Generator of Fuzzy Implications
Abstract
:1. Introduction
1.1. Literature Review-Related Work
1.2. Paper Outline
2. Theory—New Fuzzy Implication Methods
2.1. Theoretical Framework of Fuzzy Implication
- If then (decreasing as to the first variable);
- If then (increasing as to the second variable);
- ;
- ;
- ;
- ;
- If then
- ;
- The function is continuous.
- n(0) = 1 and ;
- ;
- The n is a genuinely decreasing function.
- (commutativity property);
- (associative property);
- (border condition);
- if (monotonicity);
- Such or satisfying all the above properties is the probor x∨y = x + y − xy.
2.2. The New Proposed Family of Fuzzy Implication
- ◾
- For m = 2 the authors have:
- ◾
- For m = 3 the researchers have:
- ◾
- For m = 4 the authors have:
- ◾
- For m = 5 the researchers have:
- ◾
- For m = 6 the authors have:
- The concept of monotonicity is studied with respect to the first variable, and consequently, with respect to x, we consider 0 < x1 < x2 so −x1 > −x2⇔1 − x1 > 1 − x2, that is, n(x1) > n(x2) that is n(x1)V > n(x2)V. Therefore f(x1,y) > f(x2,y), so the function is decreasing;
- Researchers find monotonicity with respect to the second variable, and therefore with respect to y, the authors consider 0 <y1 < y2 so < . Therefore, n(x)V < n(x)V so f(x,y1) < f(x,y2), so the function is increasing, and we can thus infer that
- ◾
- yVy = = y + y − y·y = 2y − y2
- ◾
- yVyVy = = 2y − y2 + y − (2y − y2)·y = 3y − 3y2 + y3
- ◾
- yVyVyVy = = 4y − 6y2 + 4y3 − y4
- ◾
- (yVyV…y)′ = ()′ = m(1 − y)m−1 ≥ 0 namelyWe assume that ()′ = (m − 1)(1 − y)m−2. In order to show that ()′ = (m)(1 − y)m−1,
- It has to be proven that f(0,ω1) = 1.Actually, f(0,ω1) = n(0)V= 1 for n(0) = 1, meaning that falsehood implies anything (dominion of falsehood).
- It has to be proven that f(1,ω2) = ω2.Actually, f(1,ω2) = n(1)V = . This applies to m = 1 and f(1,ω2) = ω2, meaning that truth does not imply anything (truth neutrality).
- We must prove that f(ω1,ω1) = 1, that is, n(ω1)V = 1 andConsequently, f(0,0) = 1 and f(1,1) = 1.
- We must prove that f(x,f(y,z)) = f(y,f(x,z)), that is n(x)V fm(y,z) = n(y)V fm(x,z) andtherefore
- If f(x,y) = 1 then x ≤ y.Therefore f(x,y) = 1. Consequently n(x)V = 1, andtherefore
- We must find f(x,y) = f(n(y),n(x))so f(x,y) = n(x)Vf(n(y),n(x)) = n(n(y))V( = yV( and these are equal only for m = 1.
- f being producible in both variables means f is continuous.
- The concept of monotonicity is studied with respect to the first variable. Therefore, with respect to x, is consequently decreasing .
- The researchers find monotonicity with respect to the second variable, and therefore, with respect to y, is consequently increasing .
- It has to be proven that N(0,ω1) = 1.Actually, N(0,ω1) = N(n(n(0))·(n(ω1))m) = N(n(1)·(n(ω1))m) = N(0·(n(ω1))m) = N(0) = 1. We therefore apply the meaning that falsehood implies anything (dominion of falsehood).
- It just has to be proven that N(1,ω2) = ω2. Actually, N(1,ω2) = N(n(n(1))·(n(ω2))m) = N(n(0)·(n(ω2))m) = N(1·(n(ω2))m) = N(n(ω2))m). This applies to m = 1 and to N(1,ω2) = ω2, meaning that truth does not imply anything (truth neutrality).
- We must find that Ν(ω1,ω1) = 1, namely, N(ω1,ω1) = N(n(n(ω1))·(n(ω1))m) = N(ω1·(n(ω1))m). For the fifth property to hold, α must be 0 or 1, namely,N(0·(n(0))m) = N(0·1m) = N(0) = 1N(1·(n(1))m) = N(1·0m) = N(0) = 1
- The authors also want to show that N(ω1, N(ω2,x)) = N(ω2, N(ω1,x))1 − ω1(1 − N(ω2,x))m= 1 − ω2(1 − N(ω1,x))mω1(1 − Ν(ω2,x))m= ω2(1 − N(ω1,x))mω1[1 − (1 − ω2(1 − x)m)]m = ω2[1 − (1 − ω1(1 − x)m)]mω1[1 − 1 + ω2(1 − x)m)]m= ω2[1 − 1 + ω1(1 − x)m)]mω1[ω2(1 − x)m]m= ω2[ω1(1 − x)m]mω1ω2m= ω2ω1mω2m−1 = ω1m−1⇒ω1 = ω2
- If N(x,y) = 1, then x ≤ y. Therefore N(x,y) = 1 ⇒ 1 − x(1 − y)m = 1, andtherefore
- N(ω1,ω2) = N(n(ω2),n(ω1))1 − ω1(1 − ω2)m = 1 − n(ω2)(1 − n(ω1))mω1(1 − ω2)m = n(ω2)(1 − n(ω1))mω1(1 − ω2)m = (1 − ω2)(1 − (1 − ω1))m(1 − ω2)m−1 = ω1m−1
- Ν is producible in both variables, meaning that Ν is continuous.
2.3. A General Framework of the Methodology and an Example for the Implementation of the Fourth Step of the Methodology
2.3.1. Real Data and Area of Study
2.3.2. Implementation of First Step of Methodology Using Matlab Program: The Fuzzification of Real Variables Using Four Membership Degree Functions (Four Cases)
- First Case—Isosceles trapezium (trapezium membership function)
- II.
- Second Case—Random trapezium (trapezoidal membership function)
- III.
- Third Case—Isosceles triangle (triangular membership function)
- IV.
