Constructing Frozen Jacobian Iterative Methods for Solving Systems of Nonlinear Equations, Associated with ODEs and PDEs Using the Homotopy Method
Abstract
:1. Introduction
2. Parametric Homotopy
3. Construction of Iterative Methods
3.1. Iterative Method I
3.2. Iterative Method II
3.3. Iterative Method III
4. Application to Systems of Nonlinear Equations Associated with Ordinary and Partial Differential Equations
5. Computational Cost of Equation (27)
6. Convergence Analysis
7. Numerical Testing
7.1. 3D Nonlinear Poisson Problem
7.2. 2D Nonlinear Wave Equation
7.3. Verification of the Mesh-Independence Principle
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ortega, J.M.; Rheinbodt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press Limited: London, UK, 1970. [Google Scholar]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Burden, R.L.; Faires, J.D. Numerical Analysis; PWS Publishing Company: Bostan, MA, USA, 2001. [Google Scholar]
- Abbasbandy, S. Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method. Appl. Math. Comput. 2003, 145, 887–893. [Google Scholar] [CrossRef]
- Abbasbandy, S.; Tan, Y.; Liao, S.J. Newton-homotopy analysis method for nonlinear equations. Appl. Math. Comput. 2007, 188, 1794–1800. [Google Scholar] [CrossRef]
- Chun, C. Iterative methods improving Newton’s method by the decomposition method. Comput. Math. Appl. 2005, 50, 1559–1568. [Google Scholar] [CrossRef]
- Shah, F.A. Modified Homotopy Perturbation Technique for the Approximate Solution of Nonlinear Equations. Chin. J. Math. 2014, 2014, 787591. Available online: http://dx.doi.org/10.1155/2014/787591. [Google Scholar] [CrossRef]
- Amat, S.; Busquier, S.; Grau, A.; Sanchez, M.G. Maximum efficiency for a family of Newton-like methods with frozen derivatives and some applications. Appl. Math. Comput. 2013, 219, 7954–7963. [Google Scholar] [CrossRef]
- Ullah, M.Z.; Soleymani, F.; Al-Fhaid, A.S. Numerical solution of nonlinear systems by a general class of iterative methods with application to nonlinear PDEs. Numer. Algorithm. 2014, 67, 223–242. [Google Scholar] [CrossRef]
- Ahmad, F.; Tohidi, E.; Carrasco, J.A. A parameterized multi-step Newton method for solving systems of nonlinear equations. Numer. Algorithm. 2015, 71, 1017–1398. [Google Scholar] [CrossRef]
- Ullah, M.Z.; Serra-Capizzano, S.; Ahmad, F. An efficient multi-step iterative method for computing the numerical solution of systems of nonlinear equations associated with ODEs. Appl. Math. Comput. 2015, 250, 249–259. [Google Scholar] [CrossRef]
- Ahmad, F.; Tohidi, E.; Ullah, M.Z.; Carrasco, J.A. Higher order multi-step Jarratt-like method for solving systems of nonlinear equations: Application to PDEs and ODEs. Comput. Math. Appl. 2015, 70, 624–636. Available online: http://dx.doi.org/10.1016/j.camwa.2015.05.012. [Google Scholar] [CrossRef] [Green Version]
- Poincare, H. Second complement a l’Analysis Situs. Proc. Lond. Math. Soc. 1900, 32, 277–308. [Google Scholar] [CrossRef]
- Leykin, A.; Verschelde, J.; Zhao, A. Newton’s method with deflation for isolated singularities of polynomial systems. Theor. Comp. Sci. 2006, 359, 111–122. [Google Scholar] [CrossRef]
