Browsing Pressure Modelling: Spatial Prediction of Browsing Probabilities
Abstract
1. Introduction
2. Materials and Methods
2.1. Area Description
2.2. Data Collection
2.3. Binomial Confidence Interval Calculation
2.4. Model Theory
2.5. Model Specification
2.5.1. Fixed Effects
- ηj,i is the prediction of the browsing probability depending on the treespecies j and the stemnumber i
- β0 is the intercept
- β1j and β2 are the estimated coefficients for the fixed effects
- treespeciesj is a categorical variable representing tree species
- stemnumberi is a continuous variable indicating the local density of young tree stems
2.5.2. Spatial Random Effects
- s = (x, y) represents the spatial coordinates of the observations,
- σ2 is the variance of the spatial effect,
- Mν(d) is the Matérn covariance function defined as:
- d denotes the Euclidian distance between observation locations,
- κ is a scale parameter, inversely related to the range of spatial correlation,
- ν is a smoothness parameter,
- Κν is the modified Bessel function of the second kind and order ν.
2.5.3. Final Model Specification
2.5.4. Estimation Procedure
3. Results
3.1. Browsing Percentage Analysis
3.2. Model Comparisons and Predictions
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BFW | Austrian Research Centre for Forests |
JVSM | Regeneration and Browsing Monitoring of Federal Forests |
NPK | National Park Kalkalpen |
ÖBf | Austrian Federal Forests |
WEM | wildlife impact monitoring |
WWGK | forest and wildlife management project Grünau Klaus |
Appendix A
Appendix B
Appendix C
References
- Reimoser, F. Hinweise Zum Richtigen Gebrauch von Verbisskennzahlen. Schweiz. Z. Für Forstwes. 1999, 150, 184–186. [Google Scholar] [CrossRef]
- Bödeker, K.; Ammer, C.; Knoke, T.; Heurich, M. Determining Statistically Robust Changes in Ungulate Browsing Pressure as a Basis for Adaptive Wildlife Management. Forests 2021, 12, 1030. [Google Scholar] [CrossRef]
- Ruhm, W. Waldbauliche Möglichkeiten in Zeiten Des Klimawandels. BFW-Praxisinformation 44 Wege Zum Klimafitten Wald 2017, 44, 14–18. [Google Scholar]
- Kupferschmid, A.D.; Brang, P.; Bugmann, H. Assessment of the Impact of Ungulate Browsing on Tree Regeneration. Schweiz. Z. Fur Forstwes. 2019, 170, 125–134. [Google Scholar] [CrossRef]
- Nopp-Mayr, U.; Reimoser, S.; Reimoser, F.; Sachser, F.; Obermair, L.; Gratzer, G. Analyzing Long-Term Impacts of Ungulate Herbivory on Forest-Recruitment Dynamics at Community and Species Level Contrasting Tree Densities versus Maximum Heights. Sci. Rep. 2020, 10, 20274. [Google Scholar] [CrossRef] [PubMed]
- Krofel, M.; Luštrik, R.; Stergar, M.; Jerina, K. Habitat Use of Alpine Chamois (Rupicapra Rupicapra) in Triglav National Park. In Climaparks—Climate Change and Management of Protected Areas; Ljubljana, Slovenia, 2013; pp. 1–13. Available online: https://www.researchgate.net/publication/297689519_Habitat_use_of_Alpine_chamois_Rupicapra_rupicapra_in_Triglav_National_Park (accessed on 24 September 2025).
- Schwegmann, S.; Hendel, A.L.; Frey, J.; Bhardwaj, M.; Storch, I. Forage, Forest Structure or Landscape: What Drives Roe Deer Habitat Use in a Fragmented Multiple-Use Forest Ecosystem? For. Ecol. Manag. 2023, 532, 120830. [Google Scholar] [CrossRef]
- Luccarini, S.; Mauri, L.; Ciuti, S.; Lamberti, P.; Apollonio, M. Red Deer (Cervus Elaphus) Spatial Use in the Italian Alps: Home Range Patterns, Seasonal Migrations, and Effects of Snow and Winter Feeding. Ethol. Ecol. Evol. 2006, 18, 127–145. [Google Scholar] [CrossRef]
- Johnson, D.H. The Comparison of Usage and Availability Measurements for Evaluating Resourece Preference. Ecology 1980, 61, 65–71. [Google Scholar] [CrossRef]
- Borowik, T.; Cornulier, T.; Jędrzejewska, B. Environmental Factors Shaping Ungulate Abundances in Poland. Acta. Theriol. 2013, 58, 403–413. [Google Scholar] [CrossRef]
- Kupferschmid, A.D.; Heiri, C.; Huber, M.; Fehr, M.; Frei, M.; Gmür, P.; Imesch, N.; Zinggeler, J.; Brang, P.; Clivaz, J.C.; et al. Einfluss Wildlebender Huftiere Auf Die Waldverjüngung: Ein Überblick Für Die Schweiz. Schweiz. Z. Fur Forstwes. 2015, 166, 420–431. [Google Scholar] [CrossRef]
- Reimoser, F.; Odermatt, O.; Roth, R.; Suchant, R. Die Beurteilung von Wildverbiss Durch SOLL-IST-Vergleich. Allg. Forst Und Jagdztg. 1997, 168, 214–227. [Google Scholar]
- Kuiters, A.T.; Slim, P.A. Regeneration of Mixed Deciduous Forest in a Dutch Forest-Heathland, Following a Reduction of Ungulate Densities. Biol. Conserv. 2002, 105, 65–74. [Google Scholar] [CrossRef]
- Kilian, W.; Müller, F.; Starlinger, F. Die Forstlichen Wuchsgebiete Österreichs: Eine Naturraumgliederung Nach Waldökologischen Gesichtspunkten; Forstliche Bundesversuchsanstalt: Wien, Austria, 1993. [Google Scholar]
- European Union’s Copernicus Land Monitoring Service information. Dominant Leaf Type 2021 (Raster 10 m), Europe, Yearly. Available online: https://land.copernicus.eu/en/products/high-resolution-layer-forests-and-tree-cover/dominant-leaf-type-2021-raster-10-m-europe-yearly (accessed on 16 July 2025).
