Monte Carlo Simulation Affects Convergence of Differential Evolution: A Case of Optical Response Modeling
Abstract
:1. Introduction
2. Theory of the Optical Response with Inhomogeneous Broadening
3. Differential Evolution
4. Results
4.1. Inhomogeneous Broadening of a Chl Dimer
4.2. PSIIRC Linear Optics Simulations with Different MC
4.3. Tests of DE with the Artificial Experimental Data
4.4. Tests of DE with the Real Experimental Data
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
100 | 200 | 500 | 1000 | 2000 | 5000 | 10,000 | |
5.878 × 10−5 | 1.007 × 10−5 | 1.705 × 10−4 | 9.156 × 10−6 | 7.086 × 10−6 | 2.296 × 10−6 | 4.512 × 10−6 | |
1.735 × 10−4 | 4.735 × 10−5 | 8.819 × 10−6 | 2.210 × 10−6 | 2.191 × 10−6 | 1.354 × 10−6 | 5.398 × 10−6 | |
2.593 × 10−4 | 3.472 × 10−5 | 2.900 × 10−5 | 2.174 × 10−6 | 6.213 × 10−6 | 5.592 × 10−6 | 2.846 × 10−7 | |
8.588 × 10−5 | 3.849 × 10−5 | 8.315 × 10−5 | 3.180 × 10−5 | 1.502 × 10−5 | 2.316 × 10−5 | 1.123 × 10−6 | |
4.609 × 10−5 | 9.384 × 10−6 | 7.330 × 10−5 | 2.073 × 10−5 | 2.937 × 10−5 | 2.994 × 10−6 | 1.369 × 10−6 | |
2.837 × 10−4 | 1.116 × 10−4 | 7.669 × 10−6 | 1.367 × 10−6 | 3.467 × 10−6 | 6.566 × 10−6 | 7.066 × 10−7 | |
1.104 × 10−4 | 5.765 × 10−5 | 1.094 × 10−4 | 1.350 × 10−5 | 1.109 × 10−5 | 5.462 × 10−7 | 6.701 × 10−8 | |
1.692 × 10−4 | 1.655 × 10−5 | 7.409 × 10−5 | 1.295 × 10−5 | 5.562 × 10−7 | 1.055 × 10−6 | 3.855 × 10−6 | |
5.574 × 10−5 | 4.425 × 10−5 | 2.033 × 10−5 | 4.994 × 10−5 | 7.054 × 10−6 | 1.166 × 10−5 | 1.344 × 10−6 | |
4.243 × 10−5 | 1.643 × 10−5 | 3.334 × 10−5 | 4.267 × 10−6 | 9.901 × 10−6 | 5.388 × 10−7 | 1.723 × 10−6 | |
1.416 × 10−4 | 1.024 × 10−4 | 1.602 × 10−4 | 5.222 × 10−6 | 1.038 × 10−5 | 1.721 × 10−6 | 5.808 × 10−6 | |
4.251 × 10−5 | 9.674 × 10−5 | 7.646 × 10−6 | 3.613 × 10−6 | 8.621 × 10−6 | 2.320 × 10−6 | 4.649 × 10−6 | |
1.136 × 10−4 | 1.268 × 10−4 | 4.432 × 10−5 | 2.523 × 10−5 | 2.595 × 10−5 | 1.580 × 10−5 | 1.846 × 10−6 | |
6.834 × 10−5 | 2.848 × 10−5 | 3.464 × 10−5 | 2.657 × 10−5 | 4.034 × 10−5 | 1.135 × 10−6 | 2.298 × 10−6 | |
1.078 × 10−4 | 2.630 × 10−4 | 1.281 × 10−5 | 5.751 × 10−6 | 8.088 × 10−7 | 3.563 × 10−6 | 6.761 × 10−6 | |
9.993 × 10−5 | 2.947 × 10−5 | 2.570 × 10−5 | 3.010 × 10−5 | 1.027 × 10−5 | 6.373 × 10−6 | 1.206 × 10−6 | |
1.039 × 10−4 | 3.378 × 10−5 | 1.446 × 10−5 | 2.235 × 10−5 | 1.362 × 10−5 | 9.567 × 10−7 | 9.135 × 10−7 | |
3.923 × 10−5 | 6.198 × 10−5 | 2.629 × 10−5 | 2.844 × 10−6 | 8.024 × 10−6 | 4.222 × 10−7 | 4.607 × 10−7 | |
2.837 × 10−5 | 3.834 × 10−5 | 1.673 × 10−5 | 7.578 × 10−5 | 5.330 × 10−6 | 1.118 × 10−5 | 7.340 × 10−7 | |
8.315 × 10−5 | 3.498 × 10−5 | 7.182 × 10−5 | 3.787 × 10−5 | 2.732 × 10−5 | 5.267 × 10−6 | 2.463 × 10−6 | |
1.263 × 10−4 | 1.225 × 10−4 | 6.703 × 10−5 | 1.354 × 10−5 | 3.950 × 10−5 | 1.992 × 10−6 | 1.389 × 10−6 | |
Median | 9.993 × 10−5 | 3.849 × 10−5 | 3.334 × 10−5 | 1.350 × 10−5 | 9.901 × 10−6 | 2.320 × 10−6 | 1.389 × 10−6 |
Worst | 2.837 × 10−4 | 2.630 × 10−4 | 1.705 × 10−4 | 7.578 × 10−5 | 4.034 × 10−5 | 2.316 × 10−5 | 6.761 × 10−6 |
100 | 200 | 500 | 1000 | 2000 | ||||||
ε | ε | ε | ε | ε | ||||||
Run1 | 0.979 | 1.521 × 10−5 | 0.982 | 9.372 × 10−6 | 1.010 | 3.984 × 10−6 | 1.000 | 2.411 × 10−6 | 1.015 | 2.308 × 10−6 |
Run2 | 1.071 | 2.041 × 10−5 | 1.028 | 1.247 × 10−5 | 1.073 | 6.840 × 10−6 | 0.981 | 3.486 × 10−6 | 0.999 | 2.363 × 10−6 |
