Growth, Productivity, and Biomass–Carbon Allometry in Teak (Tectona grandis) Plantations of Western Mexico
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Sites and Dendrometric Sampling
2.3. Growth and Productivity Estimation
2.4. Biomass and Carbon Determination
2.5. Development of Allometric Equations Using Field-Measured Biomass
2.6. Stand-Level Biomass, C, and Derived Indicators
2.7. Statistical Analysis
3. Results
3.1. Structural Attributes and Productivity by Stand Age and Site
3.2. C Concentration in Biomass
3.3. Allometric Equations for Biomass and C
3.4. Biomass Production and C Pools in Teak Stands by Age and Site
Biomass and C Indicators
4. Discussion
4.1. Growth and Productivity of Teak Stands by Age and Site
4.2. C Concentration and Allometric Equations for Biomass and C
4.3. Biomass and Carbon Pools by Age, Sites, Distribution, Partitioning Indicators, and Current Annual Increment
4.4. The Role of Belowground Biomass in Carbon Inventories
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
C | Carbon |
MAI | Mean annual increment |
REDD+ | Reducing Emissions from Deforestation and Degradation |
H | Total height |
DBH | Diameter at breast height |
BA | Basal area |
V | Volume |
CAI | Current annual increment |
FW | Fresh weight |
DW | Dry weight |
CF | Smearing factor |
A:B | Aboveground-to-belowground ratio |
N | Stand density |
BEF | Biomass expansion factor |
CEF | Carbon expansion factor |
P–P | Probability–probability |
Mg | Megagram |
ha−1 | Per hectare |
ANOVA | Analysis of variance |
References
- Kaosa-ard, A. Teak: Its Natural Distribution and Related Factors; Teak Information Centre: Chiang Mai, Thailand, 1981. [Google Scholar]
- Pandey, D.; Brown, C. Teak: A global overview. Unasylva 2000, 51, 3–13. [Google Scholar]
- Ball, J.; Carle, J.; Del Lungo, A. Contribution of teak plantations to global wood production. Int. For. Rev. 2016, 18, 33–48. [Google Scholar] [CrossRef]
- Salgado, E.; Valdez-Hernández, J.I.; Ángeles-Pérez, G. Teak plantations in Mexico: Silvicultural practices and perspectives. Boletín Col. Postgraduados 2007, 17, 33–41. [Google Scholar]
- Salcedo-Pérez, E.; Ruiz-Blandon, B.A.; Hernández-Álvarez, E.; González-Cruz, R.; Bernabé-Antonio, A.; Orozco-Guareño, E.; Ramírez-López, C.B.; Anzaldo-Hernández, J.; Delgado-Fornué, E. Propiedades del suelo y nitrógeno como indicadores del crecimiento en plantaciones comerciales de teca. Rev. Mex. Cienc. For. 2019, 10, 33–54. [Google Scholar] [CrossRef]
- Tewari, D.N. A Monograph on TEAK (Tectona grandis Linn. f.); International Book Distributors: Dehra Dun, India, 1982. [Google Scholar]
- Upadhyay, T.P.; Sankhayan, P.L.; Solberg, B.A. A review of carbon sequestration dynamics in agroforestry. J. Trop. For. Sci. 2005, 17, 102–119. [Google Scholar]
- Pérez, D.; Kanninen, M. Stand growth scenarios for Tectona grandis plantations in Costa Rica. For. Ecol. Manag. 2005, 210, 425–441. [Google Scholar] [CrossRef]
- Montagnini, F.; Nair, P.K.R. Carbon sequestration: An underexploited environmental benefit of agroforestry systems. Agrofor. Syst. 2004, 61–62, 281–295. [Google Scholar] [CrossRef]
- Fonseca, W.; Alice, F.E.; Rey-Benayas, J.M. Carbon accumulation in aboveground and belowground biomass and soil in native tree plantations of Costa Rica. For. Ecol. Manag. 2012, 265, 62–73. [Google Scholar] [CrossRef]
- Chaves, R.; Fonseca, W. Aboveground biomass and carbon accumulation in teak plantations of Costa Rica. J. Trop. For. Sci. 2002, 14, 1–13. [Google Scholar]
- Behera, M.K.; Mohapatra, N.P. Biomass accumulation and carbon stocks in 13 different clones of teak (Tectona grandis Linn. f.) in Odisha, India. Curr. World Environ. 2015, 10, 1011–1016. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.C.; Duque, Á.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef]
- INEGI (Instituto Nacional de Estadística y Geografía). Prontuario de Información Geográfica Municipal de los Estados Unidos Mexicanos; INEGI: Rosamorada, Mexico, 2009; Available online: http://docencia.uaeh.edu.mx/estudios-pertinencia/docs/hidalgo-municipios/Mineral-De-La-Reforma-Prontuario-De-Informacion-Geografica.pdf (accessed on 5 August 2017).