- Schodterer, H. Bundesweites Wildeinflussmonitoring (WEM). Forstschutz Aktuell 2006, 36, 7–12. [Google Scholar]
- Schodterer, H. Bundesweites Wildeinflussmonitoring—2018; Praxisinformation 48; Bundesforschungszentrum für Wald: Wien, Austria, 2019. [Google Scholar]
- Harrell, F.E., Jr. Hmisc: Harrell Miscellaneous. Available online: https://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf (accessed on 15 April 2025).
- Borowski, Z.; Gil, W.; Bartoń, K.; Zajączkowski, G.; Łukaszewicz, J.; Tittenbrun, A.; Radliński, B. Density-Related Effect of Red Deer Browsing on Palatable and Unpalatable Tree Species and Forest Regeneration Dynamics. For. Ecol. Manag. 2021, 496. [Google Scholar] [CrossRef]
- Milligan, H.T.; Koricheva, J. Effects of Tree Species Richness and Composition on Moose Winter Browsing Damage and Foraging Selectivity: An Experimental Study. J. Anim. Ecol. 2013, 82, 739–748. [Google Scholar] [CrossRef]
- Rousset, F.; Ferdy, J.-B. Testing Environmental and Genetic Effects in the Presence of Spatial Autocorrelation. Ecography 2014, 37, 781–790. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Holík, J.; Janík, D.; Hort, L.; Adam, D. Neighbourhood Effects Modify Deer Herbivory on Tree Seedlings. Eur. J. For. Res. 2021, 140, 403–417. [Google Scholar] [CrossRef]
- Champagne, E.; Tremblay, J.P.; Côté, S.D. Spatial Extent of Neighboring Plants Influences the Strength of Associational Effects on Mammal Herbivory. Ecosphere 2016, 7, e01371. [Google Scholar] [CrossRef]
- Brault, B.; Tremblay, J.P.; Thiffault, N.; Royo, A.A.; Côté, S.D. Successful Forest Restoration Using Plantation at High Deer Density: How Neighboring Vegetation Drives Browsing Pressure and Tree Growth. For. Ecol. Manag. 2023, 549, 121458. [Google Scholar] [CrossRef]
- Pietrzykowski, E.; McArthur, C.; Fitzgerald, H.; Goodwin, A.N. Influence of Patch Characteristics on Browsing of Tree Seedlings by Mammalian Herbivores. J. Appl. Ecol. 2003, 40, 458–469. [Google Scholar] [CrossRef]
- Donini, V.; Corlatti, L.; Ferretti, F.; Carmignola, G.; Pedrotti, L. Browsing Intensity as an Index of Ungulate Density across Multiple Spatial Scales. Ecol. Indic. 2024, 163, 112131. [Google Scholar] [CrossRef]
- Ohse, B.; Seele, C.; Holzwarth, F.; Wirth, C. Different Facets of Tree Sapling Diversity Influence Browsing Intensity by Deer Dependent on Spatial Scale. Ecol. Evol. 2017, 7, 6779–6789. [Google Scholar] [CrossRef]
- Marion, S.; Santos, G.C.; Herdman, E.; Hubbs, A.; Kearney, S.P.; Cole Burton, A. Mammal Responses to Human Recreation Depend on Landscape Context. PLoS ONE 2024, 19, e0300870. [Google Scholar] [CrossRef]
- Griesberger, P.; Kunz, F.; Reimoser, F.; Hackländer, K.; Obermair, L. Spatial Distribution of Hunting and Its Potential Effect on Browsing Impact of Roe Deer (Capreolus Capreolus) on Forest Vegetation. Diversity 2023, 15, 613. [Google Scholar] [CrossRef]
- Kramer, K.; Groot Bruinderink, G.W.T.A.; Prins, H.H.T. Spatial Interactions between Ungulate Herbivory and Forest Management. For. Ecol. Manag. 2006, 226, 238–247. [Google Scholar] [CrossRef]
- Heurich, M.; Brand, T.T.G.; Kaandorp, M.Y.; Šustr, P.; Müller, J.; Reineking, B. Country, Cover or Protection: What Shapes the Distribution of Red Deer and Roe Deer in the Bohemian Forest Ecosystem? PLoS ONE 2015, 10, e0120960. [Google Scholar] [CrossRef] [PubMed]
- Ausilio, G.; Wikenros, C.; Sand, H.; Devineau, O.; Wabakken, P.; Eriksen, A.; Aronsson, M.; Persson, J.; Mathisen, K.M.; Zimmermann, B. Contrasting Risk Patterns from Human Hunters and a Large Carnivore Influence the Habitat Selection of Shared Prey. Oecologia 2025, 207, 118. [Google Scholar] [CrossRef]
- Odermatt, O. Wildverbiss: Wann Sind Die Kritischen Phasen? Available online: https://www.waldwissen.net/de/waldwirtschaft/schadensmanagement/wildschaeden/wildverbiss-kritische-phasen (accessed on 14 August 2023).