- Fourth Case—Scalene triangle (triangular membership function)
3. Results
3.1. General Outcomes of Fuzzy Model—The Results from the First Step of the Methodology
3.2. General Outcomes of Fuzzy Model—The Results from the Second Step of the Methodology
3.3. General Outcomes of Fuzzy Model—The Results from the Third Step of the Methodology
3.4. General Outcomes of Fuzzy Model—The Results from the Fourth Step of the Methodology
4. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Kavala 11:50 O’Clock Measurement | Temperature/ Membership Degrees | Humidity/ Membership Degrees | Kavala 11:50 O’Clock Measurement | Temperature/ Membership Degrees | Humidity/ Membership Degrees |
---|---|---|---|---|---|
1 August 2021 | 34/0.1667 | 0.41/0.4000 | 1 October 2021 | 21/1.0000 | 0.38/0.3000 |
2 August 2021 | 33/0.2500 | 0.46/0.5667 | 2 October 2021 | 21/1.0000 | 0.38/0.3000 |
3 August 2021 | 35/0.0833 | 0.44/0.5000 | 3 October 2021 | 19/1.0000 | 0.52/0.7667 |
4 August 2021 | 33/0.2500 | 0.49/0.6667 | 4 October 2021 | 20/1.0000 | 0.46/0.5667 |
5 August 2021 | 36/0.0000 | 0.55/0.8667 | 5 October 2021 | 20/1.0000 | 0.49/0.6667 |
6 August 2021 | 33/0.2500 | 0.46/0.5667 | 6 October 2021 | 19/1.0000 | 0.46/0.5667 |
7 August 2021 | 29/0.5833 | 0.37/0.2667 | 7 October 2021 | 20/1.0000 | 0.4/0.3667 |
8 August 2021 | 30/0.5000 | 0.52/0.7667 | 8 October 2021 | 15/0.6667 | 0.88/0.2000 |
9 August 2021 | 30/0.5000 | 0.59/1.0000 | 9 October 2021 | 15/0.6667 | 0.82/0.4000 |
10 August 2021 | 32/0.3333 | 0.63/1.0000 | 10 October 2021 | 16/0.7500 | 0.72/0.7333 |
11 August 2021 | 30/0.5000 | 0.59/1.0000 | 11 October 2021 | 16/0.7500 | 0.94/0.0000 |
12 August 2021 | 30/0.5000 | 0.52/0.7667 | 12 October 2021 | 16/0.7500 | 0.94/0.0000 |
13 August 2021 | 30/0.5000 | 0.49/0.6667 | 13 October 2021 | 14/0.5833 | 0.94/0.0000 |
14 August 2021 | 30/0.5000 | 0.38/0.3000 | 14 October 2021 | 13/0.5000 | 0.88/0.2000 |
15 August 2021 | 29/0.5833 | 0.43/0.4667 | 15 October 2021 | 14/0.5833 | 0.94/0.0000 |
16 August 2021 | 30/0.5000 | 0.46/0.5667 | 16 October 2021 | 18/0.9167 | 0.88/0.2000 |
17 August 2021 | 29/0.5833 | 0.58/0.9667 | 17 October 2021 | 18/0.9167 | 0.73/0.7000 |
18 August 2021 | 31/0.4167 | 0.52/0.7667 | 18 October 2021 | 16/0.7500 | 0.88/0.2000 |
19 August 2021 | 25/0.9167 | 0.74/0.6667 | 19 October 2021 | 16/0.7500 | 0.77/0.5667 |
20 August 2021 | 27/0.7500 | 0.45/0.5333 | 20 October 2021 | 18/0.9167 | 0.49/0.6667 |
21 August 2021 | 28/0.6667 | 0.45/0.5333 | 21 October 2021 | 17/0.8333 | 0.73/0.7000 |
22 August 2021 | 29/0.5833 | 0.48/0.6333 | 22 October 2021 | 18/0.9167 | 0.78/0.5333 |
23 August 2021 | 30/0.5000 | 0.29/0.0000 | 23 October 2021 | 19/1.0000 | 0.73/0.7000 |
24 August 2021 | 29/0.5833 | 0.4/0.3667 | 24 October 2021 | 15/0.6667 | 0.77/0.5667 |
25 August 2021 | 28/0.6667 | 0.51/0.7333 | 25 October 2021 | 14/0.5833 | 0.48/0.6333 |
26 August 2021 | 29/0.5833 | 0.58/0.9667 | 26 October 2021 | 15/0.6667 | 0.45/0.5333 |
27 August 2021 | 29/0.5833 | 0.62/1.0000 | 27 October 2021 | 16/0.7500 | 0.52/0.7667 |
28 August 2021 | 29/0.5833 | 0.62/1.0000 | 28 October 2021 | 14/0.5833 | 0.72/0.7333 |
29 August 2021 | 28/0.6667 | 0.66/0.9333 | 29 October 2021 | 16/0.7500 | 0.45/0.5333 |
30 August 2021 | 29/0.5833 | 0.51/0.7333 | 30 October 2021 | 17/0.8333 | 0.45/0.5333 |
31 August 2021 | 28/0.6667 | 0.55/0.8667 | 31 October 2021 | 17/0.8333 | 0.52/0.7667 |
1 September 2021 | 29/0.5833 | 0.48/0.6333 | 1 November 2021 | 17/0.8333 | 0.68/0.8667 |
2 September 2021 | 26/0.8333 | 0.37/0.2667 | 2 November 2021 | 13/0.5000 | 0.94/0.0000 |
3 September 2021 | 25/0.9167 | 0.39/0.3333 | 3 November 2021 | 17/0.8333 | 0.83/0.3667 |
4 September 2021 | 25/0.9167 | 0.44/0.5000 | 4 November 2021 | 21/1.0000 | 0.57/0.9333 |
5 September 2021 | 25/0.9167 | 0.47/0.6000 | 5 November 2021 | 20/1.0000 | 0.73/0.7000 |
6 September 2021 | 25/0.9167 | 0.39/0.3333 | 6 November 2021 | 18/0.9167 | 0.88/0.2000 |
7 September 2021 | 24/1.0000 | 0.41/0.4000 | 7 November 2021 | 18/0.9167 | 0.83/0.3667 |
8 September 2021 | 21/1.0000 | 0.53/0.8000 | 8 November 2021 | 17/0.8333 | 0.83/0.3667 |
9 September 2021 | 22/1.0000 | 0.57/0.9333 | 9 November 2021 | 18/0.9167 | 0.83/0.3667 |
10 September 2021 | 23/1.0000 | 0.65/0.9667 | 10 November 2021 | 14/0.5833 | 0.55/0.8667 |
11 September 2021 | 25/0.9167 | 0.54/0.8333 | 11 November 2021 | 12/0.4167 | 0.51/0.7333 |
12 September 2021 | 27/0.7500 | 0.42/0.4333 | 12 November 2021 | 14/0.5833 | 0.51/0.7333 |
13 September 2021 | 27/0.7500 | 0.42/0.4333 | 13 November 2021 | 13/0.5000 | 0.63/1.0000 |
14 September 2021 | 29/0.5833 | 0.31/0.0667 | 14 November 2021 | 16/0.7500 | 0.68/0.8667 |
15 September 2021 | 27/0.7500 | 0.45/0.5333 | 15 November 2021 | 15/0.6667 | 0.68/0.8667 |
16 September 2021 | 26/0.8333 | 0.58/0.9667 | 16 November 2021 | 15/0.6667 | 0.55/0.8667 |
17 September 2021 | 26/0.8333 | 0.61/1.0000 | 17 November 2021 | 13/0.5000 | 0.51/0.7333 |
18 September 2021 | 27/0.7500 | 0.62/1.0000 | 18 November 2021 | 12/0.4167 | 0.63/1.0000 |