- INEGI (Instituto Nacional de Estadística y Geografía). Prontuario de Información Geográfica Municipal de los Estados Unidos Mexicanos; INEGI: San Blas, Mexico, 2009; Available online: https://www.construaprende.com/descargas/geologia-y-geotecnia/35-informacion-geografica-nogales/file (accessed on 5 August 2017).
- INEGI (Instituto Nacional de Estadística y Geografía). Prontuario de Información Geográfica Municipal de los Estados Unidos Mexicanos; INEGI: Tuxpan, Mexico, 2009; Available online: https://www.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/16/16098.pdf (accessed on 5 August 2017).
- Van Laar, A.; Akça, A. Forest Mensuration; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Avery, T.E.; Burkhart, H.E. Forest Measurements, 5th ed.; Waveland Press: Long Grove, IL, USA, 2015. [Google Scholar]
- Prodan, M.; Peters, R.; Cox, F.; Real, P. Mensura Forestal; Instituto Interamericano de Cooperación para la Agricultura (IICA): San José, Costa Rica, 1997. [Google Scholar]
- Clutter, J.L.; Fortson, J.C.; Pienaar, L.V.; Brister, G.H.; Bailey, R.L. Timber Management: A Quantitative Approach; John Wiley & Sons: New York, NY, USA, 1983. [Google Scholar]
- Vanclay, J.K. Modelling Forest Growth and Yield: Applications to Mixed Tropical Forests; CAB International: Wallingford, UK, 1994. [Google Scholar]
- Burkhart, H.E.; Tomé, M. Modeling Forest Trees and Stands; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Parada, T.; Gauto, L.; De Souza, C.; Gómez, C. Estimación de biomasa aérea y carbono en plantaciones de Tectona grandis en América tropical. Bosque 2010, 31, 121–130. [Google Scholar] [CrossRef]
- Ruiz-Blandón, B.A.; Gauto, L.A.; Hernández, J.I. Above- and belowground biomass equations for tropical timber species: Case study in Central America. J. For. Res. 2022, 33, 1877–1889. [Google Scholar] [CrossRef]
- Wurster, C.M.; Saiz, G.; Calder, A.; Bird, M.I. Recovery of organic matter in highly degraded soils: Carbon and nitrogen isotope evidence. Soil Biol. Biochem. 2010, 42, 251–257. [Google Scholar] [CrossRef]
- Schumacher, B.A. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments; U.S. Environmental Protection Agency: Washington, DC, USA, 2002. [Google Scholar]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2006. [Google Scholar]
- Duan, N. Smearing estimate: A nonparametric retransformation method. J. Am. Stat. Assoc. 1983, 78, 605–610. [Google Scholar] [CrossRef]
- Baskerville, G.L. Use of logarithmic regression in the estimation of plant biomass. Can. J. For. Res. 1972, 2, 49–53. [Google Scholar] [CrossRef]
- Sprugel, D.G. Correcting for bias in log-transformed allometric equations. Ecology 1983, 64, 209–210. [Google Scholar] [CrossRef]
- Harvey, A.C. Estimating regression models with multiplicative heteroscedasticity. Econometrica 1976, 44, 461–465. [Google Scholar] [CrossRef]
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Li, W. Applied Linear Statistical Models, 5th ed.; McGraw-Hill: New York, NY, USA, 2005. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Picard, N.; Saint-André, L.; Henry, M. Manual for Building Tree Volume and Biomass Allometric Equations; FAO & CIRAD: Rome, Italy, 2012. [Google Scholar]
- Sileshi, G. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 2014, 329, 237–254. [Google Scholar] [CrossRef]
- Mokany, K.; Raison, R.J.; Prokushkin, A.S. Critical analysis of root:shoot ratios in terrestrial biomes. Glob. Change Biol. 2006, 12, 84–96. [Google Scholar] [CrossRef]
- Litton, C.M.; Raich, J.W.; Ryan, M.G. Carbon allocation in forest ecosystems. Glob. Change Biol. 2007, 13, 2089–2109. [Google Scholar] [CrossRef]
- SAS Institute Inc. Statistical Analysis System User’s Guide; SAS: Cary, NC, USA, 2013; 1290p, Available online: http://www.sas.com/en_us/home.html (accessed on 1 September 2025).
