Addressing Air Pollution Challenges: An Integrated Algorithmic Approach Towards Safeguarding Built Heritage
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Workflow
- Pandas, for data manipulation, creation of DataFrames and correlation matrices;
- Numpy, for numerical operations and array handling;
- Matplotlib, for creating visualisations;
- Scikit-learn, for machine learning algorithms;
- Scipy, for spectral processing and statistical analysis;
- Seaborn, for enhanced statistical data visualisation.
2.2. User Input DataFrame
2.3. Analytical Techniques
2.3.1. Raman Spectroscopy
2.3.2. Micro-XRF Spectrometry
2.4. Data Fusion Architecture
2.5. Feature Extraction, Clustering and Visualisation
3. Results and Discussion
3.1. Raman Data Analysis
3.2. Micro-XRF Data Analysis
3.3. Fused Data Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vidal, F.; Vicente, R.; Mendes Silva, J. Review of environmental and air pollution impacts on built heritage: 10 questions on corrosion and soiling effects for urban intervention. J. Cult. Herit. 2019, 37, 273–295. [Google Scholar] [CrossRef]
- Vidović, K.; Hočevar, S.; Menart, E.; Drventić, I.; Grgić, I.; Kroflić, A. Impact of air pollution on outdoor cultural heritage objects and decoding the role of particulate matter: A critical review. Environ. Sci. Pollut. Res. 2022, 29, 46405–46437. [Google Scholar] [CrossRef]
- Ruffolo, S.A.; La Russa, M.F.; Rovella, N.; Ricca, M. The impact of air pollution on stone materials. Environments 2023, 10, 119. [Google Scholar] [CrossRef]
- Silva, F.M.; Arreiol, M.; Fragata, A. The Impact of Pollution on Cultural Heritage in the Historic Centre of Porto, Portugal. Urban Sci. 2024, 8, 31. [Google Scholar] [CrossRef]
- Moropoulou, A.; Bisbikou, K.; Torfs, K.; Van Grieken, R.; Zezza, F.; Macri, F. Origin and growth of weathering crusts on ancient marbles in industrial atmosphere. Atmos. Environ. 1998, 32, 967–982. [Google Scholar] [CrossRef]
- Sabbioni, C. Mechanism of Air Pollution Damage to Stone. In The Effects of Air Pollution on the Built Environment; Brimblecombe, P., Ed.; Imperial College Press: London, UK, 2003; pp. 63–106. [Google Scholar] [CrossRef]
- Mitsos, D.; Kantarelou, V.; Palamara, E.; Karydas, A.G.; Zacharias, N.; Gerasopoulos, E. Characterization of black crust on archaeological marble from the Library of Hadrian in Athens and inferences about contributing pollution sources. J. Cult. Herit. 2022, 53, 236–243. [Google Scholar] [CrossRef]
- Mendoza, M.A.D.; De La Hoz Franco, E.; Gómez, J.E.G. Technologies for the Preservation of Cultural Heritage—A Systematic Review of the Literature. Sustainability 2023, 15, 1059. [Google Scholar] [CrossRef]
- Gîrbacia, F. An Analysis of Research Trends for Using Artificial Intelligence in Cultural Heritage. Electronics 2024, 13, 3738. [Google Scholar] [CrossRef]
- Li, J. Application of Artificial Intelligence in Cultural Heritage Protection. J. Phys. Conf. Ser. 2021, 1881, 032007. [Google Scholar] [CrossRef]
- Wojcicki, P.; Korga, S.; Milosz, M. Preliminary Application of the Algorithm Highlighting Petroglyph Patterns. Appl. Sci. 2022, 12, 1660. [Google Scholar] [CrossRef]
- Dzwierzynska, J.; Prokop, A. Reconstruction of Historic Monuments—A Dual Approach. Sustainability 2022, 14, 14651. [Google Scholar] [CrossRef]
