Modelica-Based Energy Management of PEMFC Hybrid Power System of Vehicle
Abstract
:1. Introduction
- (1)
- A hybrid power system of 100 kW rated power is designed. The mathematical models of the PEMFC system, lithium-ion battery system, and other subsystems will be presented in detail. Subsequently, one-dimensional modeling of the fuel cell and zero-dimensional modeling of the lithium-ion battery will be performed using Modelica through the Dymola 2023X platform.
- (2)
- The vehicle’s power demand is divided into different stages, and a hybrid method combining the proposed state machine and MPC (SM-MPC) is proposed for the vehicle’s EMS.
- (3)
- The performance of the proposed SM-MPC EMS is validated using test data from two driving cycles, and it is compared with SM and MPC methods.
2. Mathematic Model of Hybrid Power System
2.1. PEMFC Model
2.1.1. Stack Voltage
2.1.2. Stack Temperature
2.2. Circulating Cooling Water Pump
2.3. Lithium-Ion Battery
2.4. DC/DC Converter
2.5. FCEV Power Requirement
3. Energy Management Strategy and Power Distribution Method
3.1. Model Predictive Control
3.2. State Machine
3.3. SM-MPC-EMS
3.3.1. Power Load of the Vehicle
3.3.2. Framework of SM-MPC-EMS
4. Simulation and Evaluation
4.1. Test-Bed
4.2. Testing Subsystems
4.3. Results of Power Allocation for SM-MPC
4.3.1. SM-MPC Power Allocation Comparisons with MPC and SM Methods
4.3.2. Fluctuation of SOC for Lithium Battery
4.3.3. Comparison of Hydrogen Consumption
4.4. Stack Temperature Control
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alaswad, A.; Omran, A.; Sodre, J.R.; Wilberforce, T.; Pignatelli, G.; Dassisti, M.; Olabi, A.G. Technical and commercial challenges of proton-exchange membrane (PEM) fuel cells. Energies 2020, 14, 144. [Google Scholar] [CrossRef]
- Bizon, N. Load-following mode control of a standalone renewable/fuel cell hybrid power source. Energy Convers. Manag. 2014, 77, 763–772. [Google Scholar] [CrossRef]
- Das, H.S.; Tan, C.W.; Yatim, A.H.M. Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies. Renew. Sustain. Energy Rev. 2017, 76, 268–291. [Google Scholar] [CrossRef]
- Neffati, A.; Guemri, M.; Caux, S.; Fadel, M. Energy management strategies for multi source systems. Electr. Power Syst. Res. 2013, 102, 42–49. [Google Scholar] [CrossRef]
- Olatomiwa, L.; Mekhilef, S.; Ismail, M.S.; Moghavvemi, M. Energy management strategies in hybrid renewable energy systems: A review. Renew. Sustain. Energy Rev. 2016, 62, 821–835. [Google Scholar] [CrossRef]
- Lü, X.; Wu, Y.; Lian, J.; Zhang, Y.; Chen, C.; Wang, P.; Meng, L. Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm. Energy Convers. Manag. 2020, 205, 112474. [Google Scholar] [CrossRef]
- Vuddanti, S.; Salkuti, S.R. Review of energy management system approaches in microgrids. Energies 2021, 14, 5459. [Google Scholar] [CrossRef]
- Yin, H.; Zhou, W.; Li, M.; Ma, C.; Zhao, C. An adaptive fuzzy logic-based energy management strategy on battery/ultracapacitor hybrid electric vehicles. IEEE Trans. Transp. Electrif. 2016, 2, 300–311. [Google Scholar] [CrossRef]
- Hannan, M.A.; Wali, S.B.; Ker, P.J.; Abd Rahman, M.S.; Mansor, M.; Ramachandaramurthy, V.K.; Dong, Z.Y. Battery energy-storage system: A review of technologies, optimization objectives, constraints, approaches, and outstanding issues. J. Energy Storage 2021, 42, 103023. [Google Scholar] [CrossRef]
- Liu, X.; Ma, J.; Zhao, X.; Zhang, Y.; Zhang, K.; He, Y. Integrated component optimization and energy management for plug-in hybrid electric buses. Processes 2019, 7, 477. [Google Scholar] [CrossRef]
- Serrao, L.; Onori, S.; Rizzoni, G. ECMS as a realization of Pontryagin’s minimum principle for HEV control. In Proceedings of the 2009 American Control Conference 2009, St. Louis, MO, USA, 10–12 June 2009; pp. 3964–3969. [Google Scholar]