- Liao, S.J. The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 1992. [Google Scholar]
- Liao, S.J. On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 2004, 147, 499–513. [Google Scholar] [CrossRef]
- Liao, S.J.; Campo, A. Analytic solutions of the temperature distribution in Blasius viscous flow problems. J. Fluid Mech. 2002, 453, 411–425. [Google Scholar] [CrossRef]
- Liao, S.J.; Tan, Y. A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 2007, 119, 297–354. [Google Scholar] [CrossRef]
- Mogan, A.P.; Sommese, A.J. A homotopy for solving general polynomial systems that respects m-homogeneous structures. Appl. Math. Comput. 1987, 24, 101–113. [Google Scholar] [CrossRef]
- Pakdemirli, M.; Boyac, H. Generation of root finding algorithms via perturbation theory and some formulas. Appl. Math. Comput. 2007, 184, 783–788. [Google Scholar] [CrossRef]
- Noor, M.A. Some iterative methods for solving nonlinear equations using homotopy perturbation method. Int. J. Comput. Math. 2010, 87, 141–149. [Google Scholar] [CrossRef]
- Wu, Y.; Cheung, K.F. Two-parameter homotopy method for nonlinear equations. Numer. Algorithm. 2010, 53, 555–572. [Google Scholar] [CrossRef]
- Bhrawy, A.H. An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system. Appl. Math. Comput. 2014, 247, 30–46. [Google Scholar] [CrossRef]
- Dehghan, M.; Izadi, F.F. The spectral collocation method with three different bases for solving a nonlinear partial differential equation arising in modeling of nonlinear waves. Math. Comput. Model. 2011, 53, 1865–1877. Available online: http://dx.doi.org/10.1016/j.mcm.2011.01.011. [Google Scholar] [CrossRef]
- Doha, E.H.; Bhrawy, A.H.; Ezz-Eldien, S.S. Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Comput. 2011, 35, 5662–5672. [Google Scholar] [CrossRef]
- Doha, E.H.; Bhrawy, A.H.; Hafez, R.M. On shifted Jacobi spectral method for high-order multi-point boundary value problems. Commun. Nonlinear Sci. Numer. Simul. 2010, 17, 3802–3810. Available online: http://dx.doi.org/10.1016/j.cnsns.2012.02.027. [Google Scholar] [CrossRef]
- Tohidi, E.; Noghabi, S.L. An efficient Legendre Pseudospectral Method for Solving Nonlinear Quasi Bang-Bang Optimal Control Problems. J. Appl. Math. Stat. Inform. 2012, 8, 73–85. [Google Scholar] [CrossRef]
- Allgower, E.L.; Bohmer, K.; Potra, F.A.; Rheinboldt, W.C. A mesh-independence principle for operator equations and their discretizations. SIAM J. Numer. Anal. 1986, 23, 160–169. [Google Scholar] [CrossRef]
Iterations \ Methods | (19) | (20) | (21) | (22) |
---|---|---|---|---|
1 | 8.88e-01 | 5.80e-01 | 4.12e-01 | 4.12e-01 |
2 - | 3.57e-02 | 2.48e-03 | 9.94e-05 | 9.94e-05 |
3 - | 1.33e-06 | 6.41e-14 | 5.51e-25 | 5.51e-25 |
4 - | 7.985e-21 | 4.48e-58 | 4.63e-129 | 4.63e-129 |
5 - | 1.91e-64 | 1.67e-236 | 3.09e-652 | 3.09e-652 |
6 - | 2.90e-196 | 4.99e-952 | 6.59e-3271 | 6.59e-3271 |
7 - | 1.13e-592 | 6.26e-3816 | 4.63e-16,367 | 4.63e-16,367 |
8 - | 7.53e-1783 | 2.43e-15,273 | 1.27e-81,850 | 1.27e−81,850 |
COC | 3.00 | 4.00 | 5.00 | 5.00 |
Iterations\ Steps | ||||
---|---|---|---|---|
1 | 6.65e-02 | 1.66e-02 | 4.69e-03 | 1.28e-03 |
2 - | 6.10e-12 | 5.46e-21 | 1.24e-32 | 7.41e-47 |
3 - | 1.42e-75 | 3.71e-175 | 2.15e-337 | 1.38e-577 |