19 September 2021 | 25/0.9167 | 0.65/0.9667 | 19 November 2021 | 11/0.3333 | 0.77/0.5667 |
20 September 2021 | 27/0.7500 | 0.54/0.8333 | 20 November 2021 | 13/0.5000 | 0.72/0.7333 |
21 September 2021 | 24/1.0000 | 0.65/0.9667 | 21 November 2021 | 16/0.7500 | 0.63/1.0000 |
22 September 2021 | 18/0.9167 | 0.73/0.7000 | 22 November 2021 | 11/0.3333 | 0.88/0.2000 |
23 September 2021 | 19/1.0000 | 0.52/0.7667 | 23 November 2021 | 15/0.6667 | 0.88/0.2000 |
24 September 2021 | 20/1.0000 | 0.49/0.6667 | 24 November 2021 | 13/0.5000 | 0.55/0.8667 |
25 September 2021 | 24/1.0000 | 0.5/0.7000 | 25 November 2021 | 11/0.3333 | 0.54/0.8333 |
26 September 2021 | 25/0.9167 | 0.57/0.9333 | 26 November 2021 | 7/0.0000 | 0.93/0.0333 |
27 September 2021 | 25/0.9167 | 0.47/0.6000 | 27 November 2021 | 14/0.5833 | 0.88/0.2000 |
28 September 2021 | 24/1.0000 | 0.47/0.6000 | 28 November 2021 | 16/0.7500 | 0.83/0.3667 |
29 September 2021 | 20/1.0000 | 0.6/1.0000 | 29 November 2021 | 19/1.0000 | 0.68/0.8667 |
30 September 2021 | 21/1.0000 | 0.46/0.5667 | 30 November 2021 | 12/0.4167 | 0.51/0.7333 |
Kavala 11:50 O’Clock Measurement | Temperature/ Membership Degrees | Humidity/ Membership Degrees | Kavala 11:50 O’Clock Measurement | Temperature/ Membership Degrees | Humidity/ Membership Degrees |
---|---|---|---|---|---|
1 August 2021 | 34/0.1538 | 0.41/0.3871 | 1 October 2021 | 21/0.9333 | 0.38/0.2903 |
2 August 2021 | 33/0.2308 | 0.46/0.5484 | 2 October 2021 | 21/0.9333 | 0.38/0.2903 |
3 August 2021 | 35/0.0769 | 0.44/0.4839 | 3 October 2021 | 19/0.8000 | 0.52/0.7419 |
4 August 2021 | 33/0.2308 | 0.49/0.6452 | 4 October 2021 | 20/0.8667 | 0.46/0.5484 |
5 August 2021 | 36/0.0000 | 0.55/0.8387 | 5 October 2021 | 20/0.8667 | 0.49/0.6452 |
6 August 2021 | 33/0.2308 | 0.46/0.5484 | 6 October 2021 | 19/0.8000 | 0.46/0.5484 |
7 August 2021 | 29/0.5385 | 0.37/0.2581 | 7 October 2021 | 20/0.8667 | 0.4/0.3548 |
8 August 2021 | 30/0.4615 | 0.52/0.7419 | 8 October 2021 | 15/0.5333 | 0.88/0.1818 |
9 August 2021 | 30/0.4615 | 0.59/0.9677 | 9 October 2021 | 15/0.5333 | 0.82/0.3636 |
10 August 2021 | 32/0.3077 | 0.63/0.9394 | 10 October 2021 | 16/0.6000 | 0.72/0.6667 |
11 August 2021 | 30/0.4615 | 0.59/0.9677 | 11 October 2021 | 16/0.6000 | 0.94/0.0000 |
12 August 2021 | 30/0.4615 | 0.52/0.7419 | 12 October 2021 | 16/0.6000 | 0.94/0.0000 |
13 August 2021 | 30/0.4615 | 0.49/0.6452 | 13 October 2021 | 14/0.4667 | 0.94/0.0000 |
14 August 2021 | 30/0.4615 | 0.38/0.2903 | 14 October 2021 | 13/0.4000 | 0.88/0.1818 |
15 August 2021 | 29/0.5385 | 0.43/0.4516 | 15 October 2021 | 14/0.4667 | 0.94/0.0000 |
16 August 2021 | 30/0.4615 | 0.46/0.5484 | 16 October 2021 | 18/0.7333 | 0.88/0.1818 |
17 August 2021 | 29/0.5385 | 0.58/0.9355 | 17 October 2021 | 18/0.7333 | 0.73/0.6364 |
18 August 2021 | 31/0.3846 | 0.52/0.7419 | 18 October 2021 | 16/0.6000 | 0.88/0.1818 |
19 August 2021 | 25/0.8462 | 0.74/0.6061 | 19 October 2021 | 16/0.6000 | 0.77/0.5152 |
20 August 2021 | 27/0.6923 | 0.45/0.5161 | 20 October 2021 | 18/0.7333 | 0.49/0.6452 |
21 August 2021 | 28/0.6154 | 0.45/0.5161 | 21 October 2021 | 17/0.6667 | 0.73/0.6364 |
22 August 2021 | 29/0.5385 | 0.48/0.6129 | 22 October 2021 | 18/0.7333 | 0.78/0.4848 |
23 August 2021 | 30/0.4615 | 0.29/0.0000 | 23 October 2021 | 19/0.8000 | 0.73/0.6364 |
24 August 2021 | 29/0.5385 | 0.4/0.3548 | 24 October 2021 | 15/0.5333 | 0.77/0.5152 |
25 August 2021 | 28/0.6154 | 0.51/0.7097 | 25 October 2021 | 14/0.4667 | 0.48/0.6129 |
26 August 2021 | 29/0.5385 | 0.58/0.9355 | 26 October 2021 | 15/0.5333 | 0.45/0.5161 |
27 August 2021 | 29/0.5385 | 0.62/0.9697 | 27 October 2021 | 16/0.6000 | 0.52/0.7419 |
28 August 2021 | 29/0.5385 | 0.62/0.9697 | 28 October 2021 | 14/0.4667 | 0.72/0.6667 |
29 August 2021 | 28/0.6154 | 0.66/0.8485 | 29 October 2021 | 16/0.6000 | 0.45/0.5161 |
30 August 2021 | 29/0.5385 | 0.51/0.7097 | 30 October 2021 | 17/0.6667 | 0.45/0.5161 |
31 August 2021 | 28/0.6154 | 0.55/0.8387 | 31 October 2021 | 17/0.6667 | 0.52/0.7419 |
1 September 2021 | 29/0.5385 | 0.48/0.6129 | 1 November 2021 | 17/0.6667 | 0.68/0.7879 |
2 September 2021 | 26/0.7692 | 0.37/0.2581 | 2 November 2021 | 13/0.4000 | 0.94/0.0000 |
3 September 2021 | 25/0.8462 | 0.39/0.3226 | 3 November 2021 | 17/0.6667 | 0.83/0.3333 |
4 September 2021 | 25/0.8462 | 0.44/0.4839 | 4 November 2021 | 21/0.9333 | 0.57/0.9032 |
5 September 2021 | 25/0.8462 | 0.47/0.5806 | 5 November 2021 | 20/0.8667 | 0.73/0.6364 |
6 September 2021 | 25/0.8462 | 0.39/0.3226 | 6 November 2021 | 18/0.7333 | 0.88/0.1818 |
7 September 2021 | 24/0.9231 | 0.41/0.3871 | 7 November 2021 | 18/0.7333 | 0.83/0.3333 |
8 September 2021 | 21/0.9333 | 0.53/0.7742 | 8 November 2021 | 17/0.6667 | 0.83/0.3333 |
9 September 2021 | 22/1.0000 | 0.57/0.9032 | 9 November 2021 | 18/0.7333 | 0.83/0.3333 |
10 September 2021 | 23/1.0000 | 0.65/0.8788 | 10 November 2021 | 14/0.4667 | 0.55/0.8387 |
11 September 2021 | 25/0.8462 | 0.54/0.8065 | 11 November 2021 | 12/0.3333 | 0.51/0.7097 |
12 September 2021 | 27/0.6923 | 0.42/0.4194 | 12 November 2021 | 14/0.4667 | 0.51/0.7097 |
