Individual Trunk Segmentation and Diameter at Breast Height Estimation Using Mobile LiDAR Scanning
Abstract
:1. Introduction
- A comprehensive mobile data acquisition hardware system;
- An efficient algorithm for tree trunk extraction and segmentation;
- A high-precision process for estimating tree DBH.
2. Materials
2.1. Study Area
2.2. Hardware System Design
3. Methods
3.1. Data Acquisition
3.2. Terrain Extraction
3.3. Trunk Segmentation
3.4. DBH Estimation
3.5. Metrics for Segmentation
- TP (True Positive) represents the number of point clouds correctly identified as trees, referring to correct segmentation results;
- FN (False Negative) represents the number of point clouds that are actually trees but are not correctly identified as such, referring to missed trees;
- FP (False Positive) represents the number of point clouds incorrectly labeled as trees, referring to segments wrongly classified as trees.
3.6. Metrics for DBH Estimation
4. Results
4.1. Trunk Segmentation
4.2. DBH Estimation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raumonen, P.; Kaasalainen, M.; Åkerblom, M.; Kaasalainen, S.; Kaartinen, H.; Vastaranta, M.; Holopainen, M.; Disney, M.; Lewis, P. Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data. Remote Sens. 2013, 5, 491–520. [Google Scholar] [CrossRef]
- Calders, K.; Newnham, G.; Burt, A.; Murphy, S.; Raumonen, P.; Herold, M.; Culvenor, D.; Avitabile, V.; Disney, M.; Armston, J.; et al. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol. Evol. 2015, 6, 198–208. [Google Scholar]
- de Tanago, J.G.; Lau, A.; Bartholomeus, H.; Herold, M.; Avitabile, V.; Raumonen, P.; Martius, C.; Goodman, R.C.; Disney, M.; Manuri, S.; et al. Estimation of above-ground biomass of large tropical trees with terrestrial LiDAR. Methods Ecol. Evol. 2018, 9, 223–234. [Google Scholar]
- Reddy, C.S.; Satish, K.V. Assessment of Tree Density, Tree Cover, Species Diversity and Biomass in Semi-arid Human Dominated Landscape Using Large Area Inventory and Remote Sensing Data. Anthr. Sci. 2023, 2, 197–211. [Google Scholar]
- Gao, Q.; Kan, J. Automatic Forest DBH Measurement Based on Structure from Motion Photogrammetry. Remote Sens. 2022, 14, 2064. [Google Scholar] [CrossRef]
- Tinkham, W.T.; Swayze, N.C.; Hoffman, C.M.; Lad, L.E.; Battaglia, M.A. Modeling the Missing DBHs: Influence of Model Form on UAV DBH Characterization. Forests 2022, 13, 2077. [Google Scholar] [CrossRef]
- Ye, X.; Pan, J.; Shao, F.; Liu, G.; Lin, J.; Xu, D.; Liu, J. Exploring the potential of visual tracking and counting for trees infected with pine wilt disease based on improved YOLOv5 and StrongSORT algorithm. Comput. Electron. Agric. 2024, 218, 108671. [Google Scholar]
- Anagnostis, A.; Tagarakis, A.C.; Asiminari, G.; Papageorgiou, E.; Kateris, D.; Moshou, D.; Bochtis, D. A deep learning approach for anthracnose infected trees classification in walnut orchards. Comput. Electron. Agric. 2021, 182, 105998. [Google Scholar]
- Schönberger, J.L.; Frahm, J.-M. Structure-from-Motion Revisited. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113. [Google Scholar]
- Zhang, G.; Liu, H.; Dong, Z.; Jia, J.; Wong, T.; Bao, H. Efficient Non-Consecutive Feature Tracking for Robust Structure-From-Motion. IEEE Trans. Image Process. 2016, 25, 5957–5970. [Google Scholar]
- Cheng, L.; Chen, S.; Liu, X.; Xu, H.; Wu, Y.; Li, M.; Chen, Y. Registration of Laser Scanning Point Clouds: A Review. Sensors 2018, 18, 1641. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, D.; Zheng, Z.; Xu, C.; Pang, Y.; Zeng, Y. A clustering-based automatic registration of UAV and terrestrial LiDAR forest point clouds. Comput. Electron. Agric. 2024, 217, 108648. [Google Scholar]
- Bauwens, S.; Bartholomeus, H.; Calders, K.; Lejeune, P. Forest inventory with terrestrial LiDAR: A comparison of static and handheld mobile laser scanning. Forests 2016, 7, 127. [Google Scholar] [CrossRef]
- Tsuchiya, B.; Mochizuki, H.; Hoshikawa, T.; Suzuki, S. Error estimation of trunk diameter and tree height measured with a backpack LiDAR system in Japanese plantation forests. Landsc. Ecol. Eng. 2023, 19, 169–177. [Google Scholar]
