Generalized Algorithm Based on Equivalent Circuits for Evaluating Shielding Effectiveness of Electronic Equipment Enclosures
Abstract
:1. Introduction
2. Mathematical Foundation of Generalized Algorithm
2.1. Formulation of Equivalent Circuit Model
2.2. Modifications of Aperture Representation
2.3. Internal Filling of Apertures
2.4. Higher Order Modes
2.5. Cylindrical Shaped Enclosure
2.6. Internal Filling of Enclosures
2.7. Summary
3. Generalized Algorithm
3.1. Main Flowchart
3.2. Algorithms for Calculating Aperture Impedance
3.3. Algorithms for Equivalent Circuit Transformation
4. Algorithm Validation
4.1. Validation by Measurement
4.2. Validation by Numerical Analysis
4.3. Computation Time Analysis
5. Software Development
5.1. Programming Tools and Software Architecture
5.2. Software Feature
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ott, H.W. Electromagnetic Compatibility Engineering, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Kallambadi Sadashivappa, P.; Venkatachalam, R.; Pothu, R.; Boddula, R.; Banerjee, P.; Naik, R.; Radwan, A.B.; Al-Qahtani, N. Progressive review of functional nanomaterials-based polymer nanocomposites for efficient EMI shielding. J. Compos. Sci. 2023, 7, 77. [Google Scholar] [CrossRef]
- Schulz, R.B. Shielding theory and practice. IEEE Trans. Electromagn. Compat. 1988, 30, 187–201. [Google Scholar] [CrossRef]
- Ren, J.; Pan, Y.; Zhou, Z.; Zhang, T. Research on testing method for shielding effectiveness of irregular cavity based on field distribution characteristics. Electronics 2023, 12, 1035. [Google Scholar] [CrossRef]
- Basyigit, I.B.; Dogan, H.; Helhel, S. The effect of aperture shape, angle of incidence and polarization on shielding effectiveness of metallic enclosures. J. Microw. Power Electromagn. Energy 2019, 53, 115–127. [Google Scholar] [CrossRef]
- Azizi, H.; Tahar Belkacem, F.; Moussaoui, D.; Moulai, H.; Bendaoud, A.; Bensetti, M. Electromagnetic interference from shielding effectiveness of a rectangular enclosure with apertures—Circuital approach, FDTD and FIT modelling. J. Electromagn. Waves Appl. 2014, 28, 494–514. [Google Scholar] [CrossRef]
- Flintoft, I.D.; Bale, S.J.; Marvin, A.C.; Ye, M.; Dawson, J.F.; Wan, G.; Zhang, M.; Parker, S.L.; Robinson, M.P. Representative Contents Design for Shielding Enclosure Qualification From 2 to 20 GHz. IEEE Trans. Electromagn. Compat. 2018, 60, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.H.; Hyoung, C.H.; Hwang, J.-H.; Park, H.H. Impact of absorbers on the shielding effectiveness of metallic rooms with apertures. Electronics 2021, 10, 237. [Google Scholar] [CrossRef]
- Rusiecki, A.; Aniserowicz, K.; Orlandi, A.; Duffy, A.P. Internal stirring: An approach to approximate evaluation of shielding effectiveness of small slotted enclosures. IET Sci. Meas. Technol. 2016, 10, 659–664. [Google Scholar] [CrossRef] [Green Version]
- Kubík, Z.; Skála, J. Shielding effectiveness measurement and simulation of small perforated shielding enclosure using FEM. In Proceedings of the 2015 IEEE 15th International Conference on Environment and Electrical Engineering, Rome, Italy, 10–13 June 2015; pp. 1983–1988. [Google Scholar]
- Jiao, C.; Li, L.; Cui, X.; Li, H. Subcell FDTD analysis of shielding effectiveness of a thin-walled enclosure with an aperture. IEEE Trans. Magn. 2006, 42, 1075–1078. [Google Scholar] [CrossRef]
- Attari, A.R.; Barkeshli, K.; Ndagijimana, F.; Dansou, J. Application of the transmission line matrix method to the calculation of the shielding effectiveness for metallic enclosures. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, San Antonio, TX, USA, 16–21 June 2002; pp. 302–305. [Google Scholar]
- Celozzi, S.; Araneo, R.; Lovat, G. Electromagnetic Shielding; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Hill, D.A.; Ma, M.T.; Ondrejka, A.R.; Riddle, B.F.; Crawford, M.L.; Johnk, R.T. Aperture excitation of electrically large, lossy cavities. IEEE Trans. Electromagn. Compat. 1994, 36, 169–178. [Google Scholar] [CrossRef]
- Jeong, I.H.; Lee, J.W.; Lee, Y.S.; Kwon, J.-H. Shielding effectiveness estimation in an electrically large cavity using power balance method and BLT equation. In Proceedings of the 2014 International Symposium on Electromagnetic Compatibility, Gothenburg, Sweden, 1–4 September 2014; pp. 444–447. [Google Scholar]
