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Abstract: It is known that the protein surrounding, as well as solvent molecules, has a significant
influence on optical spectra of organic pigments by modulating the transition energies of their
electronic states. These effects manifest themselves by a broadening of the spectral lines. Most
semiclassical theories assume that the resulting lineshape of an electronic transition is a combination of
homogeneous and inhomogeneous broadening contributions. In the case of the systems of interacting
pigments such as photosynthetic pigment–protein complexes, the inhomogeneous broadening can
be incorporated in addition to the homogeneous part by applying the Monte Carlo method (MCM),
which implements the averaging over static disorder of the transition energies. In this study, taking
the reaction center of photosystem II (PSIIRC) as an example of a quantum optical system, we showed
that differential evolution (DE), a heuristic optimization algorithm, used to fit the experimentally
measured data, produces results that are sensitive to the settings of MCM. Applying the exciton
theory to simulate the PSIIRC linear optical response, the number of minimum required MCM
realizations for the efficient performance of DE was estimated. Finally, the real linear spectroscopy
data of PSIIRC were fitted using DE considering the necessary modifications to the implementation
of the optical response modeling procedures.

Keywords: Monte Carlo method; differential evolution; photosystem II reaction center; optical
response modeling; absorption; steady-state fluorescence

1. Introduction

The Monte Carlo method (MCM) is one of the most common computational algorithms
based on the use of randomly distributed parameters with which it is possible to obtain the
numerical solutions to a problem that, in general, can be either probabilistic or deterministic
in nature [1]. This method has already been tested and implemented in different areas of
experimental and applied sciences, such as physics [2], mathematics [3], engineering [4,5],
biology [6,7], medicine [8] and others [1]. In physics- and mathematics-related problems,
MCM is very useful if there is no way to obtain an exact analytical solution, particularly in
the modeling of the optical response of photosynthetic pigment–protein complexes (PPC),
when the inhomogeneous broadening of Qy electronic transition of chlorophylls (Chls) and
bacteriochlorophylls has to be taken into account [9,10].

Experimental and theoretical research on the optical properties of PPCs is an essential
part of the study of photosynthesis as a fundamental process in nature [11]. PPCs are
functional subunit proteins of the photosynthetic apparatus of higher plants and bacteria lo-
cated in cell membranes [12]. Most of them serve as light-harvesting complexes that absorb
light quanta, which are subsequently converted into excited states of the complexes [13,14].
Excited states migrate along PPC until they are localized in the special complexes’ reac-
tion centers, where the charge separation takes place [15]. Generally speaking, all PPCs
consist of pigment molecules bound to the protein matrix. Remarkably, the pigments are
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tightly fixed in their positions, forming a rigid spatial structure. The spatial structure of the
pigments determines the coupling energies between excited states of molecules, thereby
having a significant influence on the optical properties of PPC [16,17]. Thus, in order to
simulate the optical response of PPC most accurately, it is necessary to use a theory that will
simultaneously account for both the spatial arrangement of the pigments, and the effect of
the protein environment and electron–phonon interaction [18].

MCM has been used quite often to model the results of spectroscopy measurements
made on PPC samples [17,19,20]. In this case, MCM allows taking into account the effect
of slow modulations of an electronic transition which is caused by interactions with the
corresponding nuclear degrees of freedom [10,21,22]. To do so, the diagonal elements of
the Frenkel exciton Hamiltonian are modified by a Gaussian fluctuation parameter and
the resulting spectrum is calculated by the averaging of this parameter over all realiza-
tions [23–25]. It is clear that the amount of computational work required for modeling
the optical properties of PPC strongly depends on the number of pigments in PPC whose
excited states are considered. For example, photosystem I monomeric and trimeric com-
plexes contain about 100 and 300 pigments, and modeling the linear spectroscopy for such
complexes is already a time-consuming exercise [17]. This is why we decided to employ the
reaction center of photosystem II (PSIIRC) as a model for PPC. Firstly, it contains only eight
porphyrin-like pigments (6 Chls and 2 pheophytins); secondly, there are many available
experimental data measured at different temperatures, as well as theoretical studies on
energy transfer and charge separation in PSIIRC.