- Pérez, D.; Kanninen, M. Heartwood, sapwood and bark content, and wood dry density of young and mature teak (Tectona grandis) trees grown in Costa Rica. Silva Fenn. 2003, 37, 45–54. [Google Scholar] [CrossRef]
- Kaul, R.; Eid, T.; Sankhayan, P.L. Growth performance of teak plantations in northern India under different management scenarios. For. Ecol. Manag. 2011, 262, 536–544. [Google Scholar] [CrossRef]
- Odoom, F.K. Plantation teak in West Africa: A regional overview. Unasylva 2001, 52, 15–21. [Google Scholar]
- Kanninen, M. Plantation teak in Central America. J. Trop. For. Sci. 1999, 11, 180–194. [Google Scholar]
- Cruz-López, I.A.; Ramírez-Maldonado, H.; Valdez-Hernández, J.I.; Ángeles-Pérez, G. Growth and productivity of teak plantations in Nayarit and Chiapas, Mexico. Agrociencia 2019, 53, 321–334. [Google Scholar]
- Sreejesh, K.K.; Thomas, T.P.; Rugmini, P.; Prasanth, K.M. Carbon sequestration potential of teak (Tectona grandis): Carbon content across tree components in Kerala. ISCA J. Biol. Sci. 2013, 1, 39–45. [Google Scholar]
- Khantawan, C.; Duangsathaporn, K.; Prasomsin, P. Relationship between carbon content and growth of teak in natural forest and plantation, Lampang Province, Thailand. Agric. Nat. Resour. 2019, 53, 267–273. [Google Scholar] [CrossRef]
- Segura, M.; Andrade, H.J. Allometric models for tree volume and total aboveground biomass in tropical humid forests of Costa Rica. Biotropica 2008, 40, 507–513. [Google Scholar] [CrossRef]
- Basuki, T.M.; van Laake, P.E.; Skidmore, A.K.; Hussin, Y.A. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For. Ecol. Manag. 2009, 257, 1684–1694. [Google Scholar] [CrossRef]
- Upadhyay, A.P.; Eid, T.; Sankhayan, P.L. Construction of site index equations for even-aged stands of teak (Tectona grandis) from permanent plot data in India. For. Ecol. Manag. 2005, 212, 14–22. [Google Scholar] [CrossRef]
- Qiu, T.; Shen, Y.; Voordeckers, J.W.; Korves, T.; Zhang, Q. Is there tree senescence? The fecundity evidence. Proc. Natl. Acad. Sci. USA 2021, 118, e2106130118. [Google Scholar] [CrossRef]
Site | H (m) | DBH (cm) | BA (m2 ha−1) | V (m3 ha−1) | MAI_H (m yr−1) | MAI_DBH (cm yr−1) | MAI_BA (m2 ha−1 yr−1) | MAI_V (m3 ha−1 yr−1) |
---|---|---|---|---|---|---|---|---|
San Blas | 14.23 ± 0.43 b | 18.73 ± 0.56 a | 16.47 ± 0.77 a | 134.20 ± 7.91 a | 1.45 ± 0.01 b | 1.97 ± 0.04 b | 1.59 ± 0.05 b | 12.01 ± 0.58 b |
Rosamorada | 14.53 ± 0.18 b | 19.25 ± 0.60 a | 16.01 ± 0.37 a | 116.29 ± 4.37 a | 2.42 ± 0.03 a | 3.21 ± 0.10 a | 2.67 ± 0.06 a | 19.38 ± 0.73 a |
Tuxpan | 17.20 ± 0.28 a | 16.69 ± 0.49 a | 6.02 ± 0.13 b | 51.74 ± 1.79 b | 1.01 ± 0.02 c | 0.98 ± 0.03 c | 0.35 ± 0.01 c | 3.04 ± 0.11 c |
Component | a | b | CF | R2 (log) | RMSE (log) | MAPE (%) | RMSE (kg) | Equation |
---|---|---|---|---|---|---|---|---|
Leaves | −1.27 | 1 | 1.02 | 0.37 | 0.211 | 17.4 | 1.55 | LB = exp(−1.266 + 1.001·ln(DBH_cm))·1.022 |
Branches | −0.43 | 0.94 | 1.01 | 0.49 | 0.155 | 12.5 | 2.21 | BB = exp(−0.425 + 0.944·ln(DBH_cm))·1.012 |
Stem | 0.086 | 1.26 | 1.01 | 0.73 | 0.124 | 10 | 8.49 | SB = exp(0.086 + 1.255·ln(DBH_cm))·1.008 |