- Flintoft, I.D.; Marvin, A.C.; Funn, F.I.; Dawson, L.; Zhang, X.; Robinson, M.P.; Dawson, J.F. Evaluation of the diffusion equation for modeling reverberant electromagnetic fields. IEEE Trans. Electromagn. Compat. 2017, 59, 760–769. [Google Scholar] [CrossRef]
- Yan, J.; Dawson, J.; Marvin, A. Estimating reverberant electromagnetic fields in populated enclosures by using the diffusion model. In Proceedings of the 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity, Long Beach, CA, USA, 30 July–3 August 2018; pp. 363–367. [Google Scholar]
- Solin, J.R. Formula for the field excited in a rectangular cavity with a small aperture. IEEE Trans. Electromagn. Compat. 2011, 53, 82–90. [Google Scholar] [CrossRef]
- Solin, J.R. Formula for the field excited in a rectangular cavity with an electrically large aperture. IEEE Trans. Electromagn. Compat. 2012, 54, 188–192. [Google Scholar] [CrossRef]
- Robinson, M.P.; Turner, J.D.; Thomas, D.W.P.; Dawson, J.F.; Ganley, M.D.; Marvin, A.C.; Porter, S.J.; Benson, T.M.; Christopoulos, C. Shielding effectiveness of a rectangular enclosure with a rectangular aperture. Electron. Lett. 1996, 32, 1559–1560. [Google Scholar] [CrossRef]
- Po’ad, F.A.; Jenu, M.Z.M.; Christopoulos, C.; Thomas, D.W.P. Analytical and experimental study of the shielding effectiveness of a metallic enclosure with off-centered apertures. In Proceedings of the 2006 17th International Zurich Symposium on Electromagnetic Compatibility, Singapore, 27 February–3 March 2006; pp. 618–621. [Google Scholar]
- Nie, B.L.; Du, P.A. An efficient and reliable circuit model for the shielding effectiveness prediction of an enclosure with an aperture. IEEE Trans. Electromagn. Compat. 2015, 57, 357–364. [Google Scholar] [CrossRef]
- Shi, D.; Shen, Y.; Gao, Y. 3 High-order Mode Transmission Line Model of Enclosure with Off-center Aperture. In Proceedings of the 2007 International Symposium on Electromagnetic Compatibility, Qingdao, China, 23–26 October 2007; pp. 361–364. [Google Scholar]
- Yin, M.C.; Liu, E.; Du, P.A. Improved circuit model for the prediction of the shielding effectiveness and resonances of an enclosure with apertures. IEEE Trans. Electromagn. Compat. 2016, 58, 448–456. [Google Scholar] [CrossRef]
- Robinson, M.P.; Benson, T.M.; Christopoulos, C.; Dawson, J.F.; Ganley, M.D.; Marvin, A.C.; Porter, S.J.; Thomas, D.W.P. Analytical formulation for the shielding effectiveness of enclosures with apertures. IEEE Trans. Electromagn. Compat. 1998, 40, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Rabat, A.; Bonnet, P.; Ei Khamlichi Drissi, K.; Girard, S. Novel analytical formulation for shielding effectiveness calculation of lossy enclosures containing elliptical apertures. In Proceedings of the 2018 International Symposium on Electromagnetic Compatibility, Amsterdam, The Netherlands, 27–30 August 2018; pp. 735–739. [Google Scholar]
- Inbavalli, V.P.; Venkatesh, C.; Suresh Kumar, T.R. Calculation of shielding effectiveness of an enclosure with arbitrary shaped apertures using hybrid approach. In Proceedings of the 2018 15th International Conference on ElectroMagnetic Interference & Compatibility, Bengaluru, India, 13–16 November 2018; pp. 1–4. [Google Scholar]
- Hu, P.Y.; Sun, X.Y.; Chen, J. Hybrid model for estimating the shielding effectiveness of metallic enclosures with arbitrary apertures. IET Sci. Meas. Technol. 2020, 14, 462–470. [Google Scholar] [CrossRef]
- HongYi, L.; Su, D.; Yao, C.; ZiHua, Z. Analytically calculate shielding effectiveness of enclosure with horizontal curved edges aperture. Electron. Lett. 2017, 53, 1638–1640. [Google Scholar] [CrossRef]
- Dehkhoda, P.; Tavakoli, A.; Moini, R. An efficient shielding effectiveness calculation (A rectangular enclosure with numerous square apertures). In Proceedings of the 2007 IEEE International Symposium on Electromagnetic Compatibility, Honolulu, HI, USA, 9–13 July 2007; pp. 1–4. [Google Scholar]
- Nie, B.-L.; Du, P.-A.; Xiao, P. An improved circuital method for the prediction of shielding effectiveness of an enclosure with apertures excited by a plane wave. IEEE Trans. Electromagn. Compat. 2018, 60, 1376–1383. [Google Scholar] [CrossRef]
- Ivanov, A.A.; Komnatnov, M.E. Model for estimating the shielding effectiveness of an enclosure with a perforated wall. IOP Conf. Ser. Mater. Sci. Eng. 2020, 734, 012078. [Google Scholar] [CrossRef]