Run3 | 0.973 | 2.305 × 10−5 | 1.000 | 8.911 × 10−6 | 0.964 | 5.889 × 10−6 | 0.986 | 2.661 × 10−6 | 0.981 | 2.381 × 10−6 |
Run4 | 1.053 | 1.700 × 10−5 | 0.968 | 1.165 × 10−5 | 0.967 | 3.419 × 10−6 | 0.990 | 2.323 × 10−6 | 0.981 | 1.957 × 10−6 |
Run5 | 1.024 | 1.408 × 10−5 | 0.971 | 9.761 × 10−6 | 0.956 | 4.550 × 10−6 | 0.992 | 2.577 × 10−6 | 1.021 | 2.119 × 10−6 |
Mean | 1.020 | 1.795 × 10−5 | 0.990 | 1.043 × 10−5 | 0.994 | 4.936 × 10−6 | 0.990 | 2.692 × 10−6 | 0.999 | 2.226 × 10−6 |
SD | 0.044 | 3.723 × 10−6 | 0.025 | 1.543 × 10−6 | 0.049 | 1.405 × 10−6 | 0.007 | 4.636 × 10−7 | 0.019 | 1.826 × 10−7 |
MC | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 200 | 500 | 1000 | 2000 | |||||||||||
ε | ε | ε | ε | ε | |||||||||||
Run1 | 0.974 | 190.571 | 1.538 × 10−5 | 1.022 | 179.220 | 9.812 × 10−6 | 0.999 | 182.537 | 3.698 × 10−6 | 0.981 | 181.612 | 2.853 × 10−6 | 0.962 | 182.948 | 1.271 × 10−6 |
Run2 | 1.125 | 164.085 | 2.660 × 10−5 | 1.057 | 178.262 | 1.007 × 10−5 | 1.019 | 176.568 | 4.902 × 10−6 | 0.957 | 184.991 | 3.766 × 10−6 | 0.966 | 181.824 | 1.716 × 10−6 |
Run3 | 1.053 | 179.030 | 2.188 × 10−5 | 1.011 | 183.312 | 7.384 × 10−6 | 0.997 | 177.491 | 3.476 × 10−06 | 0.989 | 176.975 | 2.682 × 10−6 | 0.977 | 182.979 | 1.674 × 10−6 |
Run4 | 1.038 | 172.523 | 1.778 × 10−5 | 1.001 | 162.995 | 1.398 × 10−5 | 1.012 | 174.119 | 4.487 × 10−6 | 0.999 | 180.126 | 3.083 × 10−6 | 0.995 | 182.001 | 1.892 × 10−6 |
Run5 | 1.034 | 168.148 | 1.762 × 10−5 | 0.982 | 178.383 | 1.271 × 10−5 | 1.021 | 180.565 | 5.057 × 10−6 | 0.966 | 183.647 | 2.443 × 10−6 | 0.986 | 182.384 | 8.869 × 10−7 |
Mean | 1.045 | 174.871 | 1.985 × 10−5 | 1.015 | 176.434 | 1.079 × 10−5 | 1.010 | 178.256 | 4.324 × 10−6 | 0.978 | 181.470 | 2.695 × 10−6 | 0.977 | 182.427 | 1.488 × 10−6 |
SD | 0.054 | 10.378 | 4.442 × 10−6 | 0.028 | 7.791 | 2.595 × 10−6 | 0.011 | 3.324 | 7.087 × 10−7 | 0.017 | 3.129 | 5.051 × 10−7 | 0.014 | 0.530 | 4.057 × 10−7 |
References
- Kroese, D.P.; Brereton, T.; Taimre, T.; Botev, Z.I. Why the Monte Carlo method is so important today. Wiley Interdiscip. Rev. Comput. Stat. 2014, 6, 386–392. [Google Scholar] [CrossRef]
- Badano, A.; Kanicki, J. Monte Carlo analysis of the spectral photon emission and extraction efficiency of organic light-emitting devices. J. Appl. Phys. 2001, 90, 1827–1830. [Google Scholar] [CrossRef] [Green Version]
- Hastings, W.K. Monte carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- Stenzel, O.; Koster, L.J.A.; Thiedmann, R.; Oosterhout, S.D.; Janssen, R.A.J.; Schmidt, V. A new approach to model-based simulation of disordered polymer blend solar cells. Adv. Funct. Mater. 2012, 22, 1236–1244. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Wang, X.; Li, H.; Roje, S.; Sablani, S.S.; Chen, S. Parameterization of a light distribution model for green cell growth of microalgae: Haematococcus pluvialis cultured under red LED lights. Algal Res. 2017, 23, 20–27. [Google Scholar] [CrossRef]
- Sinha, S.; Grewal, R.K.; Roy, S. Modeling Bacteria–Phage Interactions and Its Implications for Phage Therapy. In Advances in Applied Microbiology; Academic Press Inc.: Cambridge, MA, USA, 2018; Volume 103, pp. 103–141. [Google Scholar]
- Trang, M.; Dudley, M.N.; Bhavnani, S.M. Use of Monte Carlo simulation and considerations for PK-PD targets to support antibacterial dose selection. Curr. Opin. Pharmacol. 2017, 36, 107–113. [Google Scholar] [CrossRef]
