Scholar] [CrossRef]
- Naish, S.; Hu, W.; Nicholls, N.; Mackenzie, J.; McMichael, A.; Dale, P.; Tong, S. Weather variability, tides, and Barmah Forest virus disease in the Gladstone region, Australia. Environ. Health Perspect. 2006, 114, 678–683. [Google Scholar] [CrossRef]
- Naish, S.; Hu, W.; Nicholls, N.; Mackenzie, J.S.; Dale, P.; McMichael, A.J.; Tong, S. Socio-environmental predictors of Barmah forest virus transmission in coastal areas, Queensland, Australia. Trop. Med. Int. Health 2009, 14, 247–256. [Google Scholar] [CrossRef]
- Simpson, E.H. The interpretation of interaction in contingency tables. J. Royal Stat. Soc. B 1951, 13, 238–241. [Google Scholar] [CrossRef]
- Blyth, C.R. On Simpson’s Paradox and the Sure-Thing Principle. J. Am. Stat. Assoc. 1972, 67, 364–366. [Google Scholar] [CrossRef]
- Woodruff, R.E.; Guest, C.S.; Gainer, M.G.; Becker, N.; Lindsay, M. Early warning of ross River Virus epidemics—Combining surveillance data on climate and mosquitoes. Epidemiology 2006, 17, 569–575. [Google Scholar] [CrossRef]
- Woodruff, R.E.; Guest, C.S.; Garner, M.G.; Becker, N.; Lindesay, J.; Carvan, T.; Ebi, K. Predicting Ross River virus epidemics from regional weather data. Epidemiology 2002, 384–393. [Google Scholar] [CrossRef] [PubMed]
- McIver, L.; Xiao, J.; Lindsay, M.D.; Rowe, T.; Yun, G. A climate-based early warning system to predict outbreaks of Ross River virus disease in the Broome region of Western Australia. Aust. N. Z. J. Public Health 2010, 34, 89–90. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.R.; Fricker, S.R.; Kokkinn, M.J. Environmental and entomological factors determining Ross River virus activity in the River Murray Valley of South Australia. Aust. N. Z. J. Public Health 2009, 33, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Bi, P.; Hiller, J.E.; Cameron, A.S.; Zhang, Y.; Givney, R. Climate variability and Ross River virus infections in Riverland, South Australia, 1992–2004. Epidemiol. Infect. 2009, 137, 1486–1493. [Google Scholar] [CrossRef] [PubMed]
- Werner, A.K.; Goater, S.; Carver, S.; Robertson, G.; Allen, G.R.; Weinstein, P. Environmental drivers of Ross River virus in southeastern Tasmania, Australia: towards strengthening public health interventions. Epidemiol. Infect. 2012, 140, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Koolhof, I.S.; Bettiol, S.; Carver, S. Fine-temporal forecasting of outbreak probability and severity: Ross River virus in Western Australia. Epidemiol. Infect. 2017, 145, 2949–2960. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.; Bi, P.; Donald, K.; McMichael, A. Climate variability and Ross River virus transmission. J. Epidemiol. Community Health 2002, 56, 617–621. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Clements, A.; Williams, G.; Tong, S.; Mengersen, K. Bayesian Spatiotemporal Analysis of Socio-Ecologic Drivers of Ross River Virus Transmission in Queensland, Australia. Am. J. Trop. Med. Hyg. 2010, 83, 722–728. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Nicholls, N.; Lindsay, M.; Dale, P.; McMichael, A.; Mackenzie, J.; Tong, S. Development of a predictive model for Ross River virus disease in Brisbane, Australia. Am. J. Trop. Med. Hyg. 2004, 71, 129–137. [Google Scholar] [CrossRef]
- Kelly-Hope, L.; Purdie, D.; Kay, B. Differences in climatic factors between Ross River virus disease outbreak and nonoutbreak years. J. Med. Entomol. 2004, 41, 1116–1122. [Google Scholar] [CrossRef]