Application of any optimization algorithm for the fitting of PPC experimental data is
a non-trivial task, since the exciton theory and the multimode Brownian oscillator model
used for the spectra simulation have many input parameters and, most importantly, the
dependence of simulated spectra on some parameters is nonlinear [9,12,21]. The use of
evolutionary strategies as an optimization scheme, particularly a metaheuristic search
procedure such as the genetic algorithm, can be considered successful for this kind of prob-
lem [26]. The first attempts at modeling kinetics and the exciton dynamics in photosystem
I [27], simulating the spectroscopic characteristics for the light-harvesting complex II from
higher plants [28], localization of the triplet states in PSIIRC [19], linear spectroscopy of
monomeric photosystem I [17] and a study of red chlorophylls in photosystem I [29] have
been made in the last 25 years applying the genetic algorithm. Nevertheless, the differential
evolution algorithm (DE) [30,31] can be considered a more appropriate method for mod-
eling primary photosynthetic processes. Compared with other evolution algorithms, DE
deals with the real type variables allowing the fitting parameters to be varied continuously
during program run [32,33].

Recent reviews on applications of DE have shown [32,34] that, in addition to the
classical version of the algorithm, so-called self-adaptive DE modifications [35–38], de-
signed to improve convergence, are now actively used for many tasks [39]. However, these
modifications in the case of PPC optical properties modeling have no significant effect on
the convergence rate and the spectra fitting results. To deal with this situation, we have
developed software combining the DE algorithm and procedures for the calculation of the
spectra of photosynthetic pigments and pigment–protein complexes [40,41]. Starting with
the modeling of linear absorption of monomeric Chl, bacteriochlorophyll and carotenoids
in different solvents, the best DE strategy and its optimal settings have been found [41,42].
The next step was to explore the prospect of using DE to fit the linear spectroscopy of a
small PPC, such as PSIIRC. Having a set of artificially simulated spectra as experimental
data, we were able to match the DE settings with which the algorithm found the required
parameters of the exciton model of PSIIRC [40]. However, it makes no sense to use such
a model to fit experimentally measured spectra, since it does not take into account the
inhomogeneous broadening of the PSIIRC excited states (Figure 1).



Algorithms 2023, 16, 3 3 of 14Algorithms 2022, 15, x FOR PEER REVIEW 3 of 16 
 

 

Figure 1. Effect of the inhomogeneous broadening on the optical properties of PPC. A dimer of 

coupling Chls (A) with Qy transition moments (red arrows) is shown with parameters of the exciton 

Hamiltonian (5). Calculated absorption spectra of the dimer are presented for different MC values: 

10 (B), 100 (C), 500 (D), 5000 (E); FWHMΩ = 300 cm−1. The black line is the resulting dimer absorp-

tion, and the red and blue lines are absorptions of the excited states of a dimer. Parameters of the 

spectral density of the Qy transition of Chl was taken from [40]. The crystal structure of PSIIRC: 
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an exciton manifold of eight states with the characteristic absorption at 77K (F). 
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of inhomogeneous broadening by means of MCM. It must be stressed that MCM is a 

probabilistic method which provides only an approximate solution to a problem. On the 

Figure 1. Effect of the inhomogeneous broadening on the optical properties of PPC. A dimer of
coupling Chls (A) with Qy transition moments (red arrows) is shown with parameters of the exciton
Hamiltonian (5). Calculated absorption spectra of the dimer are presented for different MC values:
10 (B), 100 (C), 500 (D), 5000 (E); FWHMΩ = 300 cm−1. The black line is the resulting dimer absorption,
and the red and blue lines are absorptions of the excited states of a dimer. Parameters of the spectral
density of the Qy transition of Chl was taken from [40]. The crystal structure of PSIIRC: positions
of Chls and pheophytins and protein subunits. The red circle marks D1–D2 special pair—two Chls
where charge separation processes take place. Coupling cofactors of PSIIRC creates an exciton
manifold of eight states with the characteristic absorption at 77 K (F).
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Thus, the aim of this study is to enhance the previously published PSIIRC exciton
model and the quality of linear optical properties modeling [40] by adding the procedure
of inhomogeneous broadening by means of MCM. It must be stressed that MCM is a
probabilistic method which provides only an approximate solution to a problem. On the
other hand, DE is also based on a random generator in order to create new populations of
parameters. Therefore, the question arises whether the two probabilistic methods can be
used in the same harness, and whether the convergence of DE will be affected by using
MCM to simulate the optical response of PPC? Moreover, is it possible to fit measured
experimental data with such a combination of methods, while simultaneously obtaining
significant parameters for quantum models of primary photosynthetic processes? Thus,
our study focuses on answering these two questions.