- Chen, J.; Weihs, D.; Vermolen, F.J. A Cellular Automata Model of Oncolytic Virotherapy in Pancreatic Cancer. Bull. Math. Biol. 2020, 82, 103. [Google Scholar] [CrossRef]
- Jang, S.J.; Mennucci, B. Delocalized excitons in natural light-harvesting complexes. Rev. Mod. Phys. 2018, 90, 035003. [Google Scholar] [CrossRef] [Green Version]
- Chaillet, M.L.; Lengauer, F.; Adolphs, J.; Muh, F.; Fokas, A.S.; Cole, D.J.; Chin, A.W.; Renger, T. Static Disorder in Excitation Energies of the Fenna-Matthews-Olson Protein: Structure-Based Theory Meets Experiment. J. Phys. Chem. Lett. 2020, 11, 10306–10314. [Google Scholar] [CrossRef]
- Blankenship, R.E. Molecular Mechanisms of Photosynthesis, 2nd ed.; Wiley-Blackwell: Oxford, UK, 2014; p. 312. [Google Scholar]
- Mirkovic, T.; Ostroumov, E.E.; Anna, J.M.; van Grondelle, R.; Govindjee; Scholes, G.D. Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms. Chem. Rev. 2017, 117, 249–293. [Google Scholar] [CrossRef]
- Brixner, T.; Hildner, R.; Kohler, J.; Lambert, C.; Wurthner, F. Exciton Transport in Molecular Aggregates—From Natural Antennas to Synthetic Chromophore Systems. Adv. Energy Mater. 2017, 7, 1700236. [Google Scholar] [CrossRef] [Green Version]
- Croce, R.; van Amerongen, H. Natural strategies for photosynthetic light harvesting. Nat. Chem. Biol. 2014, 10, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Pishchalnikov, R.Y.; Razjivin, A.P. From localized excited states to excitons: Changing of conceptions of primary photosynthetic processes in the twentieth century. Biochem.-Mosc. 2014, 79, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Pishchalnikov, R.Y.; Shubin, V.V.; Razjivin, A.P. Spectral differences between monomers and trimers of photosystem I depend on the interaction between peripheral chlorophylls of neighboring monomers in trimer. Phys. Wave Phenom. 2017, 25, 185–195. [Google Scholar] [CrossRef]
- Bruggemann, B.; Sznee, K.; Novoderezhkin, V.; van Grondelle, R.; May, V. From structure to dynamics: Modeling exciton dynamics in the photosynthetic antenna PS1. J. Phys. Chem. B 2004, 108, 13536–13546. [Google Scholar] [CrossRef]
- Renger, T. Semiclassical Modified Redfield and Generalized Forster Theories of Exciton Relaxation/Transfer in Light-Harvesting Complexes: The Quest for the Principle of Detailed Balance. J. Phys. Chem. B 2021, 125, 6406–6416. [Google Scholar] [CrossRef]
- Raszewski, G.; Saenger, W.; Renger, T. Theory of optical spectra of photosystem II reaction centers: Location of the triplet state and the identity of the primary electron donor. Biophys. J. 2005, 88, 986–998. [Google Scholar] [CrossRef] [Green Version]
- Najafi, M.; Zazubovich, V. Monte Carlo Modeling of Spectral Diffusion Employing Multiwell Protein Energy Landscapes: Application to Pigment-Protein Complexes Involved in Photosynthesis. J. Phys. Chem. B 2015, 119, 7911–7921. [Google Scholar] [CrossRef]
- Mukamel, S. Principles of Nonlinear Optical Spectroscopy; Oxford University Press: New York, NY, USA; Oxford, UK, 1995; Volume 6, p. 543. [Google Scholar]
- Caycedo-Soler, F.; Mattioni, A.; Lim, J.; Renger, T.; Huelga, S.F.; Plenio, M.B. Exact simulation of pigment-protein complexes unveils vibronic renormalization of electronic parameters in ultrafast spectroscopy. Nat. Commun. 2022, 13, 2912. [Google Scholar] [CrossRef]