- Shabani, A.; Kioumarsi, M.; Zucconi, M. State of the art of simplified analytical methods for seismic vulnerability assessment of unreinforced masonry buildings. Eng. Struct. 2021, 239, 112280. [Google Scholar] [CrossRef]
- Scatigno, C.; Festa, G. Neutron Imaging and Learning Algorithms: New Perspectives in Cultural Heritage Applications. J. Imaging 2022, 8, 284. [Google Scholar] [CrossRef] [PubMed]
- Chrysogonos, N.; Lampropoulos, K.; Tzortzis, I.N.; Zafeiropoulos, C.; Doulamis, A.; Doulamis, N. Evaluating the Effectiveness of Unsupervised and Supervised Techniques for Identifying Deteriorations on Cultural Heritage Monuments Using Hyper-Spectral Imagery. In Transdisciplinary Multispectral Modeling and Cooperation for the Preservation of Cultural Heritage. TMM_CH 2023; Moropoulou, A., Georgopoulos, A., Ioannides, M., Doulamis, A., Lampropoulos, K., Ronchi, A., Eds.; Communications in Computer and Information Science; Springer: Cham, Switzerland, 2023; Volume 1889, pp. 114–124. [Google Scholar] [CrossRef]
- Sazanova, K.V.; Zelenskaya, M.S.; Vlasov, A.D.; Bobir, S.Y.; Yakkonen, K.L.; Vlasov, D.Y. Microorganisms in Superficial Deposits on the Stone Monuments in Saint Petersburg. Microorganisms 2022, 10, 316. [Google Scholar] [CrossRef]
- Sahin, H.; Sözen, A. The tangible impacts of air pollution on built heritage during COVID-19 period on the Historical Peninsula of Istanbul, Turkey. Environ. Sci. Pollut. Res. 2025, 32, 14202–14219. [Google Scholar] [CrossRef]
- Spezzano, P. Mapping the susceptibility of UNESCO World Cultural Heritage sites in Europe to ambient (outdoor) air pollution. Sci. Total Environ. 2021, 754, 142345. [Google Scholar] [CrossRef]
- Xiao, B.; Ning, L.; Lin, Z.; Wang, S.; Zang, H. The Impact of Air Pollution on the Protection of World Cultural Heritage in China. Int. J. Environ. Res. Public Health 2022, 19, 10226. [Google Scholar] [CrossRef]
- Siountri, K.; Anagnostopoulos, C.N. The Classification of Cultural Heritage Buildings in Athens Using Deep Learning Techniques. Heritage 2023, 6, 3673–3705. [Google Scholar] [CrossRef]
- Bonetti, E.; Cavaterra, C.; Freddi, F.; Grasselli, M.; Natalini, R. Chemomechanical Degradation of Monumental Stones: Preliminary Results. In Mathematical Modeling in Cultural Heritage; Bonetti, E., Cavaterra, C., Natalini, R., Solci, M., Eds.; Springer INdAM Series; Springer: Cham, Switzerland, 2021; Volume 41, pp. 59–72. [Google Scholar] [CrossRef]
- Yi, Y.; Wang, C.; Li, K.; Jia, X.; Wang, C.; Wang, Y. Revealing Black Stains on the Surface of Stone Artifacts from Material Properties to Environmental Sustainability: The Case of Xianling Tomb, China. Sustainability 2025, 17, 3422. [Google Scholar] [CrossRef]
- Casadio, F.; Daher, C.; Bellot-Gurlet, L. Raman Spectroscopy of cultural heritage Materials: Overview of Applications and New Frontiers in Instrumentation, Sampling Modalities, and Data Processing. Top. Curr. Chem. 2016, 374, 62. [Google Scholar] [CrossRef]
- Odelli, E.; Rousaki, A.; Raneri, S.; Vandenabeele, P. Advantages and pitfalls of the use of mobile Raman and XRF systems applied on cultural heritage objects in Tuscany (Italy). Eur. Phys. J. Plus 2021, 136, 449. [Google Scholar] [CrossRef]
