Distribution of Starch in Trunkwood of Catalpa bungei ‘Jinsi’: A Revelation on the Metabolic Process of Energy Storage Substances
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moretti, M.M.d.S.; Costa, M.S.; Bai, Y.; Gilbert, R.G.; Rocha, T.d.S. Chapter 9—Structure of starch, focusing on those from underground plant organs. In Starchy Crops Morphology, Extraction, Properties and Applications; Pascoli Cereda, M., François Vilpoux, O., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 217–244. [Google Scholar] [CrossRef]
- Li, Z.; Wei, C. Morphology, structure, properties and applications of starch ghost: A review. Int. J. Biol. Macromol. 2020, 163, 2084–2096. [Google Scholar] [CrossRef]
- Herrera-Ramírez, D.; Hartmann, H.; Römermann, C.; Trumbore, S.; Muhr, J.; Santos, L.M.; Brando, P.; Silvério, D.; Huang, J.; Kuhlmann, I.; et al. Anatomical distribution of starch in the stemwood influences carbon dynamics and suggests storage-growth trade-offs in some tropical trees. J. Ecol. 2023, 111, 2532–2548. [Google Scholar] [CrossRef]
- Tanaka, Y.; Konno, N.; Suzuki, T.; Habu, N. Starch-degrading enzymes from the brown-rot fungus Fomitopsis palustris. Protein Expres. Purif. 2020, 170, 105609. [Google Scholar] [CrossRef] [PubMed]
- Cherelli, S.G.; Bellasio, C.; Marcati, C.R.; Rodrigues dos Santos, T.P.; Rodrigues, S.A.; Leonel, M.; Ballarin, A.W. The corewood of 25-year-old Hevea brasiliensis from two rubber plantations has high starch content. Eur. J. Wood Wood Prod. 2023, 81, 847–855. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Yoshida, T.; Yanagidate, I.; Polnaya, F.; Siahaya, W.; Jong, F.; Pasolon, Y.; Miyazaki, A.; Hamanishi, T.; Hirao, K. Studies on growth characteristics and starch productivity of the sago palm (Metroxylon sagu Rottb.) folk varieties in Seram and Ambon Islands, Maluku, Indonesia. Trop. Agric. Dev. 2020, 64, 125–134. [Google Scholar] [CrossRef]
- Herrera-Ramírez, D.; Sierra, C.A.; Römermann, C.; Muhr, J.; Trumbore, S.; Silvério, D.; Brando, P.M.; Hartmann, H. Starch and lipid storage strategies in tropical trees relate to growth and mortality. N. Phytol. 2021, 230, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Begum, S.; Nakaba, S.; Funada, R. Distribution and pattern of availability of storage starch and cell death of ray parenchyma cells of a conifer tree (Larix kaempferi). Res. J. Recent Sci. 2012, 1, 28–37. [Google Scholar] [CrossRef]
- Dietze, M.C.; Sala, A.; Carbone, M.S.; Czimczik, C.I.; Mantooth, J.A.; Richardson, A.D.; Vargas, R. Nonstructural carbon in woody plants. Plant Biol. 2013, 65, 667–687. [Google Scholar] [CrossRef]
- Woodruff, D.; Meinzer, F. Water stress, shoot growth and storage of non-structural carbohydrates along a tree height gradient in a tall conifer. Plant Cell Environ. 2011, 34, 1920–1930. [Google Scholar] [CrossRef]
- Smith, M.G.; Miller, R.E.; Arndt, S.K.; Kasel, S.; Bennett, L.T. Whole-tree distribution and temporal variation of non-structural carbohydrates in broadleaf evergreen trees. Tree Physiol. 2018, 38, 570–581. [Google Scholar] [CrossRef]
- Cambou, A.; Thaler, P.; Clément-Vidal, A.; Barthès, B.; Charbonnier, F.; Van den Meersche, K.; María Elena, A.; Avelino, J.; Davrieux, F.; Labouisse, J.-P.; et al. Concurrent starch accumulation in stump and high fruit production in coffee (Coffea arabica). Tree Physiol. 2021, 41, 2308–2325. [Google Scholar] [CrossRef] [PubMed]