- Novoderezhkin, V.I.; Romero, E.; Dekker, J.P.; van Grondelle, R. Multiple Charge-Separation Pathways in Photosystem II: Modeling of Transient Absorption Kinetics. Chemphyschem 2011, 12, 681–688. [Google Scholar] [CrossRef]
- Kruger, T.P.J.; Novoderezhkin, V.I.; Ilioaia, C.; van Grondelle, R. Fluorescence Spectral Dynamics of Single LHCII Trimers. Biophys. J. 2010, 98, 3093–3101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novoderezhkin, V.I.; Dekker, J.P.; van Grondelle, R. Mixing of exciton and charge-transfer states in Photosystem II reaction centers: Modeling of stark spectra with modified redfield theory. Biophys. J. 2007, 93, 1293–1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning, 13th ed.; Addison-Wesley Publishing Company, Inc.: Reading, MA, USA, 1989; p. 432. [Google Scholar]
- Trinkunas, G.; Holzwarth, A.R. Kinetic modeling of exciton migration in photosynthetic systems. 3. Application of genetic algorithms to simulations of excitation dynamics in three-dimensional photosystem core antenna reaction center complexes. Biophys. J. 1996, 71, 351–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trinkunas, G.; Connelly, J.P.; Muller, M.G.; Valkunas, L.; Holzwarth, A.R. Model for the excitation dynamics in the light-harvesting complex II from higher plants. J. Phys. Chem. B 1997, 101, 7313–7320. [Google Scholar] [CrossRef]
- Vaitekonis, S.; Trinkunas, G.; Valkunas, L. Red chlorophylls in the exciton model of photosystem I. Photosynth. Res. 2005, 86, 185–201. [Google Scholar] [CrossRef] [PubMed]
- Storn, R. System design by constraint adaptation and differential evolution. IEEE Trans. Evol. Comput. 1999, 3, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Pant, M.; Zaheer, H.; Garcia-Hernandez, L.; Abraham, A. Differential Evolution: A review of more than two decades of research. Eng. Appl. Artif. Intell. 2020, 90, 103479. [Google Scholar] [CrossRef]
- Opara, K.R.; Arabas, J. Differential Evolution: A survey of theoretical analyses. Swarm Evol. Comput. 2019, 44, 546–558. [Google Scholar] [CrossRef]
- Darwish, A.; Hassanien, A.E.; Das, S. A survey of swarm and evolutionary computing approaches for deep learning. Artif. Intell. Rev. 2020, 53, 1767–1812. [Google Scholar] [CrossRef]
- Elsayed, S.M.; Sarker, R.A.; Essam, D.L. A self-adaptive combined strategies algorithm for constrained optimization using differential evolution. Appl. Math. Comput. 2014, 241, 267–282. [Google Scholar] [CrossRef]
- Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization. IEEE Trans. Evol. Comput. 2009, 13, 398–417. [Google Scholar] [CrossRef]
- Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 2006, 10, 646–657. [Google Scholar] [CrossRef]
- Semenov, M.A.; Terkel, D.A. Analysis of convergence of an evolutionary algorithm with self-adaptation using a stochastic Lyapunov function. Evol. Comput. 2003, 11, 363–379. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Shang, S.; Cai, X.; Zhao, H.; Song, Y.; Xu, J. An improved differential evolution algorithm and its application in optimization problem. Soft Comput. 2021, 25, 5277–5298. [Google Scholar] [CrossRef]
- Chesalin, D.D.; Pishchalnikov, R.Y. Searching for a Unique Exciton Model of Photosynthetic Pigment–Protein Complexes: Photosystem II Reaction Center Study by Differential Evolution. Mathematics 2022, 10, 959. [Google Scholar] [CrossRef]