- Su, J.; Fan, Y.; Mannan, A.; Wang, S.; Long, L.; Feng, Z. Real-Time Estimation of Tree Position, Tree Height, and Tree Diameter at Breast Height Point, Using Smartphones Based on Monocular SLAM. Forests 2024, 15, 939. [Google Scholar] [CrossRef]
- Shao, J.; Zhang, W.; Mellado, N.; Wang, N.; Jin, S.; Cai, S.; Luo, L.; Lejemble, T.; Yan, G. SLAM-aided forest plot mapping combining terrestrial and mobile laser scanning. Isprs J. Photogramm. Remote. Sens. 2020, 163, 214–230. [Google Scholar]
- Chiappini, S.; Pierdicca, R.; Malra, F.; Tonelli, E.; Malinverni, E.S.; Urbinati, C.; Vitali, A. Comparing Mobile Laser Scanner and manual measurements for dendrometric variables estimation in a black pine (Pinus nigra Arn.) plantation. Comput. Electron. Agric. 2022, 198, 107069. [Google Scholar]
- Trochta, J.; Krůček, M.; Vrška, T.; Král, K. 3D forest: An application for descriptions of three-dimensional forest structures using terrestrial LiDAR. PLoS ONE 2017, 12, e0176871. [Google Scholar]
- Proudman, A.; Ramezani, M.; Digumarti, S.T.; Chebrolu, N.; Fallon, M. Towards real-time forest inventory using handheld LiDAR. Robot. Auton. Syst. 2022, 157, 104240. [Google Scholar]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, W.; Qi, J.; Wan, P.; Shao, J.; Shen, A. Applicability analysis of cloth simulation filtering algorithm for mobile lidar point cloud. Isprs—Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2018, XLII-3, 107–111. [Google Scholar]
- Cheng, D.; Zhao, D.; Zhang, J.; Wei, C.; Tian, D. PCA-Based Denoising Algorithm for Outdoor Lidar Point Cloud Data. Sensors 2021, 21, 3703. [Google Scholar] [CrossRef] [PubMed]
- Wilkes, P.; Disney, M.; Armston, J.; Bartholomeus, H.; Bentley, L.; Brede, B.; Burt, A.; Calders, K.; Chavana-Bryant, C.; Clewley, D.; et al. TLS2trees: A scalable tree segmentation pipeline for TLS data. Methods Ecol. Evol. 2023, 14, 3083–3099. [Google Scholar]
- Zhou, S.; Kang, F.; Li, W.; Kan, J.; Zheng, Y.; He, G. Extracting diameter at breast height with a handheld mobile LiDAR system in an outdoor environment. Sensors 2019, 19, 3212. [Google Scholar] [CrossRef]
- Proudman, A.; Ramezani, M.; Fallon, M. Online estimation of diameter at breast height (DBH) of forest trees using a handheld LiDAR. In Proceedings of the 2021 European Conference on Mobile Robots (ECMR), Bonn, Germany, 31 August–3 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–7. [Google Scholar]
- Lindberg, E.; Holmgren, J.; Olsson, H. Random forest-based segmentation of MLS point clouds in forest environments. Int. J. Appl. Earth Obs. Geoinf. 2022, 105, 102634. [Google Scholar]
- Laino, D.; Cabo, C.; Prendes, C.; Janvier, R.; Ordonez, C.; Nikonovas, T.; Doerr, S.; Santin, C. 3DFin: A software for automated 3D forest inventories from terrestrial point clouds. For. Int. J. For. Res. 2024, 97, 479–496. [Google Scholar]
- Kelbe, D.; Aardt, J.V.; Romanczyk, P.; Leeuwen, M.V.; Cawse-Nicholson, K. Single-Scan Stem Reconstruction Using Low-Resolution Terrestrial Laser Scanner Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2015, 8, 1–14. [Google Scholar]
- Harikumar, A.; Bovolo, F.; Xinlian, L. An Effective Approach to 3D Stem Modeling and Branch-Knot Localization in Multiscan TLS Data. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 6075–6078. [Google Scholar]
- Liu, C.; Xing, Y.; Duanmu, J.; Tian, X. Evaluating Different Methods for Estimating Diameter at Breast Height from Terrestrial Laser Scanning. Remote Sens. 2018, 10, 513. [Google Scholar] [CrossRef]
- Hui, Z.; Lin, L.; Jin, S.; Xia, Y.; Ziggah, Y.Y. A Reliable DBH Estimation Method Using Terrestrial LiDAR Points through Polar Coordinate Transformation and Progressive Outlier Removal. Forests 2024, 15, 1031. [Google Scholar] [CrossRef]
- Heo, H.K.; Lee, D.K.; Park, J.H.; Thorne, J.H. Estimating the heights and diameters at breast height of trees in an urban park and along a street using mobile LiDAR. Landsc. Ecol. Eng. 2019, 15, 253–263. [Google Scholar]
- Chau, W.Y.; Chow, J.K.; Tan, T.J.; Jimmy, W.U.; Leung, M.L.; Tan, P.S.; Chiu, S.W.; Hau, B.C.H.; Cheng, H.C.; Wang, Y. Towards automatic urban tree inventory: Enhancing tree instance segmentation via moving object removal and a chord length-based DBH estimation approach. Comput. Electron. Agric. 2024, 226, 109378. [Google Scholar]