2. Theory of the Optical Response with Inhomogeneous Broadening

A detailed description of the quantum model of PSIIRC without taking into account
of the inhomogeneous broadening has been given in our previous published paper [40].
Considering the multimode Brownian oscillator model to calculate the spectral density
and the lineshape function for cofactors of PSIIRC, and the exciton theory to simulate the
optical response of a system of coupling pigments [9], the final expressions in terms of
the modified Redfield theory [43,44] for absorption σext

abs(ω), linear σext
LD(ω), circular σext

CD(ω)
dichroism and steady-state fluorescence σext

f l (ω) of PSIIRC were written as follows:

σext
abs(ω) ≈ ω

π ∑N
α

d2
αRe

∫ ∞

0
dtei(ω−εα)te−gαααα(t)e−0.5Kααt (1)

σext
CD(ω) ≈ ω

π ∑N
α

RαRe
∫ ∞

0
dtei(ω−εα)te−gαααα(t)e−0.5Kααt (2)

σext
LD(ω) ≈ ω

π ∑N
α

[
dz2

α −
1
2

(
dx2

α + dy2

α

)]
Re
∫ ∞

0
dtei(ω−εα)te−gαααα(t)e−0.5Kααt (3)

σext
f l (ω) ≈ ω3

π ∑N
α

(ndα)
2eεα β

∑n eεα β
Re
∫ ∞

0
dtei(ω−εα+2λαααα)te−gαααα

∗(t)e−0.5Kααt (4)

where εα and d2
α = dx2

α + dy2

α + dz2
α are the eigenvalues of the Frenkel Hamiltonian of

PSIIRC and the corresponding squares of the Qy transition moments of Chls and their
components, gαααα(t) is the lineshape function in the exciton representation, Kαα is the
relaxation rates of the exciton states, λαααα = − lim

τ→∞
Im
[

dgαααα(τ)
dτ

]
is the reorganization

energy, which represents the influence of vibronic modes on the exciton state, α = 1, 2, . . . , N
enumerates the exciton states, N is the number of pigments in PSIIRC [40], β = 1/kT,
Rα = ∑nm cα

ncα
mrnm(dn × dm) is the rotation strength matrix of PSIIRC needed to estimate

the effect of circular dichroism, cα
n are the eigenvectors and rnm are distances between

Chls. It is worth adding that PSIIRC consists of two types of pigments optically active at
600–700 nm: Chls and pheophytins. In fact, they have to be characterized by two different
spectral densities; however, we used the same spectral density for all pigments in our
simulations. Generally, this simplification will not affect the results of the test of MCM and
DE working together, but to analyze the energy transfer and charge separation in PSIIRC
in detail, two spectral densities have to be considered.

To incorporate the inhomogeneous broadening employing MCM, the diagonal ele-
ments of the Frenkel Hamiltonian PSIIRC must be modified by a fluctuation parameter:

H j
ext =


Ω1 + δ

j
1 J12 J1N

· · ·
J21 Ω2 + δ

j
2 J2N

...
. . .

...
JN1 JN2 · · · ΩN + δ

j
N

 (5)
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where δ
j
n =

{
δ

j
1, δ

j
2, . . . , δ

j
N

}
is a set of fluctuations generated by a Gaussian random

number generator. The output of the generator is controlled by the full width at half
maximum ∆ = FWHMΩ/2

√
2·ln2, j = 1, 2, . . . , MC is the index of MCM realizations and

MC is the maximum number of MCM realizations.
The interaction energies between transition moments of the pigments Jnm were esti-

mated in the dipole–dipole approximation:

Jnm =
1

4πε0ε

(
(dndm)

|rnm|3
− 3(dnrnm)(dmrnm)

|rnm|5

)
(6)

where ε is the dielectric constant, an effective parameter, which is used for the spectra
fitting to tune Jnm energies and ε0 is the dielectric permittivity of classical vacuum. The
dipole–dipole approximation works nicely when rnm > 10 Å. This condition is satisfied
for all cofactors in PSIIRC except the D1–D2 special pair (Figure 1). J12 ≡ JD1D2 can be
calculated by another method such as the extended dipole–dipole approximation [45],
however, for the purposes of our study we will use the results of other studies [23,46,47],
and consider J12 = 150 cm−1 in the modeling.

Thus, H j
ext is diagonalized for each step of MCM, the calculated spectra (1–4) are saved

every time and finally, when MCM cycle is finished, the resulting spectra are averaged over
all realizations.

σMC
abs (ω) ≈ ω

π ∑N
α

d2
αRe

∫ ∞

0
dtei(ω−εα)te−gαααα(t)e−0.5Kααt

∆ (7)

σMC
CD (ω) ≈ ω

π ∑N
α

RαRe
∫ ∞

0
dtei(ω−εα)te−gαααα(t)e−0.5Kααt

∆ (8)

σMC
LD (ω) ≈ ω

π ∑N
α

[
dz2

α −
1
2

(
dx2

α + dy2

α

)]
Re
∫ ∞

0
dtei(ω−εα)te−gαααα(t)e−0.5Kααt

∆ (9)

σMC
f l (ω) ≈ ω3

π ∑N
α

(ndα)
2eεα β

∑n eεα β
Re
∫ ∞

0
dtei(ω−εα+2λαααα)te−gαααα

∗(t)e−0.5Kααt
∆ (10)

where . . .∆ denotes the MCM average over MC realizations.