13 September 2021 | 27/0.6923 | 0.42/0.4194 | 13 November 2021 | 13/0.4000 | 0.63/0.9394 |
14 September 2021 | 29/0.5385 | 0.31/0.0645 | 14 November 2021 | 16/0.6000 | 0.68/0.7879 |
15 September 2021 | 27/0.6923 | 0.45/0.5161 | 15 November 2021 | 15/0.5333 | 0.68/0.7879 |
16 September 2021 | 26/0.7692 | 0.58/0.9355 | 16 November 2021 | 15/0.5333 | 0.55/0.8387 |
17 September 2021 | 26/0.7692 | 0.61/1.0000 | 17 November 2021 | 13/0.4000 | 0.51/0.7097 |
18 September 2021 | 27/0.6923 | 0.62/0.9697 | 18 November 2021 | 12/0.3333 | 0.63/0.9394 |
19 September 2021 | 25/0.8462 | 0.65/0.8788 | 19 November 2021 | 11/0.2667 | 0.77/0.5152 |
20 September 2021 | 27/0.6923 | 0.54/0.8065 | 20 November 2021 | 13/0.4000 | 0.72/0.6667 |
21 September 2021 | 24/0.9231 | 0.65/0.8788 | 21 November 2021 | 16/0.6000 | 0.63/0.9394 |
22 September 2021 | 18/0.7333 | 0.73/0.6364 | 22 November 2021 | 11/0.2667 | 0.88/0.1818 |
23 September 2021 | 19/0.8000 | 0.52/0.7419 | 23 November 2021 | 15/0.5333 | 0.88/0.1818 |
24 September 2021 | 20/0.8667 | 0.49/0.6452 | 24 November 2021 | 13/0.4000 | 0.55/0.8387 |
25 September 2021 | 24/0.9231 | 0.5/0.6774 | 25 November 2021 | 11/0.2667 | 0.54/0.8065 |
26 September 2021 | 25/0.8462 | 0.57/0.9032 | 26 November 2021 | 7/0.0000 | 0.93/0.0303 |
27 September 2021 | 25/0.8462 | 0.47/0.5806 | 27 November 2021 | 14/0.4667 | 0.88/0.1818 |
28 September 2021 | 24/0.9231 | 0.47/0.5806 | 28 November 2021 | 16/0.6000 | 0.83/0.3333 |
29 September 2021 | 20/0.8667 | 0.6/1.0000 | 29 November 2021 | 19/0.8000 | 0.68/0.7879 |
30 September 2021 | 21/0.9333 | 0.46/0.5484 | 30 November 2021 | 12/0.3333 | 0.51/0.7097 |
Kavala 11:50 O’Clock Measurement | Temperature/ Membership Degrees | Humidity/ Membership Degrees | Kavala 11:50 O’Clock Measurement | Temperature/ Membership Degrees | Humidity/ Membership Degrees |
---|---|---|---|---|---|
1 August 2021 | 34/0.1379 | 0.41/0.3692 | 1 October 2021 | 21/0.9655 | 0.38/0.2769 |
2 August 2021 | 33/0.2069 | 0.46/0.5231 | 2 October 2021 | 21/0.9655 | 0.38/0.2769 |
3 August 2021 | 35/0.0690 | 0.44/0.4615 | 3 October 2021 | 19/0.8276 | 0.52/0.7077 |
4 August 2021 | 33/0.2069 | 0.49/0.6154 | 4 October 2021 | 20/0.8966 | 0.46/0.5231 |
5 August 2021 | 36/0.0000 | 0.55/0.8000 | 5 October 2021 | 20/0.8966 | 0.49/0.6154 |
6 August 2021 | 33/0.2069 | 0.46/0.5231 | 6 October 2021 | 19/0.8276 | 0.46/0.5231 |
7 August 2021 | 29/0.4828 | 0.37/0.2462 | 7 October 2021 | 20/0.8966 | 0.4/0.3385 |
8 August 2021 | 30/0.4138 | 0.52/0.7077 | 8 October 2021 | 15/0.5517 | 0.88/0.1846 |
9 August 2021 | 30/0.4138 | 0.59/0.9231 | 9 October 2021 | 15/0.5517 | 0.82/0.3692 |
10 August 2021 | 32/0.2759 | 0.63/0.9538 | 10 October 2021 | 16/0.6207 | 0.72/0.6769 |
11 August 2021 | 30/0.4138 | 0.59/0.9231 | 11 October 2021 | 16/0.6207 | 0.94/0.0000 |
12 August 2021 | 30/0.4138 | 0.52/0.7077 | 12 October 2021 | 16/0.6207 | 0.94/0.0000 |
13 August 2021 | 30/0.4138 | 0.49/0.6154 | 13 October 2021 | 14/0.4828 | 0.94/0.0000 |
14 August 2021 | 30/0.4138 | 0.38/0.2769 | 14 October 2021 | 13/0.4138 | 0.88/0.1846 |
15 August 2021 | 29/0.4828 | 0.43/0.4308 | 15 October 2021 | 14/0.4828 | 0.94/0.0000 |
16 August 2021 | 30/0.4138 | 0.46/0.5231 | 16 October 2021 | 18/0.7586 | 0.88/0.1846 |
17 August 2021 | 29/0.4828 | 0.58/0.8923 | 17 October 2021 | 18/0.7586 | 0.73/0.6462 |
18 August 2021 | 31/0.3448 | 0.52/0.7077 | 18 October 2021 | 16/0.6207 | 0.88/0.1846 |
19 August 2021 | 25/0.7586 | 0.74/0.6154 | 19 October 2021 | 16/0.6207 | 0.77/0.5231 |
20 August 2021 | 27/0.6207 | 0.45/0.4923 | 20 October 2021 | 18/0.7586 | 0.49/0.6154 |
21 August 2021 | 28/0.5517 | 0.45/0.4923 | 21 October 2021 | 17/0.6897 | 0.73/0.6462 |
22 August 2021 | 29/0.4828 | 0.48/0.5846 | 22 October 2021 | 18/0.7586 | 0.78/0.4923 |
23 August 2021 | 30/0.4138 | 0.29/0.0000 | 23 October 2021 | 19/0.8276 | 0.73/0.6462 |
24 August 2021 | 29/0.4828 | 0.4/0.3385 | 24 October 2021 | 15/0.5517 | 0.77/0.5231 |
25 August 2021 | 28/0.5517 | 0.51/0.6769 | 25 October 2021 | 14/0.4828 | 0.48/0.5846 |
26 August 2021 | 29/0.4828 | 0.58/0.8923 | 26 October 2021 | 15/0.5517 | 0.45/0.4923 |
27 August 2021 | 29/0.4828 | 0.62/0.9846 | 27 October 2021 | 16/0.6207 | 0.52/0.7077 |
28 August 2021 | 29/0.4828 | 0.62/0.9846 | 28 October 2021 | 14/0.4828 | 0.72/0.6769 |
29 August 2021 | 28/0.5517 | 0.66/0.8615 | 29 October 2021 | 16/0.6207 | 0.45/0.4923 |
30 August 2021 | 29/0.4828 | 0.51/0.6769 | 30 October 2021 | 17/0.6897 | 0.45/0.4923 |
31 August 2021 | 28/0.5517 | 0.55/0.8000 | 31 October 2021 | 17/0.6897 | 0.52/0.7077 |
1 September 2021 | 29/0.4828 | 0.48/0.5846 | 1 November 2021 | 17/0.6897 | 0.68/0.8000 |
2 September 2021 | 26/0.6897 | 0.37/0.2462 | 2 November 2021 | 13/0.4138 | 0.94/0.0000 |
3 September 2021 | 25/0.7586 | 0.39/0.3077 | 3 November 2021 | 17/0.6897 | 0.83/0.3385 |
4 September 2021 | 25/0.7586 | 0.44/0.4615 | 4 November 2021 | 21/0.9655 | 0.57/0.8615 |
5 September 2021 | 25/0.7586 | 0.47/0.5538 | 5 November 2021 | 20/0.8966 | 0.73/0.6462 |
6 September 2021 | 25/0.7586 | 0.39/0.3077 | 6 November 2021 | 18/0.7586 | 0.88/0.1846 |