- Eybek, M.; Vataslar, C. An automated approach for extracting forest inventory data from individual trees using a handheld mobile laser scanner. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2021, 42, 515–528. [Google Scholar]
- Forsman, M.; Borlin, N.; Olofsson, K.; Reese, H.; Holmgren, J. Bias of cylinder diameter estimation from ground-based laser scanners with different beam widths: A simulation study. ISPRS J. Photogramm. Remote Sens. 2018, 135, 84–92. [Google Scholar]
- Xu, W.; Cai, Y.; He, D.; Lin, J.; Zhang, F. FAST-LIO2: Fast Direct LiDAR-Inertial Odometry. IEEE Trans. Robot. 2022, 38, 2053–2073. [Google Scholar]
- Li, L.; Kong, X.; Zhao, X.; Li, W.; Wen, F.; Zhang, H.; Liu, Y. SA-LOAM: Semantic-aided LiDAR SLAM with Loop Closure. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 7627–7634. [Google Scholar]
- Ji, X.; Zuo, L.; Zhang, C.; Liu, Y. LLOAM: LiDAR Odometry and Mapping with Loop-closure Detection Based Correction. In Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, China, 4–7 August 2019; pp. 2475–2480. [Google Scholar]
- Kim, G.; Kim, A. Scan Context: Egocentric Spatial Descriptor for Place Recognition Within 3D Point Cloud Map. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4802–4809. [Google Scholar]
- Guo, M.; Zhang, L.; Liu, X.; Du, Z.; Song, J.; Liu, M. 3D Lidar SLAM Based on Ground Segmentation and Scan Context Loop Detection. In Proceedings of the 2021 IEEE 11th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Jiaxing, China, 27–31 July 2021; pp. 692–697. [Google Scholar]
- Rusu, R.B.; Cousins, S. 3D Is Here: Point Cloud Library (PCL). In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011; IEEE: Piscataway, NJ, USA, 2011. [Google Scholar]
- Burt, A.; Disney, M.; Calders, K. Extracting individual trees from lidar point clouds using treeseg. Methods Ecol. Evol. 2019, 10, 438–445. [Google Scholar]
- Isaac, A. Scattered data interpolation methods for electronic imaging systems: A survey. J. Electron. Imaging 2002, 11, 157–176. [Google Scholar]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise (PDF). In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, OR, USA, 2–4 August 1996; Simoudis, E., Han, J., Fayyad, U.M., Eds.; AAAI Press: Washington, DC, USA, 1996; pp. 226–231. [Google Scholar]
- Rousseeuw, P.J.; Ruts, I.; Tukey, J.W. The Bagplot: A Bivariate Boxplot. Am. Stat. 1999, 53, 382–387. [Google Scholar]
- Shan, T.; Englot, B. LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4758–4765. [Google Scholar]
Terrain Extraction | Trunk Segmentation | DBH Estimation | |||
---|---|---|---|---|---|
0.05 m | 0.35 | k | 1.6 | ||
0.01 m | 1.25 | ||||
0.02 m |
System | TP | FN | FP | Recall | Precision | F1-Score |
---|---|---|---|---|---|---|
3DFin | 203 | 28 | 2 | 0.879 | 0.990 | 0.931 |
Proposed | 225 | 6 | 5 | 0.974 | 0.978 | 0.976 |
Ablation | 230 | 1 | 83 | 0.996 | 0.735 | 0.846 |
System | TP | FN | FP | Recall | Precision | F1-Score |
---|---|---|---|---|---|---|
3DFin | 91 | 8 | 1 | 0.919 | 0.989 | 0.953 |
Proposed | 98 | 2 | 3 | 0.980 | 0.970 | 0.975 |
Ablation | 99 | 0 | 52 | 1.000 | 0.656 | 0.792 |
Algorithm | RMSE (cm) | MAPE (%) |
---|---|---|
3D Forest | 3.92 | 11.40 |
Ours | 3.20 | 9.72 |
Algorithm | RMSE (cm) | MAPE (%) |
---|---|---|
LOAM | 4.61 | 11.40 |
FAST-LIO2 | 3.47 | 9.72 |
Ours | 3.20 | 9.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, A.; Su, R.; Ma, J.; Lin, J. Individual Trunk Segmentation and Diameter at Breast Height Estimation Using Mobile LiDAR Scanning. Forests 2025, 16, 582. https://doi.org/10.3390/f16040582
Sun A, Su R, Ma J, Lin J. Individual Trunk Segmentation and Diameter at Breast Height Estimation Using Mobile LiDAR Scanning. Forests. 2025; 16(4):582. https://doi.org/10.3390/f16040582
Chicago/Turabian StyleSun, Angxi, Ruifeng Su, Jinrui Ma, and Jianhui Lin. 2025. "Individual Trunk Segmentation and Diameter at Breast Height Estimation Using Mobile LiDAR Scanning" Forests 16, no. 4: 582. https://doi.org/10.3390/f16040582
APA StyleSun, A., Su, R., Ma, J., & Lin, J. (2025). Individual Trunk Segmentation and Diameter at Breast Height Estimation Using Mobile LiDAR Scanning. Forests, 16(4), 582. https://doi.org/10.3390/f16040582