3. Differential Evolution

To fit the PSIIRC linear spectroscopy data, the classical version of DE was used [31].
The developed software, together with the spectra simulation procedures, contains the
implementation of four steps of DE data processing: (1) initialization of the parameter
population, (2) creating the mutation vectors, (3) crossover and (4) parameters selection for
the new generation [40,41]. Previously, DE has been successfully applied to fit the linear
optical response of monomeric Chls, bacteriochlorophylls and carotenoids in different
solvents. As the result, two strategies, DE/rand-to-best/1/exp and DE/best/1/bin, have
shown high performance and convergence rates. The tests of DE with artificially created
experimental data of PSIIRC without inhomogeneous broadening revealed the same ef-
fectiveness for these two strategies. Being tested for the ranges of the weighting factor
F = {0.50 : 0.05 : 0.85} and the crossover probability Cr = {0.80 : 0.05 : 1.00}, it was found
that DE/rand-to-best/1/exp with F = 0.55 and Cr = 0.9 [40] are the optimal parameters to
fit PSIIRC data. We used the same settings of DE to conduct the fitting with inhomogeneous
broadening.

The cost value of a mutant vector xg
i for a current generation g of DE is estimated

as follows:
χ2 =

1
4N ∑4

spec ∑N
n=1

[
Ispec(ωn)− σMC

spec

(
ωn, xg

i

)]2
(11)
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where spec is the index of PSIIRC spectra: spec = {abs, CD, LD, f l}, Ispec(ωn) are the

arrays of either artificially created or measured experimental data and σMC
spec

(
ωn, xg

i

)
are

the simulated spectra by evaluating Equations (7)–(10).

4. Results
4.1. Inhomogeneous Broadening of a Chl Dimer

To demonstrate the effect of inhomogeneous broadening on a system of coupling
pigments, let us consider a dimer of two Chls spaced within about 10Å (Figure 1A). Chls
have two pronounced absorption bands in the visible range: the high-energy Soret band
(Bx, By electronic transitions) at 350–450 nm, and the Qy transition at 600–700 nm. We will
focus on the optical response of the Qy transition, thus, to construct the eigenstates and the
eigenvalues of the dimer, the 2 × 2 Hamiltonian (5) will be used with Ω1 = 14, 900.0 cm−1,
Ω2 = 15, 200.0 cm−1 and J12 = 200 cm−1. The lineshape function gαααα(t) of a monomeric
Chl is calculated at 77 K, applying the spectral density taken from [40]. The effective length
of the Qy transition dipole moment is 0.9 Å. The time and frequency scales consist of
211 = 2048 points.

The importance of correct averaging when using MCM is shown by producing a series
of inhomogeneously broadened dimer spectra; FWHMΩ was taken to be 300 cm−1 to
generate δ

j
n fluctuations for diagonal elements of the Hamiltonian in Equation (5). The

simulated spectra are depicted in Figure 1B–E for four values of MC: 10, 100, 500, and 5000.

4.2. PSIIRC Linear Optics Simulations with Different MC

The example of dimer absorption modeling clearly shows how important it is to
understand from what value of MC the obtained spectra can be considered sufficiently
averaged. Naturally, the extreme high MC provides proper averaging; however, it is always
better to know the moment when we can stop MCM without loss of accuracy to save
computational time.

Before starting the fitting of the measured experimental data, preliminary simulations
of PSIIRC optical properties were made in order to estimate MC. We used the parameters of
Table A1 from [40] to create the 8 × 8 exciton Hamiltonian, Qy electron transition energies
Ωn for each PSIIRC cofactor and Jnm interaction energies in the dipole–dipole approxima-
tion. The absorption profile of monomeric pigments was calculated in the same way as for
the Chl dimer. We used the following set of MC to evaluate Equations (7)–(10): 100, 200,
500, 1000, 2000, 5000 and 10,000. Fluctuations of the diagonal elements of the Hamiltonian
were estimated for FWHMΩ = 180 cm−1. For each MC, linear spectra were simulated
seven times and the differences between absorption spectra were calculated according

to formula: θMC
qr = 1

N ∑N
n=1

[
σMC

abs (ωn)q − σMC
abs (ωn)r

]2
, where N = 2048, q, r = [1, 2, . . . , 7]

are the indexes enumerating PSIIRC spectra for each MC. The results of the simulation
are listed in Table A1. Graphic visualization of θMC

qr as well as histograms of fluctuation

parameter distribution δ
j
1 for the first pigment in PSIIRC are represented in Figure 2. The

differences between spectra calculated at MC = 10,000 and the other six values of MC are
shown in Figure 3.
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5000 (L), 10,000 (N). Color bars reflect the variations of χ2.
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4.3. Tests of DE with the Artificial Experimental Data