7 September 2021 | 24/0.8276 | 0.41/0.3692 | 7 November 2021 | 18/0.7586 | 0.83/0.3385 |
8 September 2021 | 21/0.9655 | 0.53/0.7385 | 8 November 2021 | 17/0.6897 | 0.83/0.3385 |
9 September 2021 | 22/0.9655 | 0.57/0.8615 | 9 November 2021 | 18/0.7586 | 0.83/0.3385 |
10 September 2021 | 23/0.8966 | 0.65/0.8923 | 10 November 2021 | 14/0.4828 | 0.55/0.8000 |
11 September 2021 | 25/0.7586 | 0.54/0.7692 | 11 November 2021 | 12/0.3448 | 0.51/0.6769 |
12 September 2021 | 27/0.6207 | 0.42/0.4000 | 12 November 2021 | 14/0.4828 | 0.51/0.6769 |
13 September 2021 | 27/0.6207 | 0.42/0.4000 | 13 November 2021 | 13/0.4138 | 0.63/0.9538 |
14 September 2021 | 29/0.4828 | 0.31/0.0615 | 14 November 2021 | 16/0.6207 | 0.68/0.8000 |
15 September 2021 | 27/0.6207 | 0.45/0.4923 | 15 November 2021 | 15/0.5517 | 0.68/0.8000 |
16 September 2021 | 26/0.6897 | 0.58/0.8923 | 16 November 2021 | 15/0.5517 | 0.55/0.8000 |
17 September 2021 | 26/0.6897 | 0.61/0.9846 | 17 November 2021 | 13/0.4138 | 0.51/0.6769 |
18 September 2021 | 27/0.6207 | 0.62/0.9846 | 18 November 2021 | 12/0.3448 | 0.63/0.9538 |
19 September 2021 | 25/0.7586 | 0.65/0.8923 | 19 November 2021 | 11/0.2759 | 0.77/0.6769 |
20 September 2021 | 27/0.6207 | 0.54/0.7692 | 20 November 2021 | 13/0.4138 | 0.72/0.9538 |
21 September 2021 | 24/0.8276 | 0.65/0.8923 | 21 November 2021 | 16/0.6207 | 0.63/0.9538 |
22 September 2021 | 18/0.7586 | 0.73/0.6462 | 22 November 2021 | 11/0.2759 | 0.88/0.1846 |
23 September 2021 | 19/0.8276 | 0.52/0.7077 | 23 November 2021 | 15/0.5517 | 0.88/0.1846 |
24 September 2021 | 20/0.8966 | 0.49/0.6154 | 24 November 2021 | 13/0.4138 | 0.55/0.8000 |
25 September 2021 | 24/0.8276 | 0.5/0.6462 | 25 November 2021 | 11/0.2759 | 0.54/0.7692 |
26 September 2021 | 25/0.7586 | 0.57/0.8615 | 26 November 2021 | 7/0.0000 | 0.93/0.0308 |
27 September 2021 | 25/0.7586 | 0.47/0.5538 | 27 November 2021 | 14/0.4828 | 0.88/0.1846 |
28 September 2021 | 24/0.8276 | 0.47/0.5538 | 28 November 2021 | 16/0.6207 | 0.83/0.3385 |
29 September 2021 | 20/0.8966 | 0.6/0.9538 | 29 November 2021 | 19/0.8276 | 0.68/0.8000 |
30 September 2021 | 21/0.9655 | 0.46/0.5231 | 30 November 2021 | 12/0.3448 | 0.51/0.6769 |
Kavala 11:50 O’Clock Measurement | Temperature/ Membership Degrees | Humidity/ Membership Degrees | Kavala 11:50 O’Clock Measurement | Temperature/ Membership Degrees | Humidity/ Membership Degrees |
---|---|---|---|---|---|
1 August 2021 | 34/0.1481 | 0.41/0.3810 | 1 October 2021 | 21/0.9032 | 0.38/0.2857 |
2 August 2021 | 33/0.2222 | 0.46/0.5397 | 2 October 2021 | 21/0.9032 | 0.38/0.2857 |
3 August 2021 | 35/0.0741 | 0.44/0.4762 | 3 October 2021 | 19/0.7742 | 0.52/0.7302 |
4 August 2021 | 33/0.2222 | 0.49/0.6349 | 4 October 2021 | 20/0.8387 | 0.46/0.5397 |
5 August 2021 | 36/0.0000 | 0.55/0.8254 | 5 October 2021 | 20/0.8387 | 0.49/0.6349 |
6 August 2021 | 33/0.2222 | 0.46/0.5397 | 6 October 2021 | 19/0.7742 | 0.46/0.5397 |
7 August 2021 | 29/0.5185 | 0.37/0.2540 | 7 October 2021 | 20/0.8387 | 0.4/0.3492 |
8 August 2021 | 30/0.4444 | 0.52/0.7302 | 8 October 2021 | 15/0.5161 | 0.88/0.1791 |
9 August 2021 | 30/0.4444 | 0.59/0.9524 | 9 October 2021 | 15/0.5161 | 0.82/0.3582 |
10 August 2021 | 32/0.2963 | 0.63/0.9254 | 10 October 2021 | 16/0.5806 | 0.72/0.6567 |
11 August 2021 | 30/0.4444 | 0.59/0.9524 | 11 October 2021 | 16/0.5806 | 0.94/0.0000 |
12 August 2021 | 30/0.4444 | 0.52/0.7302 | 12 October 2021 | 16/0.5806 | 0.94/0.0000 |
13 August 2021 | 30/0.4444 | 0.49/0.6349 | 13 October 2021 | 14/0.4516 | 0.94/0.0000 |
14 August 2021 | 30/0.4444 | 0.38/0.2857 | 14 October 2021 | 13/0.3871 | 0.88/0.1791 |
15 August 2021 | 29/0.5185 | 0.43/0.4444 | 15 October 2021 | 14/0.4516 | 0.94/0.0000 |
16 August 2021 | 30/0.4444 | 0.46/0.5397 | 16 October 2021 | 18/0.7097 | 0.88/0.1791 |
17 August 2021 | 29/0.5185 | 0.58/0.9206 | 17 October 2021 | 18/0.7097 | 0.73/0.6269 |
18 August 2021 | 31/0.3704 | 0.52/0.7302 | 18 October 2021 | 16/0.5806 | 0.88/0.1791 |
19 August 2021 | 25/0.8148 | 0.74/0.5970 | 19 October 2021 | 16/0.5806 | 0.77/0.5075 |
20 August 2021 | 27/0.6667 | 0.45/0.5079 | 20 October 2021 | 18/0.7097 | 0.49/0.6349 |
21 August 2021 | 28/0.5926 | 0.45/0.5079 | 21 October 2021 | 17/0.6452 | 0.73/0.6269 |
22 August 2021 | 29/0.5185 | 0.48/0.6032 | 22 October 2021 | 18/0.7097 | 0.78/0.4776 |
23 August 2021 | 30/0.4444 | 0.29/0.0000 | 23 October 2021 | 19/0.7742 | 0.73/0.6269 |
24 August 2021 | 29/0.5185 | 0.4/0.3492 | 24 October 2021 | 15/0.5161 | 0.77/0.5075 |
25 August 2021 | 28/0.5926 | 0.51/0.6984 | 25 October 2021 | 14/0.4516 | 0.48/0.6032 |
26 August 2021 | 29/0.5185 | 0.58/0.9206 | 26 October 2021 | 15/0.5161 | 0.45/0.5079 |
27 August 2021 | 29/0.5185 | 0.62/0.9552 | 27 October 2021 | 16/0.5806 | 0.52/0.7302 |
28 August 2021 | 29/0.5185 | 0.62/0.9552 | 28 October 2021 | 14/0.4516 | 0.72/0.6567 |
29 August 2021 | 28/0.5926 | 0.66/0.8358 | 29 October 2021 | 16/0.5806 | 0.45/0.5079 |
30 August 2021 | 29/0.5185 | 0.51/0.6984 | 30 October 2021 | 17/0.6452 | 0.45/0.5079 |
31 August 2021 | 28/0.5926 | 0.55/0.8254 | 31 October 2021 | 17/0.6452 | 0.52/0.7302 |