- Leonori, S.; Paschero, M.; Mascioli, F.M.F.; Rizzi, A. Optimization strategies for Microgrid energy management systems by Genetic Algorithms. Appl. Soft Comput. 2020, 86, 105903. [Google Scholar] [CrossRef]
- Mandal, S.; Mandal, K.K. Optimal energy management of microgrids under environmental constraints using chaos enhanced differential evolution. Renew. Energy Focus 2020, 34, 129–141. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Ye, M.; Zhang, Y.; Li, G. A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles. Renew. Sustain. Energy Rev. 2021, 151, 111607. [Google Scholar] [CrossRef]
- Basantes, J.A.; Paredes, D.E.; Llanos, J.R.; Ortiz, D.E.; Burgos, C.D. Energy management system (EMS) based on model predictive control (MPC) for an isolated DC microgrid. Energies 2023, 16, 2912. [Google Scholar] [CrossRef]
- Li, S.; Chu, L.; Hu, J.; Pu, S.; Li, J.; Hou, Z.; Sun, W. A novel A-ECMS energy management strategy based on dragonfly algorithm for plug-in FCEVs. Sensors 2023, 23, 1192. [Google Scholar] [CrossRef] [PubMed]
- Touil, W.; Li, Z.; Outbib, R.; Hissel, D.; Jemei, S. Model predictive control energy management strategy of fuel cell hybrid electric vehicle. In Proceedings of the IECON 2022–48th Annual Conference of the IEEE Industrial Electronics Society 2022, Brussels, Belgium, 17–20 October 2022; pp. 1–8. [Google Scholar]
- Jia, C.; Qiao, W.; Cui, J.; Qu, L. Adaptive model-predictive-control-based real-time energy management of fuel cell hybrid electric vehicles. IEEE Trans. Power Electron. 2022, 38, 2681–2694. [Google Scholar] [CrossRef]
- Bavarian, M.; Soroush, M.; Kevrekidis, I.G.; Benziger, J.B. Mathematical modeling, steady-state and dynamic behavior, and control of fuel cells: A review. Ind. Eng. Chem. Res. 2010, 49, 7922–7950. [Google Scholar] [CrossRef]
- Anderson, R.; Zhang, L.; Ding, Y.; Blanco, M.; Bi, X.; Wilkinson, D.P. A critical review of two-phase flow in gas flow channels of proton exchange membrane fuel cells. J. Power Sources 2010, 195, 4531–4553. [Google Scholar] [CrossRef]
- Rashidi, S.; Karimi, N.; Sunden, B.; Kim, K.C.; Olabi, A.G.; Mahian, O. Progress and challenges on the thermal management of electrochemical energy conversion and storage technologies: Fuel cells, electrolysers, and supercapacitors. Prog. Energy Combust. Sci. 2022, 88, 100966. [Google Scholar] [CrossRef]
- Miller, M.; Bazylak, A. A review of polymer electrolyte membrane fuel cell stack testing. J. Power Sources 2011, 196, 601–613. [Google Scholar] [CrossRef]
- Sharma, P.; Cirrincione, M.; Mohammadi, A.; Cirrincione, G.; Kumar, R.R. An overview of artificial intelligence-based techniques for PEMFC system diagnosis. IEEE Access 2024, 12, 165708–165735. [Google Scholar] [CrossRef]
- Chavan, S.L.; Talange, D.B. Modeling and performance evaluation of PEM fuel cell by controlling its input parameters. Energy 2017, 138, 437–445. [Google Scholar] [CrossRef]
- Kucernak, A.R.; Zalitis, C. General models for the electrochemical hydrogen oxidation and hydrogen evolution reactions: Theoretical derivation and experimental results under near mass-transport free conditions. J. Phys. Chem. C 2016, 120, 10721–10745. [Google Scholar] [CrossRef]
- Virkar, A.V.; Chen, J.; Tanner, C.W.; Kim, J.W. The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells. Solid State Ion. 2000, 131, 189–198. [Google Scholar] [CrossRef]
- Asghari, S.; Mokmeli, A.; Samavati, M. Study of PEM fuel cell performance by electrochemical impedance spectroscopy. Int. J. Hydrogen Energy 2010, 35, 9283–9290. [Google Scholar] [CrossRef]
- Santarelli, M.G.; Torchio, M.F.; Cochis, P. Parameters estimation of a PEM fuel cell polarization curve and analysis of their behavior with temperature. J. Power Sources 2006, 159, 824–835. [Google Scholar] [CrossRef]