Considering the results described in the previous section, we can conclude that MCM
with MC = 10,000 gives the “smoothest” spectra. However, such a number of MCM
realizations is unacceptable for DE optimization, since the amount of trial function calls is
in the thousands and to complete the fitting in a reasonable time, MC has to be reduced. To
carry out a simple test of the DE dependence on MCM, we set PSIIRC spectra simulated
at MC = 10,000 as the target functions for absorption, fluorescence, circular and linear
dichroism. To test the convergence of DE, optimization was run for one and two free
parameters of PSIIRC quantum model; all the other model parameters were fixed. In both
cases (one and two free parameters) DE was run five times for the following values of MC:
100, 200, 500, 1000, and 2000. The results of the tests are collected in Tables A2 and A3.

4.4. Tests of DE with the Real Experimental Data

Based on the DE tests with artificial experimental data, MC = 500 was chosen to run the
fitting of real experimental data. PSIIRC linear spectroscopy was taken from two sources:
absorption and steady-state fluorescence spectra are from [48] and dichroism spectra are
from [25]. The total number of free parameters of the PSIIRC exciton model was eleven:
eight electron transition energies Ωn, the dielectric constant ε to scale the Chl-Chl coupling
energies (6), the full width at half maximum of inhomogeneous broadening FWHMΩ, and
the D1–D2 special pair coupling J12. Some features of the applied PSIIRC exciton model
and DE settings can be found in [40]. DE was run ten times; the best results are presented
in Figure 4.
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5. Discussion

By analyzing and comparing the quantum models of the simple Chl dimer and rather
more complex proteins such as PSIIRC, it becomes clear that the required number of MCM
realizations depends precisely on the relation between the parameters of the exciton model.
The dimer of Chls, used as an example, has ∆Ω = Ω2 −Ω1 = 300 cm−1, J12 = 200 cm−1;
the corresponding eigenvalues εα are 14,800 cm−1 and 15,300 cm−1. Such eigenvalues give
a gap of 500 cm−1 which is greater than FWHMΩ = 300 cm−1. As a result, absorption
bands of the dimer are well separated in the spectrum (Figure 1B–E). This means that if
we want to achieve a smooth quality spectrum, it is necessary to set a large value for MC.
For a simple model such as a dimer, there is no problem with running optimization with
thousands of MCM realizations, but for a system of many pigments, especially with sparse
absorption bands, this may already be problematic.

Potential exciton models of PSIIRC have already been discussed many times [19,23,46,47,49].
Characteristic features of PSIIRC include small differences between transition energies of cofactors
∆Ωnm ∈ (10; 100) cm−1, coupling energies Jnm ∈ (10; 200) cm−1 and FWHMΩ ∈ (100; 200) cm−1.
This exciton configuration leads to an optical response in which the exciton states are either close
together, or overlap with each other. The resulting spectra look relatively broad and featureless,
however, at lower temperatures some peculiarities do emerge (Figure 1F). It is obvious that fitting
experimental data with such models is hardly possible without optimization, however, much of
the analysis has been carried out by hand.

DE seems to be a promising solution to fit experimental data of PPC. Studies of the
optical properties of monomeric photosynthetic pigments in different solvents with DE
have proved to be quite optimistic [41,42]. To proceed with PSIIRC modeling considering
MCM for inhomogeneous broadening, the effect of MC on the averaged spectra has to be
investigated. Generally, with increasing MC, the perfection of simulated data increases; the
higher MC value, the better. However, any experimental data have their limits of perfection,
which are determined by errors of measurements and other physical effects that are not
included in the mathematical description of the model. Therefore, it is clear that, to analyze
the experimental data, there must be an optimal value of MC which will speed up MCM
and, on the other hand, will provide enough perfection for the simulated spectra to match
the quality of the measured ones.