- Häsler, H.; Senn, J. Ungulate Browsing on European Silver Fir Abies Alba: The Role of Occasions, Food Shortage and Diet Preferences. Wildl. Biol. 2012, 18, 67–74. [Google Scholar] [CrossRef]
- Kupferschmid, A.D. Monitoring des Wildeinflusses: Wichtige Merkmale und Beispiel einer Stichprobeninventur. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.forstverein.ch/download/pictures/5f/zjzw33ukk1ogdaty3f3n4y0y6vue6y/01_kupferschmid_sfv_wald_wild_kurs_2020.pdf&ved=2ahUKEwjk2I3DtvaPAxWi1AIHHcuvC5wQFnoECCQQAQ&usg=AOvVaw28sJHgxiMq9EFbpp1rypYk (accessed on 5 January 2025).
Study Area | Formula | AIC |
---|---|---|
WWGK | browsingpercentage ~ treespecies | 1262.839 |
browsingpercentage ~ treespecies + stem_number | 1244.838 | |
browsingpercentage ~ treespecies + stem_number + Matern(1|x + y) | 1101.867 | |
NPK | browsingpercentage ~ treespecies | 3557.507 |
browsingpercentage ~ treespecies + stem_number | 3527.993 | |
browsingpercentage ~ treespecies + stem_number + Matern(1|x + y) | 2784.955 |
Fixed Effects | Estimate | Cond. SE | t-Value | |
---|---|---|---|---|
Intercept (beech) | −0.3393 | 0.89896 | −0.3774 | |
treespecies: sycamore | 0.9420 | 0.17219 | 5.4708 | |
treespecies: spruce | −1.5648 | 0.21120 | −7.4089 | |
treespecies: fir | 0.7394 | 0.24497 | 3.0183 | |
stemnumber | −0.1494 | 0.09798 | −1.5259 | |
Random effects | Correlation Parameters | |||
nu | 0.321768114 | |||
rho | 0.001416329 | |||
Variance Parameters | ||||
x + y | 1.972 | |||
Likelihood values | logL | −542.9336 |
Fixed Effects | Estimate | Cond. SE | t-Value | |
---|---|---|---|---|
Intercept (beech) | 1.5948 | 0.80523 | 1.980 | |
treespecies: sycamore | 0.9247 | 0.09925 | 9.317 | |
treespecies: spruce | −1.6391 | 0.11368 | −14.419 | |
treespecies: fir | −0.3163 | 0.13654 | −2.317 | |
stemnumber | −0.2643 | 0.08215 | −3.217 | |
Random effects | Correlation Parameters | |||
nu | 0.1325036159 | |||
rho | 0.0004475048 | |||
Variance Parameters | ||||
x + y | 1.258 | |||
Likelihood values | logL | −1384.497 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bürscher, T.; Dachs, D.; Weingarth-Dachs, K.; Hochbichler, E. Browsing Pressure Modelling: Spatial Prediction of Browsing Probabilities. Forests 2025, 16, 1520. https://doi.org/10.3390/f16101520
Bürscher T, Dachs D, Weingarth-Dachs K, Hochbichler E. Browsing Pressure Modelling: Spatial Prediction of Browsing Probabilities. Forests. 2025; 16(10):1520. https://doi.org/10.3390/f16101520
Chicago/Turabian StyleBürscher, Thomas, Dominik Dachs, Kirsten Weingarth-Dachs, and Eduard Hochbichler. 2025. "Browsing Pressure Modelling: Spatial Prediction of Browsing Probabilities" Forests 16, no. 10: 1520. https://doi.org/10.3390/f16101520
APA StyleBürscher, T., Dachs, D., Weingarth-Dachs, K., & Hochbichler, E. (2025). Browsing Pressure Modelling: Spatial Prediction of Browsing Probabilities. Forests, 16(10), 1520. https://doi.org/10.3390/f16101520