On the Q-Convergence and Dynamics of a Modified Weierstrass Method for the Simultaneous Extraction of Polynomial Zeros
Abstract
:1. Introduction
- Theoretical: To improve and complement all existing local and semilocal convergence theorems about the modified Weierstrass method (3);
- Practical: (1) To apply our semilocal convergence result for the numerical proof of the Q-quadratic convergence of the modified Weierstrass method (3) and for the numerical guarantee of the accuracy of approximations of the roots of three polynomials two of which arise from some very important physics problems. (2) To provide a new algorithm for the experimental study of the dynamics of the simultaneous methods, which can be used for influencing the convergence of a simultaneous method, and to use it for the comparison of the convergence and dynamics of the modified Weierstrass method (3) and the famous Weierstrass’ method (1).
2. Main Results
3. Proof of the Main Results
- (i)
- (ii)
4. Comparison with Previous Results
5. Numerical Examples
- (i)
- (ii)
- Accuracy criterion. If, for a preset accuracy, , there exists an integer for which
- Step 1
- Step 2
- Take a square containing all n zeros of f and, using a mesh of points and up to K iterations, ‘cover’ the square by picking one by one random number from any cell and using it as a coordinate of the initial vector instead of one of the coordinates of Aberth’s initial vector. Thus, the basins of attraction and the convergence areas, i.e., for preset , the areas with number of iterations needed to meet the criterion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weierstrass, K. Neuer Beweis des Satzes, dass jede ganze rationale Function einer Veränderlichen dargestellt werden kann als ein Product aus linearen Functionen derselben Veränderlichen. Sitzungsber. Königl. Preuss. Akad. Wiss. Berlinn 1891, II, 1085–1101. Available online: https://biodiversitylibrary.org/page/29263197 (accessed on 2 April 2025).
- Dochev, K. Modified Newton method for simultaneous approximation of all roots of a given algebraic equation. Phys. Math. J. Bulg. Acad. Sci. 1962, 5, 136–139. [Google Scholar]
- Wang, D.; Zhao, F. On the determination of a safe initial approximation for the Durand–Kerner algorithmn. J. Comput. Appl. Math. 1991, 38, 447–456. [Google Scholar]
- Proinov, P.D. Relationships between different types of initial conditions for simultaneous root finding methods. Appl. Math. Lett. 2016, 52, 102–111. [Google Scholar] [CrossRef]
- Proinov, P.D. General convergence theorems for iterative processes and applications to the Weierstrass root-finding method. J. Complexity 2016, 33, 118–144. [Google Scholar] [CrossRef]
- Durand, E. Solutions Numeriques des Equations Algebriques, Racines d’un Polynome: Equations du Type F(x)= 0; Masson: Paris, France, 1960; Volume I. [Google Scholar]
- Ivanov, S.I. Families of high-order simultaneous methods with several corrections. Numer. Algorithms 2024, 97, 945–958. [Google Scholar] [CrossRef]
- Nedzhibov, G.H. Convergence of the modified inverse Weierstrass method for simultaneous approximation of polynomial zeros. Commun. Numer. Anal. 2016, 2016, 74–80. [Google Scholar] [CrossRef]
- Nedzhibov, G.H. On semilocal convergence analysis of the Inverse Weierstrass method for simultaneous computing of polynomial zeros. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2019, 11, 247–258. [Google Scholar]
- Nedzhibov, G.H. New local convergence theorems for the Inverse Weierstrass method for simultaneous approximation of polynomial zeros. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2018, 10, 266–279. [Google Scholar]
- Marcheva, P.I.; Ivanov, S.I. Convergence analysis of a modified Weierstrass method for the simultaneous determination of polynomial zeros. Symmetry 2020, 12, 1408. [Google Scholar] [CrossRef]
- Sendov, B.; Andreev, A.; Kjurkchiev, N. Numerical Solution of Polynomial Equations. In Handbook of Numerical Analysis; Ciarlet, P., Lions, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; Volume III, pp. 625–778. [Google Scholar]
- Wang, D.; Zhao, F. The theory of Smale’s point estimation and its applications. J. Comput. Appl. Math. 1995, 60, 253–269. [Google Scholar] [CrossRef]
- Kyurkchiev, N. Initial Approximations and Root Finding Methods. In Mathematical Research; Wiley: Berlin, Germany, 1998; Volume 104. [Google Scholar]
- Petković, M. Point Estimation of Root Finding Methods; Lecture Notes in Mathematics; Springer: Berlin, Germany, 2008; Volume 1933. [Google Scholar] [CrossRef]
- Hristov, V.; Kyurkchiev, N.; Iliev, A. Global Convergence Properties of the SOR-Weierstrass Method. In Numerical Methods and Applications; Dimov, I., Dimova, S., Kolkovska, N., Eds.; Springer: Berlin, Germany, 2011; Volume 6046, pp. 437–444. [Google Scholar] [CrossRef]