1 September 2021 | 29/0.5185 | 0.48/0.6032 | 1 November 2021 | 17/0.6452 | 0.68/0.7761 |
2 September 2021 | 26/0.7407 | 0.37/0.2540 | 2 November 2021 | 13/0.3871 | 0.94/0.0000 |
3 September 2021 | 25/0.8148 | 0.39/0.3175 | 3 November 2021 | 17/0.6452 | 0.83/0.3284 |
4 September 2021 | 25/0.8148 | 0.44/0.4762 | 4 November 2021 | 21/0.9032 | 0.57/0.8889 |
5 September 2021 | 25/0.8148 | 0.47/0.5714 | 5 November 2021 | 20/0.8387 | 0.73/0.6269 |
6 September 2021 | 25/0.8148 | 0.39/0.3175 | 6 November 2021 | 18/0.7097 | 0.88/0.1791 |
7 September 2021 | 24/0.8889 | 0.41/0.3810 | 7 November 2021 | 18/0.7097 | 0.83/0.3284 |
8 September 2021 | 21/0.9032 | 0.53/0.7619 | 8 November 2021 | 17/0.6452 | 0.83/0.3284 |
9 September 2021 | 22/0.9677 | 0.57/0.8889 | 9 November 2021 | 18/0.7097 | 0.83/0.3284 |
10 September 2021 | 23/0.9630 | 0.65/0.8657 | 10 November 2021 | 14/0.4516 | 0.55/0.8254 |
11 September 2021 | 25/0.8148 | 0.54/0.7937 | 11 November 2021 | 12/0.3226 | 0.51/0.6984 |
12 September 2021 | 27/0.6667 | 0.42/0.4127 | 12 November 2021 | 14/0.4516 | 0.51/0.6984 |
13 September 2021 | 27/0.6667 | 0.42/0.4127 | 13 November 2021 | 13/0.3871 | 0.63/0.9254 |
14 September 2021 | 29/0.5185 | 0.31/0.0635 | 14 November 2021 | 16/0.5806 | 0.68/0.7761 |
15 September 2021 | 27/0.6667 | 0.45/0.5079 | 15 November 2021 | 15/0.5161 | 0.68/0.7761 |
16 September 2021 | 26/0.7407 | 0.58/0.9206 | 16 November 2021 | 15/0.5161 | 0.55/0.8254 |
17 September 2021 | 26/0.7407 | 0.61/0.9851 | 17 November 2021 | 13/0.3871 | 0.51/0.6984 |
18 September 2021 | 27/0.6667 | 0.62/0.9552 | 18 November 2021 | 12/0.3226 | 0.63/0.9254 |
19 September 2021 | 25/0.8148 | 0.65/0.8657 | 19 November 2021 | 11/0.2581 | 0.77/0.5075 |
20 September 2021 | 27/0.6667 | 0.54/0.7937 | 20 November 2021 | 13/0.3871 | 0.72/0.6567 |
21 September 2021 | 24/0.8889 | 0.65/0.8657 | 21 November 2021 | 16/0.5806 | 0.63/0.9254 |
22 September 2021 | 18/0.7097 | 0.73/0.6269 | 22 November 2021 | 11/0.2581 | 0.88/0.1791 |
23 September 2021 | 19/0.7742 | 0.52/0.7302 | 23 November 2021 | 15/0.5161 | 0.88/0.1791 |
24 September 2021 | 20/0.8387 | 0.49/0.6349 | 24 November 2021 | 13/0.3871 | 0.55/0.8254 |
25 September 2021 | 24/0.8889 | 0.5/0.6667 | 25 November 2021 | 11/0.2581 | 0.54/0.7937 |
26 September 2021 | 25/0.8148 | 0.57/0.8889 | 26 November 2021 | 7/0.0000 | 0.93/0.0299 |
27 September 2021 | 25/0.8148 | 0.47/0.5714 | 27 November 2021 | 14/0.4516 | 0.88/0.1791 |
28 September 2021 | 24/0.8889 | 0.47/0.5714 | 28 November 2021 | 16/0.5806 | 0.83/0.3284 |
29 September 2021 | 20/0.8387 | 0.6/0.9841 | 29 November 2021 | 19/0.7742 | 0.68/0.7761 |
30 September 2021 | 21/0.9032 | 0.46/0.5397 | 30 November 2021 | 12/0.3226 | 0.51/0.6984 |
References
- Ruan, D.; Kerre, E.E. Fuzzy implication operators and generalized fuzzy method of cases. Fuzzy Sets Syst. 1993, 54, 23–37. [Google Scholar] [CrossRef]
- Makariadis, S.; Souliotis, G.; Papadopoulos, B. Parametric fuzzy implications produced via fuzzy negations with a case study in environmental variables. Symmetry 2021, 13, 509. [Google Scholar] [CrossRef]
- Pagouropoulos, P.; Tzimopoulos, C.D.; Papadopoulos, B.K. A method for the detection of the most suitable fuzzy implication for data applications. In Communications in Computer and Information Science, Proceedings of the 18th International Conference on Engineering Applications of Neural Networks (EANN), Athens, Greece, 25–27 August 2017; Iliadis, L., Likas, A., Jayne, C., Boracchi, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 744, pp. 242–255. ISSN 18650929. ISBN 978-331965171-2. [Google Scholar] [CrossRef]
- Pagouropoulos, P.; Tzimopoulos, C.D.; Papadopoulos, B.K. A method for the detection of the most suitable fuzzy implication for data applications. Evol. Syst. 2020, 11, 467–477. [Google Scholar] [CrossRef]
- Botzoris, G.N.; Papadopoulos, K.; Papadopoulos, B.K. A method for the evaluation and selection of an appropriate fuzzy implication by using statistical data. Fuzzy Econ. Rev. 2015, 20, 19–29. [Google Scholar] [CrossRef]
- Rapti, M.N.; Papadopoulos, B.K. A method of generating fuzzy implications from n increasing functions and n + 1 negations. Mathematics 2020, 8, 886. [Google Scholar] [CrossRef]
- Bedregal, B.C.; Dimuro, G.P.; Santiago, R.H.N.; Reiser, R.H.S. On interval fuzzy S-implications. Inf. Sci. 2010, 180, 1373–1389. [Google Scholar] [CrossRef]
- Balasubramaniam, J. Contrapositive symmetrisation of fuzzy implications-Revisited. Fuzzy Sets Syst. 2006, 157, 2291–2310. [Google Scholar] [CrossRef]
- Jayaram, B.; Mesiar, R. On special fuzzy implications. Fuzzy Sets Syst. 2009, 160, 2063–2085. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Z.; Liu, S.; Yao, Z. Direct clustering analysis based on intuitionistic fuzzy implication. Appl. Soft Comput. J. 2014, 23, 1–8. [Google Scholar] [CrossRef]
- Shi, Y.; Van Gasse, B.; Ruan, D.; Kerre, E.E. On Dependencies and Independencies of Fuzzy Implication Axioms. Fuzzy Sets Syst. 2010, 161, 1388–1405. [Google Scholar] [CrossRef]