- Tong, S.; Hu, W. Different responses of Ross River virus to climate variability between coastline and inland cities in Queensland, Australia. Occup. Environ. Med. 2002, 59, 739–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, S.; Hu, W.; McMichael, A. Climate variability and Ross River virus transmission in Townsville region, Australia, 1985–1996. Trop. Med. Int. Health 2004, 9, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Linthicum, K.; Anyamba, A.; Tucker, C.; Kelley, P.; Myers, M.; Peters, C. Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science 1999, 285, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Anyamba, A.; Chretien, J.-P.; Small, J.; Tucker, C.J.; Formenty, P.B.; Richardson, J.H.; Britch, S.C.; Schnabelf, D.C.; Erickson, R.L.; Linthicum, K.J. Prediction of a Rift Valley fever outbreak. Proc. Natl. Acad. Sci. USA 2009, 106, 955–959. [Google Scholar] [CrossRef] [Green Version]
- Gikungu, D.; Wakhungu, J.; Siamba, D.; Neyole, E.; Muita, R.; Bett, B. Dynamic risk model for Rift Valley fever outbreaks in Kenya based on climate and disease outbreak data. Geospat Health 2016, 11, 95–103. [Google Scholar] [CrossRef]
- Mweya, C.N.; Holst, N.; Mboera, L.E.G.; Kimera, S.I. Simulation Modelling of Population Dynamics of Mosquito Vectors for Rift Valley Fever Virus in a Disease Epidemic Setting. PLoS ONE 2014, 9, e108430. [Google Scholar] [CrossRef]
- Sindato, C.; Stevens, K.B.; Karimuribo, E.D.; Mboera, L.E.G.; Paweska, J.T.; Pfeiffer, D.U. Spatial Heterogeneity of Habitat Suitability for Rift Valley Fever Occurrence in Tanzania: An Ecological Niche Modelling Approach. PLOS Negl. Trop. Dis. 2016, 10, e0005002. [Google Scholar] [CrossRef]
- Metras, R.; Jewell, C.; Porphyre, T.; Thompson, P.N.; Pfeiffer, D.U.; Collins, L.M.; White, R.G. Risk factors associated with Rift Valley fever epidemics in South Africa in 2008-11. Sci. Rep. 2015, 5, 9492. [Google Scholar] [CrossRef]
- Nicholas, D.E.; Delamater, P.L.; Waters, N.M.; Jacobsen, K.H. Geographically weighted discriminant analysis of environmental conditions associated with Rift Valley fever outbreaks in South Africa. Spat. Spatio-temporal Epidemiol. 2016, 17, 75–83. [Google Scholar] [CrossRef]
- Arsevska, E.; Hellal, J.; Mejri, S.; Hammami, S.; Marianneau, P.; Calavas, D.; Henaux, V. Identifying Areas Suitable for the Occurrence of Rift Valley Fever in North Africa: Implications for Surveillance. Transbound. Emerg. Dis. 2016, 63, 658–674. [Google Scholar] [CrossRef]
- Sanchez-Vizcaino, F.; Martinez-Lopez, B.; Manuel Sanchez-Vizcaino, J. Identification of suitable areas for the occurrence of Rift Valley fever outbreaks in Spain using a multiple criteria decision framework. Vet. Microbiol. 2013, 165, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Konrad, S.K.; Miller, S.N. A temperature-limited assessment of the risk of Rift Valley fever transmission and establishment in the continental United States of America. Geospat Health 2012, 6, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.J.; Clark, M.P.; Craig, J.; Nijssen, B.; Wood, A.; Gutmann, E.; Mizukami, N.; Brekke, L.; Arnold, J.R. Gridded ensemble precipitation and temperature estimates for the contiguous United States. J. Hydrometeorol. 2015, 16, 2481–2500. [Google Scholar] [CrossRef]
- PRISM Climate Group Parameter-elevation Regression on Independent Slopes Model. Oregon State University, 2019. Available online: http://prism.oregonstate.edu (accessed on 30 October 2019).