- Pozzi, F.; Rizzo, A.; Basso, E.; Angelin, E.M.; de Sá, S.F.; Cucci, C.; Picollo, M. Portable Spectroscopy for Cultural Heritage: Applications and Practical Challenges. In Portable Spectroscopy and Spectrometry; Crocombe, R., Leary, P., Kammrath, B., Eds.; Wiley Online Books; John Wiley & Sons: Hoboken, NJ, USA, 2021; Volume 2, pp. 499–522. [Google Scholar] [CrossRef]
- Sheehy, G.; Picot, F.; Dallaire, F.; Ember, K.J.; Nguyen, T.; Petrecca, K.; Trudel, D.; Leblond, F. Open-sourced Raman spectroscopy data processing package implementing a baseline removal algorithm validated from multiple datasets acquired in human tissue and biofluids. J. Biomed. Opt. 2023, 28, 025002. [Google Scholar] [CrossRef]
- Offroy, M.; Marchetti, M.; Kauffmann, T.H.; Bourson, P.; Duponchel, L.; Savarese, L.; Mechling, J.M. Using clustering as pre-processing in the framework of signal unmixing for exhaustive exploration of archaeological artefacts in Raman imaging. Talanta 2024, 274, 125955. [Google Scholar] [CrossRef]
- Rousaki, A.; Paolin, E.; Sciutto, G.; Vandenabeele, P. Development and evaluation of a simple Raman spectral searching algorithm. Eur. Phys. J. Plus 2021, 136, 620. [Google Scholar] [CrossRef]
- Coccato, A.; Caggiani, M.C. An overview of Principal Components Analysis approaches in Raman studies of cultural heritage materials. J. Raman Spectrosc. 2023, 55, 125–147. [Google Scholar] [CrossRef]
- Fang, S.; Wu, S.; Chen, Z.; He, C.; Lin, L.L.; Ye, J. Recent progress and applications of Raman spectrum denoising algorithms in chemical and biological analyses: A review. Trends Analyt. Chem. 2024, 172, 117578. [Google Scholar] [CrossRef]
- Li, M.; Ruan, F.; Li, R.; Zhou, J.; Zhang, T.; Tang, H.; Li, H. In situ simultaneous quantitative analysis multi-elements of archaeological ceramics via laser-induced breakdown spectroscopy combined with machine learning strategy. Microchem. J. 2022, 182, 107928. [Google Scholar] [CrossRef]
- Andrić, V.; Gajić-Kvaščev, M.; Crkvenjakov, D.K.; Marić-Stojanović, M.; Gadžurić, S. Evaluation of pattern recognition techniques for the attribution of cultural heritage objects based on the qualitative XRF data. Microchem. J. 2021, 167, 106267. [Google Scholar] [CrossRef]
- Ruschioni, G.; Malchiodi, D.; Zanaboni, A.M.; Bonizzoni, L. Supervised learning algorithms as a tool for archaeology: Classification of ceramic samples described by chemical element concentrations. J. Archaeol. Sci. Rep. 2023, 49, 103995. [Google Scholar] [CrossRef]
- Towarek, A.; Halicz, L.; Matwin, S.; Wagner, B. Machine learning in analytical chemistry for cultural heritage: A comprehensive review. J. Cult. Herit. 2024, 70, 64–70. [Google Scholar] [CrossRef]
- Gibbons, E.; Léveillé, R.; Berlo, K. Data fusion of laser-induced breakdown and Raman spectroscopies: Enhancing clay mineral identification. Spectrochim. Acta B At. Spectrosc. 2020, 170, 105905. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z.; Luo, Y.; Zhang, J.; Feng, X.; Zeng, Q.; Tian, D.; Li, C.; Zhang, Y.; Wang, Y.; et al. 2Quantitative Analysis of Soil Cd Content Based on the Fusion of Vis-NIR and XRF Spectral Data in the Impacted Area of a Metallurgical Slag Site in Gejiu, Yunnan. Processes 2023, 11, 2714. [Google Scholar] [CrossRef]
- RRUFF Project Database. Available online: https://rruff.info/ (accessed on 7 June 2025).