4 - | 2.85e-461 | 8.08e-1415 | 5.24e-3394 | 3.16e-6958 |
COC | 6.06 | 8.04 | 10.0 | 12.0 |
m \N | |||
---|---|---|---|
2 | 6.70e-07 | 7.51e-07 | 9.07e-07 |
3 - | 1.54e-09 | 1.42e-09 | 1.47e-09 |
4 - | 5.62e-10 | 1.09e-11 | 1.12e-11 |
5 - | 5.62e-10 | 3.20e-13 | 7.45e-14 |
m \N | |||
---|---|---|---|
2 | 2.82e-04 | 8.34e-04 | 5.46e-05 |
3 - | 2.81e-05 | 3.42e-05 | 2.99e-05 |
4 - | 8.32e-06 | 5.99e-06 | 1.66e-05 |
5 - | 8.23e-07 | 2.02e-06 | 9.22e-06 |
6 - | 8.71e-07 | 5.12e-06 | |
9 - | 5.53e-08 | 8.77e-07 | |
12 - | 3.45e-09 | 1.50e-07 | |
13 - | 1.37e-09 | 8.35e-08 | |
14 - | 5.40e-10 | 4.64e-08 | |
16 - | 8.75e-11 | 1.43e-08 | |
17 - | 7.94e-09 | ||
21 - | 7.55e-10 | ||
25 - | 7.19e-11 |
m \N | |||
---|---|---|---|
2 | 6.14e-03 | 2.13e-02 | 3.69e-03 |
3 - | 1.23e-03 | 1.79e-03 | 1.70-04 |
4 - | 2.11e-04 | 7.85e-04 | 6.29e-05 |
5 - | 4.68e-05 | 4.41e-04 | 1.02e-05 |
6 - | 2.09e-06 | 2.15e-04 | 5.12e-06 |
9 - | 2.60e-07 | 2.93e-05 | 7.04e-07 |
12 - | 3.90e-06 | 4.91e-08 | |
13 - | 1.99e-06 | 2.03e-08 | |
14 - | 1.02e-06 | 8.36e-09 | |
16 - | 2.66e-07 | 1.42e-09 | |
17 - | 1.36e-07 | 5.88e-10 | |
21 - | 9.28e-09 | 2.14e-11 | |
25 - | 6.36e-10 | 2.13e-11 | |
28 - | 8.77e-11 | 2.12e-11 |
Iterations \N | |||
---|---|---|---|
Newton method | |||
1 | 5.78e-02 | 4.52e-02 | 5.13e-02 |
2 - | 1.66e-03 | 2.70e-04 | 2.24e-04 |
3 - | 7.84e-07 | 2.43e-08 | 2.16e-09 |
4 - | 1.94e-07 | 4.74e-12 | 5.39e-11 |
Iterations \N | |||
1 | 5.11e-02 | 5.11-02 | 5.19e-02 |
2 - | 2.24e-04 | 2.24e-04 | 2.23e-04 |
3 - | 2.55e-09 | 2.55e-09 | 2.65e-09 |
4 - | 5.36e-11 | 5.37e-11 | 2.13e-11 |
Iterations \N | |||
Iterative method Equation (27) | |||
1 | 2.82e-04 | 8.42e-05 | 8.34e-04 |
2 - | 1.94e-07 | 4.74e-12 | 5.39e-11 |
3 - | 1.94e-07 | 4.74e-12 | 5.39e-11 |
4 - | 1.94e-07 | 4.74e-12 | 5.39e-11 |
Iterations \N | |||
1 | 5.23e-04 | 5.23e-04 | 5.46e-05 |
2 - | 5.37e-11 | 5.37e-11 | 2.14e-11 |
3 - | 5.37e-11 | 5.37e-11 | 2.14e-11 |
4 - | 5.37e-11 | 5.37e-11 | 2.14e-11 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qasim, U.; Ali, Z.; Ahmad, F.; Serra-Capizzano, S.; Zaka Ullah, M.; Asma, M. Constructing Frozen Jacobian Iterative Methods for Solving Systems of Nonlinear Equations, Associated with ODEs and PDEs Using the Homotopy Method. Algorithms 2016, 9, 18. https://doi.org/10.3390/a9010018
Qasim U, Ali Z, Ahmad F, Serra-Capizzano S, Zaka Ullah M, Asma M. Constructing Frozen Jacobian Iterative Methods for Solving Systems of Nonlinear Equations, Associated with ODEs and PDEs Using the Homotopy Method. Algorithms. 2016; 9(1):18. https://doi.org/10.3390/a9010018
Chicago/Turabian StyleQasim, Uswah, Zulifqar Ali, Fayyaz Ahmad, Stefano Serra-Capizzano, Malik Zaka Ullah, and Mir Asma. 2016. "Constructing Frozen Jacobian Iterative Methods for Solving Systems of Nonlinear Equations, Associated with ODEs and PDEs Using the Homotopy Method" Algorithms 9, no. 1: 18. https://doi.org/10.3390/a9010018
APA StyleQasim, U., Ali, Z., Ahmad, F., Serra-Capizzano, S., Zaka Ullah, M., & Asma, M. (2016). Constructing Frozen Jacobian Iterative Methods for Solving Systems of Nonlinear Equations, Associated with ODEs and PDEs Using the Homotopy Method. Algorithms, 9(1), 18. https://doi.org/10.3390/a9010018