The simulation of PSIIRC spectra was carried out for MC equal to 100, 200, 500, 1000,
2000, 5000 and 10,000. To estimate the difference in the optical response, without loss of
generality, only absorption spectra were used. The results are shown in Figure 2. Plots A, C,
E, G, I, K and M of Figure 2 present an example of the statistical distribution of δ

j
n for ChlD1

of the special pair. Histograms for 2000, 5000 and 10,000 MCM realizations demonstrate
symmetrical Gaussian profiles, while distributions with smaller MCs have asymmetry and
exhibit a clear lack of sampling. The differences between spectra with the same MC stored
in the θMC

qr matrix are shown in plots B, D, F, H, J, L and N of the same figure. Table A1
contains θMC

qr for all MC and also the median and worst differences. One can observe
an unambiguous dependence: with an increase in realizations, their median and worst
values decrease.

For 10,000 realizations, the worst θ10000
qr does not exceed -6 orders of magnitude, which

suggests that this amount of MC will be enough. At the same time, when MC = 5000,
although there are predominantly -6 orders of magnitude, this does not give an exact
guarantee of the required simulation results.

It is interesting to compare the spectra simulated with different MC. Using spectra with
MC = 10,000 as a reference, we calculated the differences according to

ηMC
qr = 1

N ∑N
n=1

[
σMC

abs (ωn)q − σ10000
abs (ωn)r

]2
. The results are shown in Figure 3. If MC = 1000,

2000 and 5000, the order of ηMC
qr is about -5 and we can consider these PSIIRC spectra to be

very close to those simulated at MC = 10,000, while MC = 100 and 200 give large differences
between spectra.
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Before the fitting of measured data, we conducted preliminary DE runs with spectra
calculated at MC = 10,000 as target functions. To obtain a definitive answer to the question
of which value of MC is preferable when calculating the optical response, we ran two
datasets with one and two free parameters. Moreover, FWHMΩ is a fixed parameter in the
first dataset and free in the second one. The results for one free parameter are in Table A2;
χ2 decreases with an increasing number of MCM realizations and reaches -6 orders of
magnitude at all five runs at MC = 500. Similar values for χ2 were obtained for modeling
with two free parameters (Table A3). FWHMΩ gradually tends from 175 (MC = 100) to 182
(MC = 2000), which is closer to 180. The standard deviation of FWHMΩ also decreases
rapidly as MC realizations increase. At the same time, it is difficult to say about the
unambiguous dependence of the standard deviation of dielectric constant ε on MC for
both cases. This can be explained by the fact that its standard deviation is initially small,
and these meanings of the standard deviations are a consequence of stochastic processes.
Therefore, balancing between reasonable computational time and the quality of simulated
spectra, we decided to take MC = 500 as optimum to fit the real data.

The best results of the fitting of PSIIRC linear spectroscopy data after ten runs of DE
are presented in Figure 4. Eleven free parameters of the exciton model were considered for
simulation. The overall quality of the fit can be regarded as satisfactory; however, circular
and linear dichroism definitely require additional improvement (Figure 4C,D). First of all, it
should be stressed that to achieve better fitting, at least another three free parameters must
be added to the current set of eleven. These are the frequency, the Huang–Rhys factor and
the damping factor, {ωlow, Slow, γlow} of the lowest frequency mode used to calculate the
spectral density of a pigment [40–42]. At the moment, there are some technical problems
preventing such improvement of our software and considering these three parameters in
the fitting, but this is our immediate goal to enhance computational procedures.

χ2 decreased quite fast in the first ten generations, and then there was a slow asymp-
totic stagnation. Similar behavior of χ2 was observed in the modeling of monomeric
pigments’ absorption in solvents [41,42]. The maximum number of generations was set to
100. This definitely has to be increased up to 300 or 400 [40], but for the first attempt at
running the fitting, it was decided to use 100.

Interestingly enough, the J12, the coupling between special pair Chls, can be estimated
without any optimization simply using physical theories describing the interaction of
electronic excited states [45]. Aside from the magnitude of J12, the sign is also important
(positive–repulsion, negative–attraction). Calculations for the D1–D2 dimer give the posi-
tive sign. On the other hand, J12 was a free parameter in the fitting with initial boundaries
[−200; 200]. As a result, the best convergence was exclusively achieved for the positive
values of J12. Thus, we can state that DE optimization is sensitive to the exciton model
of PSIIRC.

To summarize the work carried out, the combined use of MCM and DE optimization
is feasible and the first runs of PPC fitting optical spectroscopy have been successful. It is
clear that the software needs further improvements as well as additional research related
to its performance. In the future, the main upgrade of the computational procedures will
be to add the routines for simulation of PPC nonlinear optical experiments.