- Lijuan, Y.; Lingyu, M.; Xiaomei, J.; Yonggang, Z.; Yupei, W.; Yuan, C.; Lihong, Y.; Juan, G. Positional differences in the micro- and ultra-structural variations of ray parenchyma cells during the transformation from sapwood to heartwood. Front. Plant Sci. 2024, 15, 1431818. [Google Scholar] [CrossRef]
- Von Arx, G.; Arzac, A.; Fonti, P.; Frank, D.; Zweifel, R.; Rigling, A.; Galiano, L.; Gessler, A.; Olano, J.M. Responses of sapwood ray parenchyma and non-structural carbohydrates of Pinus sylvestris to drought and long-term irrigation. Funct. Ecol. 2017, 31, 1371–1382. [Google Scholar] [CrossRef]
- Ingel, B.; Reyes, C.; Massonnet, M.; Boudreau, B.; Sun, Y.; Sun, Q.; McElrone, A.; Cantu, D.; Roper, C. Xylella fastidiosa causes transcriptional shifts that precede tylose formation and starch depletion in xylem. Mol. Plant Pathol. 2020, 22, 175–188. [Google Scholar] [CrossRef]
- Pratt, R.B.; Tobin, M.; Jacobsen, A.; Traugh, C.; Guzman, M.; Hayes, C.; Toschi, H.; MacKinnon, E.; Percolla, M.; Clem, M.; et al. Starch storage capacity of sapwood is related to dehydration avoidance during drought. Am. J. Bot. 2020, 108, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Xu, Z.; Li, P.; Sui, Z.; Corke, H. Removal of starch granule-associated proteins affects amyloglucosidase hydrolysis of rice starch granules. Carbohyd. Polym. 2020, 247, 116674. [Google Scholar] [CrossRef]
- Sandmann, M.; Rading, M. Starch granules in algal cells play an inherent role to shape the popular SSC signal in flow cytometry. BMC Res. Notes 2024, 17, 327. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.G.; Kang, K.K. Functional analysis of starch metabolism in plants. Plants 2020, 9, 1152. [Google Scholar] [CrossRef]
- Furze, M.E.; Huggett, B.A.; Chamberlain, C.J.; Wieringa, M.M.; Aubrecht, D.M.; Carbone, M.S.; Walker, J.C.; Xu, X.; Czimczik, C.I.; Richardson, A.D. Seasonal fluctuation of nonstructural carbohydrates reveals the metabolic availability of stemwood reserves in temperate trees with contrasting wood anatomy. Tree Physiol. 2020, 40, 1355–1365. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, C.; Wang, X. Spatial variations in non-structural carbohydrates in stems of twelve temperate tree species. Trees-Struct. Funct. 2014, 28, 77–89. [Google Scholar] [CrossRef]
- Guo, P.; Zhao, X.; Yang, Z.; Wang, Y.; Li, H.; Zhang, L. Water, starch, and nuclear behavior in ray parenchyma during heartwood formation of Catalpa bungei ‘Jinsi’. Heliyon 2024, 10, e27231. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Zhang, Q.; Li, J.; Guan, Z.; He, Q. Nutrient stoichiometry and tree development: Insights from a 5-year study on Catalpa bungei fertilization. Forests 2024, 15, 1836. [Google Scholar] [CrossRef]
- Pasolon, Y.B.; Hayati, N.; Rembon, F.S.; Baka, L.R.; Cahyono, E. Prediction of distributed material based on disk measurements: An application on predicting sago starch of a tree trunk. Proceedings of International Conference on Mathematical, Computational and Statistical Sciences, Dubai, United Arab Emirates, 22–24 February 2015; pp. 466–469. [Google Scholar]
- Reghu, C.P.; Patel, J.D. Distribution of starch and lipids in reaction wood of some angiosperm trees. Nord. J. Bot. 1984, 4, 357–363. [Google Scholar] [CrossRef]
- Qi, Y.; Li, Z.; Zhang, Y.; Zheng, Y.; Zhang, X.; Duan, X.; Yang, F.; Zhang, W. Application of area analysis in mineral content analysis under microscope. Adv. Geosci. 2021, 11, 1400–1406. [Google Scholar] [CrossRef]