- Haider, N.; Kirkeby, C.; Kristensen, B.; Kjaer, L.J.; Sorensen, J.H.; Bodker, R. Microclimatic temperatures increase the potential for vector-borne disease transmission in the Scandinavian climate. Sci. Rep. 2017, 7, 8175. [Google Scholar] [CrossRef] [PubMed]
- Blosser, E.M.; Lord, C.C.; Stenn, T.; Acevedo, C.; Hassan, H.K.; Reeves, L.E.; Unnasch, T.R.; Burkett-Cadena, N.D. Environmental Drivers of Seasonal Patterns of Host Utilization by Culiseta melanura (Diptera: Culicidae) in Florida. J. Med. Entomol. 2017, 54, 1365–1374. [Google Scholar] [CrossRef]
Species | Primary Vector | Primary Hosts | Distribution 1 | Human Disease |
---|---|---|---|---|
Togaviridae: alphaviruses | ||||
Eastern equine encephalitis virus (EEEV) [4] | mosquito (Culiseta, Culex) | bird | NA, C/SA | febrile illness, encephalitis |
Western equine encephalitis virus (WEEV) [5] | mosquito (Culiseta, Culex) | bird | NA, C/SA | febrile illness, encephalitis |
Sindbis virus (SINV) [6] | mosquito (Culex) | bird | AF, EU, AS, ME, AU | febrile illness, arthralgia |
Ross River virus (RRV) [7,8,9,10] | mosquito (Aedes, Culex) | mammals (marsupials) | AU | febrile illness, arthralgia |
Barmah forest virus (BFV) [7] | mosquito (Aedes) | mammals (marsupials) | AU | febrile illness, arthralgia |
Venezuelan equine encephalitis virus (VEEV) [11] | mosquito (Aedes, Culex) | small mammal, equids | NA, C/SA | febrile illness, encephalitis |
Mayaro virus (MAV) [12] | mosquito (Haemagous) | non-human primate | C/SA | febrile illness, arthralgia |
Bunyaviridae: orthobunyaviruses | ||||
Lacrosse virus (LACV) [13] | mosquito (Aedes) | small mammal | NA | febrile illness, encephalitis |
Bunyaviridae: phleboviruses | ||||
Rift Valley fever virus (RVFV) [14,15] | mosquito (Aedes/Culex), phlebotomus flies | mammal (ruminants) | AF | febrile illness, hemorrhagic fever, encephalitis |
Flaviviidae: flaviviruses | ||||
Japanese encephalitis virus (JEV) [15,16,17,18,19,20] | mosquito (Culex) | bird, swine | AS | febrile illness, encephalitis |
Murray valley encephalitis virus (MVEV) [21] | mosquito (Culex) | bird | AU | febrile illness, encephalitis |
St. Louis encephalitis virus (SLEV) [22,23] | mosquito (Culex) | bird | NA, C/SA | febrile illness, encephalitis |
West Nile virus (WNV) [15,24,25,26,27] | mosquito (Culex) | bird | NA, C/SA, AF, EU, ME, AS, AU | febrile illness, encephalitis |
Virus | Strain | Species | Population(s) | Temperatures (°C) | Results | |
---|---|---|---|---|---|---|
Chamberlain and Sudia, 1955 | EEEV | AR167 | Ae. triseratus | colony | 21, 27, 32, 21–32 (fluctuating) | Decreased EIP with increased temperatures. Fluctuating similar to mean temperatures |
Hurlbut 1973 | SLEV | 1966 | Cx. quinque-fasciatus | San Antonio, TX (colonized) | 10–30 | Decreased EIP with increased temperatures from 10–30 °C |
Richards et al., 2009 | SLEV | TBH28 | Cx. quinque-fasciatus | Alachua/Indian River Co, FL (colonized) | 25, 28 | Increased viral load and competence at higher temperature (28 °C). Magnitude of effect is population, dose and age dependent. |
Takahashi 1976 | JEV | JaGAr #01 | Cx. tritaen-iorhynchus | Japan (colonized) | 20, 28 | Higher replication and competence at 28 °C. |
Kramer et al., 1983 | WEEV | BFS1703 | Cx. tarsalis | Kern Co, CA, F0/colony | 18, 25, 32 | Increased competence up to 32 °C to day 6. Decreased competence from 25 °C to 32 °C beyond day 6. |
Turell 1985 | RVFV | ZH501 | Cx. Pipiens Ae. taeniorhyn-chus | Egypt (Cx, colonized) Vero Beach, FL (Ae., colonized) | 13, 26, 33 | Decreased EIP at higher temperatures up to 33 °C for both species. Increased infectivity at higher temperatures in Cx. pipiens. |
Turell 1989 | RVFV | ZH501 | Ae. fowleri | Senegal (colonized) | 17, 28, 17–28 (cycling) | Similar infection rates and decreased EIP at higher mean temperatures. |
Turell 1993 | RVFV VEEV | RVFV ZH501 VEEV IC-V3000 | Ae. taeniorhyn-chus | Vero Beach, FL (colonized) | 19, 26 | Lower rearing temperature increased susceptibility. Higher holding temperature (26 °C) decreased EIP. |