- Song, C.; Tang, Y.; Zhang, J.L.; Zhang, J.; Wang, H.; Shen, J.; Kozak, P. PEM fuel cell reaction kinetics in the temperature range of 23–120 C. Electrochim. Acta 2007, 52, 2552–2561. [Google Scholar] [CrossRef]
- Fly, A.; Thring, R.H. Temperature regulation in an evaporatively cooled proton exchange membrane fuel cell stack. Int. J. Hydrogen Energy 2015, 40, 11976–11982. [Google Scholar] [CrossRef]
- Dale, N.V.; Mann, M.D.; Salehfar, H. Semiempirical model based on thermodynamic principles for determining 6 kW proton exchange membrane electrolyzer stack characteristics. J. Power Sources 2008, 185, 1348–1353. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, M.; Zaman, S.; Xing, S.; Wang, M.; Wang, H. Thermal management system for liquid-cooling PEMFC stack: From primary configuration to system control strategy. ETransportation 2022, 12, 100165. [Google Scholar] [CrossRef]
- Tippmann, S.; Walper, D.; Balboa, L.; Spier, B.; Bessler, W.G. Low-temperature charging of lithium-ion cells part I: Electrochemical modeling and experimental investigation of degradation behavior. J. Power Sources 2014, 252, 305–316. [Google Scholar] [CrossRef]
- Koad, R.B.; Zobaa, A.F.; El-Shahat, A. A novel MPPT algorithm based on particle swarm optimization for photovoltaic systems. IEEE Trans. Sustain. Energy 2016, 8, 468–476. [Google Scholar] [CrossRef]
- Solmaz, H.; Kocakulak, T. Determination of lithium ion battery characteristics for hybrid vehicle models. Int. J. Automot. Sci. Technol. 2020, 4, 264–271. [Google Scholar] [CrossRef]
- Zhao, D.; Guo, C.; Li, Y.; Pan, S.; Feng, S.; Zhu, H. Study of the temperature distribution in insulated gate bipolar transistor module under different test conditions. Microelectron. Reliab. 2023, 140, 114880. [Google Scholar] [CrossRef]
- Hou, Z.; Chu, L.; Du, W.; Hu, J.; Jiang, J.; Yang, J.; Zhang, Y. A Novel Dual-Model MPC-based Energy Management Strategy for Fuel Cell Electric Vehicle. IEEE Trans. Transp. Electrif. 2024, 10, 8585–8604. [Google Scholar] [CrossRef]
- Schwenzer, M.; Ay, M.; Bergs, T.; Abel, D. Review on model predictive control: An engineering perspective. Int. J. Adv. Manuf. Technol. 2021, 117, 1327–1349. [Google Scholar] [CrossRef]
Characteristic | Value |
---|---|
m | 3000 kg |
10 | |
0.03 | |
0.01 kg/m3 | |
A | 7.5 m2 |
Pload (kW) | PFC (kW) | Pbat (kW) |
---|---|---|
(0, 20] | 10 | Pload − PFC |
(20, 40] | 30 | Pload − PFC |
(40, 60] | 50 | Pload − PFC |
(60, 80] | 70 | Pload − PFC |
(80, 100] | 90 | Pload − PFC |
(100, 120] | 110 | Pload − PFC |
Device | Parameter | Value |
---|---|---|
PEMFC stack | Number of cells | 455 |
Voltage range | 0~450 V | |
Current range | 0~400 A | |
Rated power | 100 kW | |
Hydrogen pressure | 5 bar | |
Air pressure | 5 bar | |
Working temperature | 293.15~333.15 K | |
Lithium-ion battery | Open circuit voltage | 300 V |
Nominal capacity | 50 Ah | |
Initial impedance | 10 mΩ | |
DC/DC converter | Efficiency | 98% |
DC bus | Bus voltage | 580 V |
Method | Hydrogen Consumption (g) | |
---|---|---|
NEDC | HWFET | |
SM | 286.85 | 705.23 |
MPC | 275.74 | 696.31 |
SM-MPC | 268.63 | 694.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Jia, J.; Shangguan, X.; Dong, J. Modelica-Based Energy Management of PEMFC Hybrid Power System of Vehicle. Algorithms 2025, 18, 322. https://doi.org/10.3390/a18060322
Zhang K, Jia J, Shangguan X, Dong J. Modelica-Based Energy Management of PEMFC Hybrid Power System of Vehicle. Algorithms. 2025; 18(6):322. https://doi.org/10.3390/a18060322
Chicago/Turabian StyleZhang, Keshu, Jiandong Jia, Xiaodan Shangguan, and Jing Dong. 2025. "Modelica-Based Energy Management of PEMFC Hybrid Power System of Vehicle" Algorithms 18, no. 6: 322. https://doi.org/10.3390/a18060322
APA StyleZhang, K., Jia, J., Shangguan, X., & Dong, J. (2025). Modelica-Based Energy Management of PEMFC Hybrid Power System of Vehicle. Algorithms, 18(6), 322. https://doi.org/10.3390/a18060322