- Galilea, V.; Gutiérrez, J.M. A Characterization of the Dynamics of Schröder’s Method for Polynomials with Two Roots. Fractal Fract. 2021, 5, 25. [Google Scholar] [CrossRef]
- Kostadinova, S.G.; Ivanov, S.I. Chebyshev’s Method for Multiple Zeros of Analytic Functions: Convergence, Dynamics and Real-World Applications. Mathematics 2024, 12, 3043. [Google Scholar] [CrossRef]
- Campos, B.; Villalba, E.G.; Vindel, P. Dynamical and numerical analysis of classical multiple roots finding methods applied for different multiplicities. Comp. Appl. Math. 2024, 43, 230. [Google Scholar] [CrossRef]
- Marcheva, P.I.; Ivanov, S.I. Convergence and Dynamics of Schröder’s Method for Zeros of Analytic Functions with Unknown Multiplicity. Mathematics 2025, 13, 275. [Google Scholar] [CrossRef]
- Cordero, A.; Garrido, N.; Torregrosa, J.R.; Triguero-Navarro, P. Iterative schemes for finding all roots simultaneously of nonlinear equations. Appl. Math. Let. 2022, 134, 108325. [Google Scholar] [CrossRef]
- Reinke, B.; Schleicher, D.; Stoll, M. The Weierstrass-Durand-Kerner root finder is not generally convergent. Math. Comp. 2023, 92, 839–866. [Google Scholar] [CrossRef]
- Pavkov, T.M.; Kabadzhov, V.G.; Ivanov, I.K.; Ivanov, S.I. Local convergence analysis of a one parameter family of simultaneous methods with applications to real-world problems. Algorithms 2023, 16, 103. [Google Scholar] [CrossRef]
- Cordero, A.; Torregrosa, J.R.; Triguero-Navarro, P. Jacobian-Free Vectorial Iterative Scheme to Find Simple Several Solutions Simultaneously. Math. Meth. Appl. Sci. 2025, 48, 5718–5730. [Google Scholar] [CrossRef]
- Proinov, P.D. Two Classes of Iteration Functions and Q-Convergence of Two Iterative Methods for Polynomial Zeros. Symmetry 2021, 13, 371. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, F. The globalization of Durand–Kerner algorithm. Appl. Math. Mech. 1997, 18, 1045–1057. [Google Scholar] [CrossRef]
- Aberth, O. Iteration Methods for Finding all Zeros of a Polynomial Simultaneously. Math. Comp. 1973, 27, 339–344. [Google Scholar] [CrossRef]
- Atkins, P.; de Paula, J.; Keeler, J. Atkins’ Physical Chemistry, 12th ed.; Oxford University Press: Oxford, UK, 2022. [Google Scholar]
- Marcheva, P.I.; Ivanov, S.I. On the semilocal convergence of a modified Weierstrass method for the simultaneous computation of polynomial zeros. AIP Conf. Proc. 2022, 2425, 420012. [Google Scholar] [CrossRef]
2 | 0.147476 | 1.816214 | 0.136294 | 1.809102 | 1.795918 | |
3 | 0.142763 | 1.790711 | 0.115166 | 1.798972 | 1.801232 | |
4 | 0.141210 | 1.782394 | 0.103661 | 1.798553 | 1.813296 | |
5 | 0.140437 | 1.778270 | 0.095868 | 1.800342 | 1.825738 | |
10 | 0.139155 | 1.771449 | 0.075611 | 1.813043 | 1.872578 | |
15 | 0.138790 | 1.769513 | 0.065704 | 1.823715 | 1.900192 | |
20 | 0.138617 | 1.768597 | 0.059349 | 1.832223 | 1.918019 | |
25 | 0.138517 | 1.768063 | 0.054767 | 1.839215 | 1.930447 | |
30 | 0.138451 | 1.767714 | 0.051233 | 1.845121 | 1.939602 | |
50 | 0.138322 | 1.767030 | 0.042279 | 1.862230 | 0.007827 | 1.960427 |
100 | 0.138227 | 1.766530 | 0.032167 | 1.885650 | 0.003999 | 1.978739 |
1000 | 0.138144 | 1.766088 | 0.011831 | 1.949246 | 0.000408 | 1.997720 |
0.138135 | 1.766044 | 0.003971 | 1.981548 | 0.000040 | 1.999770 |
Method | Initial Guess | ||||||
---|---|---|---|---|---|---|---|
The method diverges | |||||||
18 | 21 | ||||||
20 | 23 | ||||||
17 | 20 | ||||||
68 | |||||||
− | − | 33 | |||||
− | − | 34 | |||||
− | − | 34 |
Method | Initial Guess | m | k | ||||
---|---|---|---|---|---|---|---|
37 | 40 | ||||||
35 | 37 | ||||||
The method diverges | |||||||
31 | |||||||
− | − | 29 | |||||
− | − | 29 |
Method | Initial Guess | m | k | ||||
---|---|---|---|---|---|---|---|
17 | 19 | ||||||
17 | 19 | ||||||
20 | 21 | ||||||
18 | |||||||
− | − | 18 | |||||
− | − | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcheva, P.I.; Ivanov, I.K.; Ivanov, S.I. On the Q-Convergence and Dynamics of a Modified Weierstrass Method for the Simultaneous Extraction of Polynomial Zeros. Algorithms 2025, 18, 205. https://doi.org/10.3390/a18040205
Marcheva PI, Ivanov IK, Ivanov SI. On the Q-Convergence and Dynamics of a Modified Weierstrass Method for the Simultaneous Extraction of Polynomial Zeros. Algorithms. 2025; 18(4):205. https://doi.org/10.3390/a18040205
Chicago/Turabian StyleMarcheva, Plamena I., Ivan K. Ivanov, and Stoil I. Ivanov. 2025. "On the Q-Convergence and Dynamics of a Modified Weierstrass Method for the Simultaneous Extraction of Polynomial Zeros" Algorithms 18, no. 4: 205. https://doi.org/10.3390/a18040205
APA StyleMarcheva, P. I., Ivanov, I. K., & Ivanov, S. I. (2025). On the Q-Convergence and Dynamics of a Modified Weierstrass Method for the Simultaneous Extraction of Polynomial Zeros. Algorithms, 18(4), 205. https://doi.org/10.3390/a18040205