6. Conclusions

Unravelling the mechanisms of the primary physical processes in PPC is directly
related to the creation of quantum models and the fitting of spectroscopic data. The
structure of PPCs and arrangement of pigments in PPCs are such that the application of
rigorous analytical solutions to simulate the optical response is not possible. Thus, using
the semiclassical theories together with optimization algorithms is an ideal solution for
this kind of problem. We have developed special software that allows the linear optical
response, namely absorption, steady-state fluorescence, circular and linear dichroism, to be
calculated within the framework of the multimode Brownian oscillator model as well as
the exciton theory of electronic excitation migration in PPCs. Moreover, we implemented
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the classical DE algorithm to be able to fit the experimental data of PPC. In this study,
we investigated the effect of MCM procedure on the convergence of DE by performing
simulations of PSIIRC optical response at different MCM realizations. The dependence of
the quality of PSIIRC simulated spectra on the exciton model parameters and the number
of MCM realizations was determined and the optimal settings of computational procedures
were found. Applying the results of preliminary model calculations, we fitted the linear
spectroscopy of PSIIRC measured at low temperature (77 K). The obtained models were
discussed in the context of existing theories about primary processes in the PSIIRC.
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Appendix A

Table A1. The difference between PSIIRC absorption spectra calculated with different numbers of
MCM realizations (MC).

MC

100 200 500 1000 2000 5000 10,000

θ12 5.878 × 10−5 1.007 × 10−5 1.705 × 10−4 9.156 × 10−6 7.086 × 10−6 2.296 × 10−6 4.512 × 10−6

θ13 1.735 × 10−4 4.735 × 10−5 8.819 × 10−6 2.210 × 10−6 2.191 × 10−6 1.354 × 10−6 5.398 × 10−6

θ14 2.593 × 10−4 3.472 × 10−5 2.900 × 10−5 2.174 × 10−6 6.213 × 10−6 5.592 × 10−6 2.846 × 10−7

θ15 8.588 × 10−5 3.849 × 10−5 8.315 × 10−5 3.180 × 10−5 1.502 × 10−5 2.316 × 10−5 1.123 × 10−6

θ16 4.609 × 10−5 9.384 × 10−6 7.330 × 10−5 2.073 × 10−5 2.937 × 10−5 2.994 × 10−6 1.369 × 10−6

θ17 2.837 × 10−4 1.116 × 10−4 7.669 × 10−6 1.367 × 10−6 3.467 × 10−6 6.566 × 10−6 7.066 × 10−7

θ23 1.104 × 10−4 5.765 × 10−5 1.094 × 10−4 1.350 × 10−5 1.109 × 10−5 5.462 × 10−7 6.701 × 10−8

θ24 1.692 × 10−4 1.655 × 10−5 7.409 × 10−5 1.295 × 10−5 5.562 × 10−7 1.055 × 10−6 3.855 × 10−6

θ25 5.574 × 10−5 4.425 × 10−5 2.033 × 10−5 4.994 × 10−5 7.054 × 10−6 1.166 × 10−5 1.344 × 10−6

θ26 4.243 × 10−5 1.643 × 10−5 3.334 × 10−5 4.267 × 10−6 9.901 × 10−6 5.388 × 10−7 1.723 × 10−6

θ27 1.416 × 10−4 1.024 × 10−4 1.602 × 10−4 5.222 × 10−6 1.038 × 10−5 1.721 × 10−6 5.808 × 10−6

θ34 4.251 × 10−5 9.674 × 10−5 7.646 × 10−6 3.613 × 10−6 8.621 × 10−6 2.320 × 10−6 4.649 × 10−6

θ35 1.136 × 10−4 1.268 × 10−4 4.432 × 10−5 2.523 × 10−5 2.595 × 10−5 1.580 × 10−5 1.846 × 10−6

θ36 6.834 × 10−5 2.848 × 10−5 3.464 × 10−5 2.657 × 10−5 4.034 × 10−5 1.135 × 10−6 2.298 × 10−6

θ37 1.078 × 10−4 2.630 × 10−4 1.281 × 10−5 5.751 × 10−6 8.088 × 10−7 3.563 × 10−6 6.761 × 10−6

θ45 9.993 × 10−5 2.947 × 10−5 2.570 × 10−5 3.010 × 10−5 1.027 × 10−5 6.373 × 10−6 1.206 × 10−6

θ46 1.039 × 10−4 3.378 × 10−5 1.446 × 10−5 2.235 × 10−5 1.362 × 10−5 9.567 × 10−7 9.135 × 10−7

θ47 3.923 × 10−5 6.198 × 10−5 2.629 × 10−5 2.844 × 10−6 8.024 × 10−6 4.222 × 10−7 4.607 × 10−7

θ56 2.837 × 10−5 3.834 × 10−5 1.673 × 10−5 7.578 × 10−5 5.330 × 10−6 1.118 × 10−5 7.340 × 10−7