- Fernandez-Peralta, R.; Massanet, S.; Mesiarová-Zemánková, A.; Mir, A. A general framework for the characterization of (S, N)-implications with a non-continuous negation based on completions of t-conorms. Fuzzy Sets Syst. 2022, 441, 1–32. [Google Scholar] [CrossRef]
- Fernández-Sánchez, J.; Kolesárová, A.; Mesiar, R.; Quesada-Molina, J.J.; Úbeda-Flores, M. A generalization of a copula-based construction of fuzzy implications. Fuzzy Sets Syst. 2023, 456, 197–207. [Google Scholar] [CrossRef]
- Madrid, N.; Cornelis, C. Kitainik axioms do not characterize the class of inclusion measures based on contrapositive fuzzy implications. Fuzzy Sets Syst. 2023, 456, 208–214. [Google Scholar] [CrossRef]
- Pinheiro, J.; Santos, H.; Dimuro, G.P.; Bedregal, B.; Santiago, R.H.N.; Fernandez, J.; Bustince, H. On Fuzzy Implications Derived from General Overlap Functions and Their Relation to Other Classes. Axloms 2023, 12, 17. [Google Scholar] [CrossRef]
- Zhao, B.; Lu, J. On the distributivity for the ordinal sums of implications over t-norms and t-conorms. Int. J. Approx. Reason. 2023, 152, 284–296. [Google Scholar] [CrossRef]
- Massanet, S.; Mir, A.; Riera, J.V.; Ruiz-Aguilera, R. Fuzzy implication functions with a specific expression: The polynomial case. Fuzzy Sets Syst. 2022, 451, 176–195. [Google Scholar] [CrossRef]
- Souliotis, G.; Papadopoulos, B. Fuzzy Implications Generating from Fuzzy Negations. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Proceedings of the 27th International Conference on Artificial Neural Networks (ICANN 2018), Part 1, Artificial Neural Networks and Machine Learning, Rhodes, Greece, 4–7 October 2018; Kurkova, V., Hammer, B., Manolopoulos, Y., Iliadis, L., Maglogiannis, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 11139 LNCS, pp. 736–744. ISSN 03029743. ISBN 978-303001417-9. [Google Scholar] [CrossRef]
- Król, A. Generating of fuzzy implications. In Proceedings of the 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013), Milan, Italy, 11–13 September 2013; Pasi, G., Montero, J., Guicci, D., Eds.; Atlantis Press: Amsterdam, The Netherlands, 2013; Volume 32, pp. 758–763, ISBN 978-162993219-4. [Google Scholar] [CrossRef]
- Souliotis, G.; Papadopoulos, B. An algorithm for producing fuzzy negations via conical sections. Algorithms 2019, 12, 89. [Google Scholar] [CrossRef]
- Giakoumakis, S.; Papadopoulos, B. An algorithm for fuzzy negations based-intuitionistic fuzzy copula aggregation operators in Multiple Attribute Decision Making. Algorithms 2020, 13, 154. [Google Scholar] [CrossRef]
- Karbassi Yazdi, A.; Hanne, T.; Wang, Y.J.; Wee, H.-M. A Credit Rating Model in a Fuzzy Inference System Environment. Algorithms 2019, 12, 139. [Google Scholar] [CrossRef]
- Sahin, B.; Yazir, D.; Hamid, A.A.; Abdul Rahman, N.S.F. Maritime Supply Chain Optimization by Using Fuzzy Goal Programming. Algorithms 2021, 14, 234. [Google Scholar] [CrossRef]
- Koganti, S.; Koganti, K.J.; Salkuti, S.R. Design of Multi-Objective-Based Artificial Intelligence Controller for Wind/Battery-Connected Shunt Active Power Filter. Algorithms 2022, 15, 256. [Google Scholar] [CrossRef]
- Haghighi, M.H.; Mousavi, S.M. A Mathematical Model and Two Fuzzy Approaches Based on Credibility and Expected Interval for Project Cost-Quality-Risk Trade-Off Problem in Time-Constrained Conditions. Algorithms 2022, 15, 226. [Google Scholar] [CrossRef]
- Pelusi, D.; Mascella, R.; Tallini, L. Revised Gravitational Search Algorithms Based on Evolutionary-Fuzzy Systems. Algorithms 2017, 10, 44. [Google Scholar] [CrossRef]
- Miramontes, I.; Guzman, J.C.; Melin, P.; Prado-Arechiga, G. Optimal Design of Interval Type-2 Fuzzy Heart Rate Level Classification Systems Using the Bird Swarm Algorithm. Algorithms 2018, 11, 206. [Google Scholar] [CrossRef]
- Akisue, R.A.; Harth, M.L.; Horta, A.C.L.; de Sousa Junior, R. Optimized Dissolved Oxygen Fuzzy Control for Recombinant Escherichia coli Cultivations. Algorithms 2021, 14, 326. [Google Scholar] [CrossRef]
- Fateminia, S.H.; Sumati, V.; Fayek, A.R. An Interval Type-2 Fuzzy Risk Analysis Model (IT2FRAM) for Determining Construction Project Contingency Reserve. Algorithms 2020, 13, 163. [Google Scholar] [CrossRef]
- Shiau, J.-K.; Wei, Y.-C.; Chen, B.-C. A Study on the Fuzzy-Logic-Based Solar Power MPPT Algorithms Using Different Fuzzy Input Variables. Algorithms 2015, 8, 100–127. [Google Scholar] [CrossRef]
- Paul, S.; Turnbull, R.; Khodadad, D.; Löfstrand, M. A Vibration Based Automatic Fault Detection Scheme for Drilling Process Using Type-2 Fuzzy Logic. Algorithms 2022, 15, 284. [Google Scholar] [CrossRef]
- Yang, E. Fixpointed Idempotent Uninorm (Based) Logics. Mathematics 2019, 7, 107. [Google Scholar] [CrossRef]
- Massanet, S.; Torrens, J.; Shi, Y.; Van Gasse, B.; Kerre, E.E.; Qin, F.; Baczyński, M.; Deschrijver, G.; Bedregal, B.; Beliakov, G.; et al. Advances in Fuzzy Implication Functions, 1st ed.; (Book Series: Studies in Fuzziness and soft Computing Studfuzz, Volume 300 Series Editor Kacprzyk J); Baczynski, M., Beliakov, G., Sola, H.B., Pradera, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume VII, p. 209. ISBN 978-3-642-35676-6. e-book ISBN 978-3-642-35677-3; ISSN 1434-9922. E-ISSN 1860-0808. [Google Scholar] [CrossRef]