Roots | −0.93 | 1.22 | 1.01 | 0.63 | 0.153 | 12.3 | 3.4 | RB = exp(−0.931 + 1.224·ln(DBH_cm))·1.011 |
Total | 0.686 | 1.23 | 1.01 | 0.79 | 0.101 | 8.2 | 11.44 | TB = exp(0.686 + 1.229·ln(DBH_cm))·1.005 |
Component | a | b | CF | R2 (log) | RMSE (log) | MAPE (%) | RMSE (kg C) | Equation |
---|---|---|---|---|---|---|---|---|
Leaves | −2.06 | 1 | 1.02 | 0.37 | 0.211 | 17.4 | 0.7 | LC = exp(−2.056 + 1.001·ln(DBH_cm))·1.022 |
Branches | −1.21 | 0.94 | 1.01 | 0.49 | 0.155 | 12.5 | 1.01 | BC = exp(−1.211 + 0.944·ln(DBH_cm))·1.012 |
Stem | −0.62 | 1.26 | 1.01 | 0.73 | 0.124 | 10 | 4.18 | SC= exp(−0.623 + 1.255·ln(DBH_cm))·1.008 |
Roots | −1.65 | 1.22 | 1.01 | 0.63 | 0.153 | 12.3 | 1.66 | RC = exp(−1.649 + 1.224·ln(DBH_cm))·1.011 |
Total | −0.03 | 1.23 | 1.01 | 0.79 | 0.101 | 8.2 | 5.62 | TC = exp(−0.025 + 1.229·ln(DBH_cm))·1.005 |
Age (Years) | Biomass (Mg ha−1) | C (Mg ha−1) |
---|---|---|
5 | 20.6 ± 0.4 e | 10.2 ± 0.2 e |
6 | 40.6 ± 1.1 c | 20.6 ± 0.3 c |
9 | 35.0 ± 0.7 d | 16.1 ± 0.3 d |
11 | 57.1 ± 1.1 a | 28.9 ± 0.4 a |
14 | 51.7 ± 0.8 b | 25.2 ± 0.4 b |
17 | 18.0 ± 0.3 f | 8.4 ± 0.1 f |
Site | Biomass (Mg ha−1) | C (Mg ha−1) |
---|---|---|
Rosamorada | 40.6 ± 1.1 a | 20.6 ± 0.3 a |
San Blas | 41.1 ± 1.3 a | 20.1 ± 0.6 a |
Tuxpan | 18.0 ± 0.3 b | 8.4 ± 0.1 b |
Age (Years) | Leaves (%B and %C) | Branches (%B and %C) | Stem (%B and %C) | Roots (%B and %C) | A:B (B and C) | BEF (B and C) |
---|---|---|---|---|---|---|
5, 6, 9, 11, 14, and 17 | 5 | 13 | 65 | 17 | 4.88 | 1.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Blandon, B.A.; Hernández-Alvarez, E.; Martínez-Trinidad, T.; Amaringo-Cordova, L.P.; Ucañay-Ayllon, T.M.; Bernaola-Paucar, R.M.; Hernández-Plascencia, G.; Orellana-Mendoza, E. Growth, Productivity, and Biomass–Carbon Allometry in Teak (Tectona grandis) Plantations of Western Mexico. Forests 2025, 16, 1521. https://doi.org/10.3390/f16101521
Ruiz-Blandon BA, Hernández-Alvarez E, Martínez-Trinidad T, Amaringo-Cordova LP, Ucañay-Ayllon TM, Bernaola-Paucar RM, Hernández-Plascencia G, Orellana-Mendoza E. Growth, Productivity, and Biomass–Carbon Allometry in Teak (Tectona grandis) Plantations of Western Mexico. Forests. 2025; 16(10):1521. https://doi.org/10.3390/f16101521
Chicago/Turabian StyleRuiz-Blandon, Bayron Alexander, Efrén Hernández-Alvarez, Tomás Martínez-Trinidad, Luiz Paulo Amaringo-Cordova, Tatiana Mildred Ucañay-Ayllon, Rosario Marilu Bernaola-Paucar, Gerardo Hernández-Plascencia, and Edith Orellana-Mendoza. 2025. "Growth, Productivity, and Biomass–Carbon Allometry in Teak (Tectona grandis) Plantations of Western Mexico" Forests 16, no. 10: 1521. https://doi.org/10.3390/f16101521
APA StyleRuiz-Blandon, B. A., Hernández-Alvarez, E., Martínez-Trinidad, T., Amaringo-Cordova, L. P., Ucañay-Ayllon, T. M., Bernaola-Paucar, R. M., Hernández-Plascencia, G., & Orellana-Mendoza, E. (2025). Growth, Productivity, and Biomass–Carbon Allometry in Teak (Tectona grandis) Plantations of Western Mexico. Forests, 16(10), 1521. https://doi.org/10.3390/f16101521