- Chen, L.; He, R.; Jiao, C.; Hu, Y. Shielding effectiveness analysis of a rectangular enclosure with wire mesh covering. IOP Conf. Ser. Mater. Sci. Eng. 2019, 569, 022035. [Google Scholar] [CrossRef]
- Ivanov, A.A.; Demakov, A.V.; Komnatnov, M.E.; Gazizov, T.R. Semi-analytical approach for calculating shielding effectiveness of an enclosure with a filled aperture. Electrica 2022, 22, 220–225. [Google Scholar] [CrossRef]
- Kim, S.; Park, D.; Lee, J. Shielding effectiveness of an enclosure with a dielectric-backed aperture using slotline method. In Proceedings of the 2007 International Symposium on Electromagnetic Compatibility, Qingdao, China, 23–26 October 2007; pp. 432–435. [Google Scholar]
- Wang, Y.; Zhao, X.; Chen, J.; Sun, X. The analysis of multi-mode cylindrical enclosure shielding effectiveness with apertures. In Proceedings of the 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, Changchun, China, 24–26 August 2010; pp. 527–530. [Google Scholar]
- Collin, R.E. Field Theory of Guided Waves, 2nd ed.; IEEE Press: Piscataway, NJ, USA, 1990. [Google Scholar]
- Li, F.; Han, J.; Zhang, C. Study on the influence of PCB parameters on the shielding effectiveness of metal cavity with holes. In Proceedings of the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference, Chengdu, China, 15–17 March 2019; pp. 383–387. [Google Scholar]
- Ivanov, A.A.; Komnatnov, M.E. Analytical model for estimating the shielding effectiveness of cylindrical connectors. IOP Conf. Ser. Mater. Sci. Eng. 2019, 560, 012020. [Google Scholar] [CrossRef]
- Ivanov, A.A.; Komnatnov, M.E. Analytical model of a shielding enclosure populated with arbitrary shaped dielectric obstacles. J. Phys. Conf. Ser. 2021, 1889, 022110. [Google Scholar] [CrossRef]
- Thomas, D.W.P.; Denton, A.; Konefal, T.; Benson, T.M.; Christopoulos, C.; Dawson, J.F.; Marvin, A.C.; Porter, J. Characterisation of the shielding effectiveness of loaded equipment enclosures. In Proceedings of the International Conference and Exhibition on Electromagnetic Compatibility, York, UK, 13–12 July 1999; pp. 89–94. [Google Scholar]
- Ivanov, A.A.; Komnatnov, M.E.; Gazizov, T.R. Analytical model for evaluating shielding effectiveness of an enclosure populated with conducting plates. IEEE Trans. Electromagn. Compat. 2020, 62, 2307–2310. [Google Scholar] [CrossRef]
- Thomas, D.W.P.; Denton, A.C.; Konefal, T.; Benson, T.; Christopoulos, C.; Dawson, J.F.; Marvin, A.; Porter, S.J.; Sewell, P. Model of the electromagnetic fields inside a cuboidal enclosure populated with conducting planes or printed circuit boards. IEEE Trans. Electromagn. Compat. 2001, 43, 161–169. [Google Scholar] [CrossRef]
- Shourvarzi, A.; Joodaki, M. Shielding effectiveness estimation of a metallic enclosure with an aperture using S-parameter analysis: Analytic validation and experiment. IEEE Trans. Electromagn. Compat. 2017, 59, 537–540. [Google Scholar] [CrossRef]
Enclosure | Generalized Algorithm, s | FEM, s |
---|---|---|
Ethernet filter | 0.017 | 2063 |
Multiplexer | 0.026 | 2764 |
Filled cylinder | 0.014 | 3267 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, A.A.; Kvasnikov, A.A.; Demakov, A.V.; Komnatnov, M.E.; Kuksenko, S.P.; Gazizov, T.R. Generalized Algorithm Based on Equivalent Circuits for Evaluating Shielding Effectiveness of Electronic Equipment Enclosures. Algorithms 2023, 16, 294. https://doi.org/10.3390/a16060294
Ivanov AA, Kvasnikov AA, Demakov AV, Komnatnov ME, Kuksenko SP, Gazizov TR. Generalized Algorithm Based on Equivalent Circuits for Evaluating Shielding Effectiveness of Electronic Equipment Enclosures. Algorithms. 2023; 16(6):294. https://doi.org/10.3390/a16060294
Chicago/Turabian StyleIvanov, Anton A., Aleksey A. Kvasnikov, Alexander V. Demakov, Maxim E. Komnatnov, Sergei P. Kuksenko, and Talgat R. Gazizov. 2023. "Generalized Algorithm Based on Equivalent Circuits for Evaluating Shielding Effectiveness of Electronic Equipment Enclosures" Algorithms 16, no. 6: 294. https://doi.org/10.3390/a16060294
APA StyleIvanov, A. A., Kvasnikov, A. A., Demakov, A. V., Komnatnov, M. E., Kuksenko, S. P., & Gazizov, T. R. (2023). Generalized Algorithm Based on Equivalent Circuits for Evaluating Shielding Effectiveness of Electronic Equipment Enclosures. Algorithms, 16(6), 294. https://doi.org/10.3390/a16060294