- Baczynski, M.; Jayaram, B. Fuzzy Implications, 1st ed.; (Book Series: Studies in Fuzziness and Soft Computing STUDFUZZ Volume 231, Series Editor Kacprzyk J.); Springer: Berlin/Heidelberg, Germany, 2008; Volume XVIII, p. 310. ISBN 978-3-540-69080-1. e-book ISBN 978-3-540-69082-5; ISSN 1434-9922. E-ISSN 1860-0808. [Google Scholar] [CrossRef]
- Metcalfe, G.; Montagna, F. Substructural Fuzzy Logics. J. Symb. Log. 2007, 72, 834–864. [Google Scholar] [CrossRef]
- Ruiz-Aguilera, D.; Torrens, J. Residual implications and co-implications from idempotent uninorms. Kybernetika 2004, 40, 21–38. [Google Scholar]
- Grammatikopoulos, D.S.; Papadopoulos, B.K. A Method of Generating Fuzzy Implications with Specific Properties. Symmetry 2020, 12, 155. [Google Scholar] [CrossRef]
- Massanet, S.; Torrens, J. The law of importation versus the exchange principle on fuzzy implications. Fuzzy Sets Syst. 2011, 168, 47–69. [Google Scholar] [CrossRef]
- Mayor, G. Sugeno’s negations and t-norms. Mathw. Soft Comput. 1994, 1, 93–98. [Google Scholar]
- Smets, P.; Magrez, P. Implications in fuzzy logic. Int. J. Approx. Reason. 1987, 1, 327–347. [Google Scholar] [CrossRef]
- Cintula, P. Weakly Implicative (Fuzzy) Logics I: Basic properties. Arch. Math. Log. 2006, 45, 673–704. [Google Scholar] [CrossRef]
- Klir, G.J.; Yuan, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications, 1st ed.; Prentice Hall Press: UpperSaddle River, NJ, USA, 1995; p. 574, ISBN-10 0131011715; ISBN-13 978-0131011717. [Google Scholar]
- Trillas, E.; Mas, M.; Monserrat, M.; Torrens, J. On the representation of fuzzy rules. Int. J. Approx. Reason. 2008, 48, 583–597. [Google Scholar] [CrossRef]
- Botzoris, G.; Papadopoulos, B. Fuzzy Sets: Applications in Design-Management of Engineer Projects, 1st ed.; Sofia: Xanthi, Greece, 2015; p. 424, ISBN-13 9789606706868. (In Greek) [Google Scholar]
- Dombi, J.; Jónás, T. On a strong negation-based representation of modalities. Fuzzy Sets Syst. 2021, 407, 142–160. [Google Scholar] [CrossRef]
- Asiain, M.J.; Bustince, H.R.; Mesiar, R.; Kolesárová, A.; Takác, Z. Negations with respect to admissible orders in the interval-valued fuzzy set theory. IEEE Trans. Fuzzy Syst. 2018, 26, 556–568. [Google Scholar] [CrossRef]
- Bustince, H.; Burillo, P.; Soria, F. Automorphisms, negations and implication operators. Fuzzy Sets Syst. 2003, 134, 209–229. [Google Scholar] [CrossRef]
- Drygas, P. Some remarks about idempotent uninorms on complete lattice. In Advances in Intelligent Systems and Computing, Proceedings of the 10th Conference of the European Society for Fuzzy Logic and Technology, Warsaw, Poland, 11–15 September 2017; Kacprzyk, J., Szmidt, E., Zadrozny, S., Atanassov, K.T., Krawczak, M., Eds.; Springer: Cham, Switzerland, 2017; Volume 641, pp. 648–657. ISSN 21945357. ISBN 978-331966829-1. [Google Scholar] [CrossRef]
- Baczynski, M.; Jayaram, B.; Massanet, S.; Torrens, J. Fuzzy Implications: Past, Present, and Future. In Springer Handbook of Computational Intelligence, 1st ed.; Part of the Springer Handbooks Book Series, (SHB); Kacprzyk, J., Pedrycz, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 183–202, ISBN online: 978-366243505-2; ISBN print: 978-366243504-5. [Google Scholar] [CrossRef]
- Available online: https://freemeteo.gr/mobile/kairos/kavala/istoriko/imerisio-istoriko/?gid=735861&station=5222&date=2021-08-01&language=greek&country=greece&fbclid=IwAR3Ph3AbGLWjGn39AWnLMqarYsgjypBRAtAG9gtcEITSWAVkDwEz4Hffn7M (accessed on 12 December 2023).
Value m | Case I 1 | Case II 2 | |
---|---|---|---|
19 | 20 | ||
239 | 259 |
Value m | Case III 3 | Case IV 4 | |
---|---|---|---|
22 | 21 | ||
289 | 269 |
Value m | Case I with 19 Repetitions | Case I with 239 Repetitions | |
---|---|---|---|
47 | 1 | ||
74 | 120 |
Value m | Case II with 20 Repetitions | Case II with 259 Repetitions | |
---|---|---|---|
61 | 1 | ||
60 | 120 |
Value m | Case III with 22 Repetitions | Case III with 289 Repetitions | |
---|---|---|---|
55 | 1 | ||
66 | 120 |
Value m | Case IV with 21 Repetitions | Case IV with 269 Repetitions | |
---|---|---|---|
61 | 1 | ||
60 | 120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daniilidou, A.; Konguetsof, A.; Souliotis, G.; Papadopoulos, B. Generator of Fuzzy Implications. Algorithms 2023, 16, 569. https://doi.org/10.3390/a16120569
Daniilidou A, Konguetsof A, Souliotis G, Papadopoulos B. Generator of Fuzzy Implications. Algorithms. 2023; 16(12):569. https://doi.org/10.3390/a16120569
Chicago/Turabian StyleDaniilidou, Athina, Avrilia Konguetsof, Georgios Souliotis, and Basil Papadopoulos. 2023. "Generator of Fuzzy Implications" Algorithms 16, no. 12: 569. https://doi.org/10.3390/a16120569
APA StyleDaniilidou, A., Konguetsof, A., Souliotis, G., & Papadopoulos, B. (2023). Generator of Fuzzy Implications. Algorithms, 16(12), 569. https://doi.org/10.3390/a16120569