θ57 8.315 × 10−5 3.498 × 10−5 7.182 × 10−5 3.787 × 10−5 2.732 × 10−5 5.267 × 10−6 2.463 × 10−6

θ67 1.263 × 10−4 1.225 × 10−4 6.703 × 10−5 1.354 × 10−5 3.950 × 10−5 1.992 × 10−6 1.389 × 10−6

Median 9.993 × 10−5 3.849 × 10−5 3.334 × 10−5 1.350 × 10−5 9.901 × 10−6 2.320 × 10−6 1.389 × 10−6

Worst 2.837 × 10−4 2.630 × 10−4 1.705 × 10−4 7.578 × 10−5 4.034 × 10−5 2.316 × 10−5 6.761 × 10−6

https://rscf.ru/en/project/22-21-00905/
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Table A2. Dependence of the quality of the DE fitting on MC (only one free parameter). Results of
the PSIIRC linear spectroscopy fitting obtained after 5 runs of DE are shown for five different MC
values. FWHMΩ = 180 cm−1. The target function is the artificially created experimental data with
MC = 10,000.

MC

100 200 500 1000 2000

ε χ2 ε χ2 ε χ2 ε χ2 ε χ2

Run1 0.979 1.521 × 10−5 0.982 9.372 × 10−6 1.010 3.984 × 10−6 1.000 2.411 × 10−6 1.015 2.308 × 10−6

Run2 1.071 2.041 × 10−5 1.028 1.247 × 10−5 1.073 6.840 × 10−6 0.981 3.486 × 10−6 0.999 2.363 × 10−6

Run3 0.973 2.305 × 10−5 1.000 8.911 × 10−6 0.964 5.889 × 10−6 0.986 2.661 × 10−6 0.981 2.381 × 10−6

Run4 1.053 1.700 × 10−5 0.968 1.165 × 10−5 0.967 3.419 × 10−6 0.990 2.323 × 10−6 0.981 1.957 × 10−6

Run5 1.024 1.408 × 10−5 0.971 9.761 × 10−6 0.956 4.550 × 10−6 0.992 2.577 × 10−6 1.021 2.119 × 10−6

Mean 1.020 1.795 × 10−5 0.990 1.043 × 10−5 0.994 4.936 × 10−6 0.990 2.692 × 10−6 0.999 2.226 × 10−6

SD 0.044 3.723 × 10−6 0.025 1.543 × 10−6 0.049 1.405 × 10−6 0.007 4.636 × 10−7 0.019 1.826 × 10−7

Table A3. Dependence of the quality of the DE fitting on MC (two free parameters). Results of the
PSIIRC linear spectroscopy fitting obtained after 5 runs of DE are shown for five different MC values.
The target function is the artificially created experimental data with MC = 10,000.

MC

100 200 500 1000 2000

ε FWHMΩ χ2 ε FWHMΩ χ2 ε FWHMΩ χ2 ε FWHMΩ χ2 ε FWHMΩ χ2

Run1 0.974 190.571 1.538 × 10−5 1.022 179.220 9.812 × 10−6 0.999 182.537 3.698 × 10−6 0.981 181.612 2.853 × 10−6 0.962 182.948 1.271 × 10−6

Run2 1.125 164.085 2.660 × 10−5 1.057 178.262 1.007 × 10−5 1.019 176.568 4.902 × 10−6 0.957 184.991 3.766 × 10−6 0.966 181.824 1.716 × 10−6

Run3 1.053 179.030 2.188 × 10−5 1.011 183.312 7.384 × 10−6 0.997 177.491 3.476 × 10−6 0.989 176.975 2.682 × 10−6 0.977 182.979 1.674 × 10−6

Run4 1.038 172.523 1.778 × 10−5 1.001 162.995 1.398 × 10−5 1.012 174.119 4.487 × 10−6 0.999 180.126 3.083 × 10−6 0.995 182.001 1.892 × 10−6

Run5 1.034 168.148 1.762 × 10−5 0.982 178.383 1.271 × 10−5 1.021 180.565 5.057 × 10−6 0.966 183.647 2.443 × 10−6 0.986 182.384 8.869 × 10−7

Mean 1.045 174.871 1.985 × 10−5 1.015 176.434 1.079 × 10−5 1.010 178.256 4.324 × 10−6 0.978 181.470 2.695 × 10−6 0.977 182.427 1.488 × 10−6

SD 0.054 10.378 4.442 × 10−6 0.028 7.791 2.595 × 10−6 0.011 3.324 7.087 × 10−7 0.017 3.129 5.051 × 10−7 0.014 0.530 4.057 × 10−7
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