Brubaker and Turell, 1998 | RVFV | ZH501 | Cx. pipiens | Egypt (colonized) | 13, 17, 19, 26 | Increased competence (including infection) with increased temperatures up to 26 °C. |
Kay and Jennings, 2002 | RRV | B94/20 | Ae. vigilax | Townsville, Queensland (colonized) | 18, 25, 32 | Similar competence among temperatures through day 7 PF. Decreased competence at day 14 PF at 32 °C. |
Reisen et al., 2006 | WNV, SLEV, WEEV | WNV NY99, WNV SA, SLEV BFS1750, WEEV BFS1703 | Cx. tarsalis, Cx. univitattus | Kern Co., CA (colonized) | 10, 14, 18, 22, 26, 30 | Decreased EIP and increased viral load with increased temperature up to 30 °C and increased transmission rate over 18 °C. Strain and species-specific differences in magnitude of effect. |
Cornel et al., 1993 | WNV | H442 | Cx. univittatus | Johannesburg, South Africa F1-F8 | 14, 18, 23.5 (cycling), 26, 30 | Decreased EIP and increased replication/competence up to 26 °C (similar at 30 °C). |
Dohm et al., 2002 | WNV | NY99 | Cx. pipiens | Westchester, NY F3-F4 | 18, 20, 26, or 30 | Decreased EIP up to 30 °C and increased dissemination and transmission rates over 20 °C. |
Richards et al., 2007 | WNV | WN-FL03p2-3 | Cx. quinque-fasciatus | Gainesville, FL (colonized) | 25, 28, 30 | Increased overall competence with increased temperatures up to 30 °C, yet dissemination rates lower at intermediated temperature (28 °C). |
Kilpatrick et al., 2008 | WNV | NY99-3356 WN02-1956 | Cx. pipiens | PA (colonized) | 15, 18, 22, 32 | Increased competence with increasing temperatures up to 32 °C and magnitude of increase is virus strain-dependent. |
Anderson et al., 2010 | WNV | FL03p2-3 | Cx. quinque-fasciatus | Gainesville, FL (colonized) | 25, 28 | Increased viral load and vector competence at 28 °C at high and low virus dose. |
Danforth et al., 2015 | WNV | NY99/COAV03, KERN11 | Cx. tarsalis | Kern Co, CA (colonized) | 22, 30 | Decreased EIP and increased transmission rates at higher temperature (30 °C). No effect of viral strain found. |
Vogels et al., 2016 | WNV | Lin. 2, Greece 2010 | Cx. Pipiens Cx. Molestus hybrids | Netherlands, F3-F5 | 18, 23, 28 | Increased infection and transmission up to 28 °C for Cx. pipiens and hybrids. Decreased competence from 23 °C to 28 °C in Cx. molestus. |
Danforth et al., 2016 | WNV | KERN11 | Cx. tarsalis | Kern Co, CA (colonized) | 14.2, 21.5, 26.5, 29 (mean) 11.0, 13.5, 10.1, 14.2 (DTR) | Decreased EIP and increased transmissibility with increased temperatures. Results statistically similar to constant temperatures. |
Vogels et al., 2017 | WNV | Lin. 2, Greece 2010 | Cx. pipiens | Netherlands, Italy, F4-F6 | 18, 23, 28 | Increased infection and transmission from 18 °C to 23 °C in both populations and a further increase in transmission in Italian population from 23 °C to 28 °C. |
Virus 1 | # Studies Found 2 | # Studies + Temperature | % of Research on Temperature | % of ALL Found Studies on Temperature |
---|---|---|---|---|
EEEV | 608 | 34 | 6 | 3 |
WEEV | 433 | 45 | 10 | 5 |
SINV | 2873 4 | 195 4 | 7 | 20 |
RRV | 843 | 70 | 8 | 7 |
BFV | 178 | 19 | 11 | 2 |
VEEV | 955 | 38 | 4 | 4 |
MAV | 205 | 12 | 6 | 1 |
LACV | 573 | 27 | 5 | 3 |
RVFV | 1648 | 97 | 6 | 10 |
JEV | 5426 | 137 | 3 | 14 |
MVEV | 291 | 9 | 3 | 1 |
SLEV 3 | 687 | 49 | 7 | 5 |
WNV | 11310 | 526 | 5 | 53 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciota, A.T.; Keyel, A.C. The Role of Temperature in Transmission of Zoonotic Arboviruses. Viruses 2019, 11, 1013. https://doi.org/10.3390/v11111013
Ciota AT, Keyel AC. The Role of Temperature in Transmission of Zoonotic Arboviruses. Viruses. 2019; 11(11):1013. https://doi.org/10.3390/v11111013
Chicago/Turabian StyleCiota, Alexander T., and Alexander C. Keyel. 2019. "The Role of Temperature in Transmission of Zoonotic Arboviruses" Viruses 11, no. 11: 1013. https://doi.org/10.3390/v11111013
APA StyleCiota, A. T., & Keyel, A. C. (2019). The Role of Temperature in Transmission of Zoonotic Arboviruses. Viruses, 11(11), 1013. https://doi.org/10.3390/v11111013