- Karthäuser, J.; Treu, A.; Larnøy, E.; Militz, H.; Alfredsen, G. Resistance against fungal decay of Scots pine sapwood modified with phenol-formaldehyde resins with substitution of phenol by lignin pyrolysis products. Holzforschung 2024, 78, 231–243. [Google Scholar] [CrossRef]
- Yang, J.; Wang, S.; Huang, Z.; Guo, P. The complete chloroplast genome sequence of Catalpa bungei (Bignoniaceae): A high-quality timber species from China. Mitochondrial DNA B 2020, 5, 3854–3855. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Jing, Z.; Tai, D.; He, W.; Zhang, H.; Hse, C.; Lee, d.; Samimoto, M. Studies on active antifungal substrates in natural durable species: III. Extraction, separation, purification and toxicity experiment of effective antifungal of heartwood of Catalpa bungei. J. Nanjing For. Univ. (Nat. Sci. Ed.) 1990, 14, 61–67. [Google Scholar]
- Simpson, L.; Barton, A. Time dependence of starch levels in the sapwood of Eucalyptus diversicolor (Karri) as: Standing trees, stored saw-logs, ringbarked trees and trees felled without lopping. Holzforschung 1991, 45, 253–257. [Google Scholar] [CrossRef]
- Galibina, N.; Nikerova, K.; Moshchenskaya, Y.L.; Ershova, M. Physiological, biochemical and molecular genetic aspects of heartwood formation mechanisms. Trans. KarRC RAS 2020, 11, 20–37. [Google Scholar] [CrossRef]
- Yang, X.; Yu, X.; Liu, Y.; Shi, Z.; Li, L.; Xie, S.; Zhu, G.; Zhao, P. Comparative metabolomics analysis reveals the color variation between heartwood and sapwood of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook. Ind. Crop. Prod. 2021, 169, 113656. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, C.; Wang, X.; Cheng, F. Spatial variation of non-structural carbohydrates in Betula platyphylla and Tilia amurensis stems. Chin. J. Appl. Ecol. 2013, 24, 3050–3056. [Google Scholar]
- Piispanen, R.; Saranpää, P. Variation of non-structural carbohydrates in silver birch (Betula pendula Roth) wood. Trees-Struct. Funct. 2001, 15, 444–451. [Google Scholar] [CrossRef]
- Cui, Z.; Hu, H.; Li, X.; Liu, X.; Zhang, Q.; Hong, Z.; Zhang, N.; Lin, W.; Xu, D. Physiological and biochemical mechanisms of drought regulating the size and color of heartwood in Dalbergia odorifera. Tree Physiol. 2025, 45, tpae157. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.-J.; Wang, X.-C.; Yuan, D.-Y.; Liu, D.; Liu, Y.-L.; Sang, Y.; Wang, X.-C. Radial distribution differences of non-structural carbohydrates in stems of tree species of different wood in a temperate forest. Chin. J. Plant Ecol. 2022, 46, 722–734. [Google Scholar] [CrossRef]
- Millard, P.; Sommerkorn, M.; Grelet, G.A.J.T.N.p. Environmental change and carbon limitation in trees: A biochemical, ecophysiological and ecosystem appraisal. New Phytol. 2007, 175, 11–28. [Google Scholar] [CrossRef]
- Gérard, B.; Bréda, N. Radial distribution of carbohydrate reserves in the trunk of declining European beech trees (Fagus sylvatica L.). Ann. Forest Sci. 2014, 71, 675–682. [Google Scholar] [CrossRef]
- Michelot-Antalik, A.; Granda, E.; Fresneau, C.; Damesin, C. Evidence of a seasonal trade-off between growth and starch storage in declining beeches: Assessment through stem radial increment, non-structural carbohydrates and intra-ring δ13C. Tree Physiol. 2019, 39, 831–844. [Google Scholar] [CrossRef]
- Richardson, A.; Carbone, M.; Czimczik, C.; Hollinger, D.; Murakami, P.; Schaberg, P.; Xu, X. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytol. 2012, 197, 850–861. [Google Scholar] [CrossRef]