- Chesalin, D.D.; Kulikov, E.A.; Yaroshevich, I.A.; Maksimov, E.G.; Selishcheva, A.A.; Pishchalnikov, R.Y. Differential evolution reveals the effect of polar and nonpolar solvents on carotenoids: A case study of astaxanthin optical response modeling. Swarm Evol. Comput. 2022, 75, 101210. [Google Scholar] [CrossRef]
- Pishchalnikov, R.Y.; Yaroshevich, I.A.; Zlenko, D.V.; Tsoraev, G.V.; Osipov, E.M.; Lazarenko, V.A.; Parshina, E.Y.; Chesalin, D.D.; Sluchanko, N.N.; Maksimov, E.G. The role of the local environment on the structural heterogeneity of carotenoid β-ionone rings. Photosynth. Res. 2022, 1–15. [Google Scholar] [CrossRef]
- Zhang, W.M.; Meier, T.; Chernyak, V.; Mukamel, S. Exciton-migration and three-pulse femtosecond optical spectroscopies of photosynthetic antenna complexes. J. Chem. Phys. 1998, 108, 7763–7774. [Google Scholar] [CrossRef] [Green Version]
- Meier, T.; Chernyak, V.; Mukamel, S. Femtosecond photon echoes in molecular aggregates. J. Chem. Phys. 1997, 107, 8759–8780. [Google Scholar] [CrossRef]
- Madjet, M.E.; Abdurahman, A.; Renger, T. Intermolecular Coulomb couplings from ab initio electrostatic potentials: Application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers. J. Phys. Chem. B 2006, 110, 17268–17281. [Google Scholar] [CrossRef] [PubMed]
- Muh, F.; Plockinger, M.; Renger, T. Electrostatic Asymmetry in the Reaction Center of Photosystem II. J. Phys. Chem. Lett. 2017, 8, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Gelzinis, A.; Abramavicius, D.; Ogilvie, J.P.; Valkunas, L. Spectroscopic properties of photosystem II reaction center revisited. J. Chem. Phys. 2017, 147, 115102. [Google Scholar] [CrossRef]
- Neverov, K.V.; Krasnovsky, A.A.; Zabelin, A.A.; Shuvalov, V.A.; Shkuropatov, A.Y. Low-temperature (77 K) phosphorescence of triplet chlorophyll in isolated reaction centers of photosystem II. Photosynth. Res. 2015, 125, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Novoderezhkin, V.I.; Andrizhiyevskaya, E.G.; Dekker, J.P.; van Grondelle, R. Pathways and timescales of primary charge separation in the photosystem II reaction center as revealed by a simultaneous fit of time-resolved fluorescence and transient absorption. Biophys. J. 2005, 89, 1464–1481. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chesalin, D.D.; Razjivin, A.P.; Dorokhov, A.S.; Pishchalnikov, R.Y. Monte Carlo Simulation Affects Convergence of Differential Evolution: A Case of Optical Response Modeling. Algorithms 2023, 16, 3. https://doi.org/10.3390/a16010003
Chesalin DD, Razjivin AP, Dorokhov AS, Pishchalnikov RY. Monte Carlo Simulation Affects Convergence of Differential Evolution: A Case of Optical Response Modeling. Algorithms. 2023; 16(1):3. https://doi.org/10.3390/a16010003
Chicago/Turabian StyleChesalin, Denis D., Andrei P. Razjivin, Alexey S. Dorokhov, and Roman Y. Pishchalnikov. 2023. "Monte Carlo Simulation Affects Convergence of Differential Evolution: A Case of Optical Response Modeling" Algorithms 16, no. 1: 3. https://doi.org/10.3390/a16010003
APA StyleChesalin, D. D., Razjivin, A. P., Dorokhov, A. S., & Pishchalnikov, R. Y. (2023). Monte Carlo Simulation Affects Convergence of Differential Evolution: A Case of Optical Response Modeling. Algorithms, 16(1), 3. https://doi.org/10.3390/a16010003