- Chi, M.; Han, X.; Xu, Y.; Wang, Y.; Shu, F.; Zhou, W.; Wu, Y. An Improved Background-Correction Algorithm for Raman Spectroscopy Based on the Wavelet Transform. Appl. Spectrosc. 2018, 73, 78–87. [Google Scholar] [CrossRef]
- Xu, Y.; Du, P.; Senger, R.; Robertson, J.; Pirkle, J.L. ISREA: An Efficient Peak-Preserving Baseline Correction Algorithm for Raman Spectra. Appl. Spectrosc. 2020, 75, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Solé, V.A.; Papillon, E.; Cotte, M.; Walter, P.; Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta B At. Spectrosc. 2007, 62, 63–68. [Google Scholar] [CrossRef]
- Smolinska, A.; Engel, J.; Szymanska, E.; Buydens, L.; Blanchet, L. Chapter 3—General Framing of Low-, Mid-, and High-Level Data Fusion with Examples in the Life Sciences. In Data Handling in Science and Technology; Cocchi, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 31, pp. 51–79. [Google Scholar] [CrossRef]
- Robert, C.; Jessep, W.; Sutton, J.J.; Hicks, T.M.; Loeffen, M.; Farouk, M.; Ward, J.F.; Bain, W.E.; Craigie, C.R.; Fraser-Miller, S.J.; et al. Evaluating low- mid- and high-level fusion strategies for combining Raman and infrared spectroscopy for quality assessment of red meat. Food Chem. 2021, 361, 130154. [Google Scholar] [CrossRef] [PubMed]
- Valavanidis, A.; Fiotakis, K.; Vlahogianni, T.; Bakeas, E.B.; Triantafillaki, S.; Paraskevopoulou, V.; Dassenakis, M. Characterization of atmospheric particulates, particle-bound transition metals and polycyclic aromatic hydrocarbons of urban air in the centre of Athens (Greece). Chemosphere 2006, 65, 760–768. [Google Scholar] [CrossRef]
- Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef]
- Koukoulakis, K.G.; Chrysohou, E.; Kanellopoulos, P.G.; Karavoltsos, S.; Katsouras, G.; Dassenakis, M.; Nikolelis, D.; Bakeas, E. Trace elements bound to airborne PM10 in a heavily industrialized site nearby Athens. Atmos. Pollut. Res. 2019, 10, 1347–1356. [Google Scholar] [CrossRef]
- Maurenbrecher, P. Water-Shedding Details Improve Masonry Performance; Construction Technology Update 23. 1998; Institute for Research in Construction, National Research Council of Canada: Ottawa, ON, Canada, 1998. [Google Scholar] [CrossRef]
- Laohaviraphap, N.; Waroonkun, T. Integrating Artificial Intelligence and the Internet of Things in Cultural Heritage Preservation: A Systematic Review of Risk Management and Environmental Monitoring Strategies. Buildings 2024, 14, 3979. [Google Scholar] [CrossRef]









| Sample ID | Height | Orientation | Chronology | Macro Rating | Raman Source 1 | Raman Source 2 | Raman Rating | XRF Source 1 | XRF Source 2 | XRF Rating |
|---|---|---|---|---|---|---|---|---|---|---|
| IF1 | 1.8 | N | −450 | 2 | 1 | 4 | 2 | 1 | 4 | 1 |
| IF3 | 0.4 | W | −450 | 2 | 1 | 2 | 1 | 1 | 2 | 1 |
| AT1 | 9 | SW | 1050 | 1 | 3 | 1 | 1 | 1 | 2 | 2 |
| AT4 | 7.1 | SE | 1050 | 1 | 1 | 2 | 2 | 1 | 3 | 1 |
| EL1 | 2.1 | NE | 200 | 1 | 5 | 2 | 1 | 1 | 2 | 1 |
| EL16 | 1.7 | W | −450 | 2 | 1 | 2 | 1 | 2 | 1 | 0 |
| PE1 | 0.4 | NW | −450 | 2 | 1 | 3 | 2 | 1 | 2 | 1 |
| PE5 | 0.6 | W | −450 | 1 | 3 | 1 | 1 | 1 | 3 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsos, D.; Poulopoulos, V. Addressing Air Pollution Challenges: An Integrated Algorithmic Approach Towards Safeguarding Built Heritage. Algorithms 2025, 18, 619. https://doi.org/10.3390/a18100619
Mitsos D, Poulopoulos V. Addressing Air Pollution Challenges: An Integrated Algorithmic Approach Towards Safeguarding Built Heritage. Algorithms. 2025; 18(10):619. https://doi.org/10.3390/a18100619
Chicago/Turabian StyleMitsos, Dimitrios, and Vassilis Poulopoulos. 2025. "Addressing Air Pollution Challenges: An Integrated Algorithmic Approach Towards Safeguarding Built Heritage" Algorithms 18, no. 10: 619. https://doi.org/10.3390/a18100619
APA StyleMitsos, D., & Poulopoulos, V. (2025). Addressing Air Pollution Challenges: An Integrated Algorithmic Approach Towards Safeguarding Built Heritage. Algorithms, 18(10), 619. https://doi.org/10.3390/a18100619