- Deng, L.; Ren, S.; Lv, J.; Wang, Y.; Ren, H.; Zhao, R. Growth characteristics and variation of heartwood and sapwood of Catalpa bungei. China Wood Ind. 2019, 33, 9–13. [Google Scholar] [CrossRef]
- Burtin, P.; Jay-Allemand, C.; Charpentier, J.-P.; Janin, G. Natural wood colouring process in Juglans sp. (J. nigra, J. regia and hybrid J. nigra 23 × J. regia) depends on native phenolic compounds accumulated in the transition zone between sapwood and heartwood. Trees-Struct. Funct. 1998, 12, 258–264. [Google Scholar] [CrossRef]
- Magel, E.A. Biochemistry and physiology of heartwood formation. Exptl. Biol. Rev. 2000, 363–376. [Google Scholar]
- Marler, T. Axial and radial spatial patterns of non-structural carbohydrates in Cycas micronesica stems. Plants 2018, 7, 49. [Google Scholar] [CrossRef] [PubMed]
- Marcin, N.; Pazdrowski, W.; Szymański, M. Dynamics of heartwood formation and axial and radial distribution of sapwood and heartwood in stems of European larch (Larix decidua Mill.). J. For. Sci. 2008, 54, 409–417. [Google Scholar] [CrossRef]
- Goodwin, P.; Campbell, L. Plant structure and function. In The Scientific Basis of Modern Agriculture, 2nd ed.; Campbell, K.O., Bowyer, J.W., Eds.; Oxford University Press: Oxford, UK, 1992; pp. 111–130. [Google Scholar]
- Fu, Z.; Cui, Z. Effects of environmental factors and management measures on heartwood formation. World For. Res. 2024, 37, 43–48. [Google Scholar]
- Li, G.; Zhang, M.; Chen, F.; Huang, C.; Dong, X.; Chen, L.; Lin, L. A review on artificially induced heartwood formation and its chemical composition in Dalbergia odorifera. Mol. Plant Breed. 2024, 1–17. [Google Scholar]
Tree Number | Tree Diameter at Breast Height (cm) | Tree Height (m) | Crown Base Height (m) | Crown Width (m) |
---|---|---|---|---|
1 | 18.6 | 13.1 | 3.8 | 4.6 |
2 | 17.8 | 14.6 | 3.6 | 4.2 |
3 | 18.4 | 13.4 | 3.3 | 4.8 |
Position | Heartwood Diameter (cm) | Sapwood Width (mm) |
---|---|---|
Stump | 14.1 ± 2.7 | 10 ± 2.6 |
Breast height | 10.0 ± 1.8 | 10.7 ± 5.6 |
Crown base | 10.0 ± 1.4 | 9.0 ± 2.8 |
Factor | Degrees of Freedom | F Value | p Value |
---|---|---|---|
Height position | 2 | 91.097 | <0.01 |
Direction | 3 | 5.147 | 0.02 |
Heartwood/sapwood | 1 | 624.966 | <0.01 |
Height position × Direction | 2 | 25.388 | 0.100 |
Height position × Heartwood/sapwood | 2 | 25.388 | <0.01 |
Direction × Heartwood/sapwood | 3 | 1.087 | 0.354 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Liu, F.; Guo, P.; Feng, Q.; Wang, D.; Hao, Z. Distribution of Starch in Trunkwood of Catalpa bungei ‘Jinsi’: A Revelation on the Metabolic Process of Energy Storage Substances. Forests 2025, 16, 242. https://doi.org/10.3390/f16020242
Zhao X, Liu F, Guo P, Feng Q, Wang D, Hao Z. Distribution of Starch in Trunkwood of Catalpa bungei ‘Jinsi’: A Revelation on the Metabolic Process of Energy Storage Substances. Forests. 2025; 16(2):242. https://doi.org/10.3390/f16020242
Chicago/Turabian StyleZhao, Xiping, Fei Liu, Pingping Guo, Qi Feng, Dongfang Wang, and Ziyuan Hao. 2025. "Distribution of Starch in Trunkwood of Catalpa bungei ‘Jinsi’: A Revelation on the Metabolic Process of Energy Storage Substances" Forests 16, no. 2: 242. https://doi.org/10.3390/f16020242
APA StyleZhao, X., Liu, F., Guo, P., Feng, Q., Wang, D., & Hao, Z. (2025). Distribution of Starch in Trunkwood of Catalpa bungei ‘Jinsi’: A Revelation on the Metabolic Process of Energy Storage Substances. Forests, 16(2), 242. https://doi.org/10.3390/f16020242