Modifications of Flower Pollination, Teacher-Learner and Firefly Algorithms for Solving Multiextremal Optimization Problems †
Abstract
:1. Introduction
1.1. Background and Related Work
1.2. Question and Contributions
1.3. The Global Optimization Problem
2. Description of Proposed Algorithms
2.1. Algorithm Based on Flower Pollination and Local Search Methods
2.1.1. Parameters
- —number of agents;
- – number of iterations of the local search method;
- —biodiversity factor;
- —switching probability, it puts control on global and local pollination (search) procedures.
2.1.2. Step-by-Step Algorithm
Algorithm 1 FP |
The iteration is complete. |
2.2. Algorithm Based on Teacher-Learner and Local Descent Methods
2.2.1. Parameters
- —number of students;
- —number of iterations of the local search method;
- —biodiversity factor.
2.2.2. Step-by-Step Algorithm
Algorithm 2 TL |
The iteration is complete. |
2.3. Algorithm Based on Firefly and Local Search Methods
2.3.1. Parameters
- —number of fireflies;
- —number of iterations of the local search method;
- —biodiversity factor;
- —mutation coefficient;
- —attraction ratio;
- —light absorption factor;
- —power rate.
2.3.2. Step-by-Step Algorithm
Algorithm 3 FA |
The iteration is complete. |
3. Numerical Study of Developed Algorithms
3.1. The Griewank Problem
3.2. The Rastrigin Problem
3.3. The Schwefel Problem
3.4. The Ackley Problem
3.5. The Sutton-Chen Problem
3.6. The Parametric Identification Problem for the Nonlinear Dynamic Model
3.7. Statistical Testing of Proposed Algorithms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Floudas, C.A.; Pardalos, P.M. Encyclopedia of Optimization; Springer: New York, NY, USA, 2009. [Google Scholar]
- Karpenko, A.P. Modern Search Optimization Algorithms. Algorithms Inspired by Nature; BMSTU Publishing: Moscow, Russia, 2014. (In Russian) [Google Scholar]
- Ashlock, D. Evolutionary Computation for Modeling and Optimization; Springer: New York, NY, USA, 2006. [Google Scholar]
- Back, T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [Google Scholar] [CrossRef]
- Price, K.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization; Springer: New York, NY, USA, 2006. [Google Scholar]
- Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Neri, F.; Tirronen, V. Recent advances in differential evolution: A survey and experimental analysis. Artif. Intell. Rev. 2010, 33, 61–106. [Google Scholar] [CrossRef]
- Xing, B.; Gao, W.J. Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Sopov, E. Multi-strategy genetic algorithm for multimodal optimization. In Proceedings of the 7th International Joint Conference on Computational Intelligence (IJCCI), Lisbon, Portugal, 12–14 November 2015; pp. 55–63. [Google Scholar]
- Semenkin, E.; Semenkina, M. Self-configuring genetic algorithm with modified uniform crossover operator. Adv. Swarm Intelligence. Lect. Notes Comput. Sci. 2012, 7331, 414–421. [Google Scholar]
- Das, S.; Maity, S.; Qub, B.-Y.; Suganthan, P.N. Real-parameter evolutionary multimodal optimization: A survey of the state-of-the art. Swarm Evol. Comput. 2011, 1, 71–88. [Google Scholar] [CrossRef]
- Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Frome, UK, 2010. [Google Scholar]
- Yang, X.S. Flower pollination algorithm for global optimization. In Proceedings of the International Conference on Unconventional Computing and Natural Computation (UCNC 2012), Orléan, France, 3–7 September 2012; pp. 240–249. [Google Scholar]
- Yang, X.S. Firefly algorithm, stochastic test functions and design optimization. Int. J. Bio-Inspired Comput. 2010, 2, 78–84. [Google Scholar] [CrossRef]
- Yang, X.S.; He, X. Firefly algorithm: Recent advances and applications. Int. J. Swarm Intell. 2013, 1, 36–50. [Google Scholar] [CrossRef]
- Farahani, S.M.; Abshouri, A.A.; Nasiri, B.; Meybodi, M.R. A Gaussian firefly algorithm. Int. J. Mach. Learn. Comput. 2011, 1, 448–453. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Yang, X.S.; Talatahari, S.; Alavi, A.H. Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 2013, 1, 89–98. [Google Scholar] [CrossRef]
- Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [Google Scholar] [CrossRef]
- Liu, Y.; Ling, X.; Shi, Z.; Lv, M.; Fang, J.; Zhang, L. A survey on particle swarm optimization algorithms for multimodal function optimization. J. Softw. 2011, 6, 2449–2455. [Google Scholar] [CrossRef] [Green Version]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput.-Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Rao, R.V.; Patel, V. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. Int. J. Ind. Eng. Comput. 2012, 3, 535–560. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Nasuto, S.; Bishop, M. Convergence analysis of stochastic diffusion search. Parallel Algorithms Appl. 1999, 14, 89–107. [Google Scholar] [CrossRef]
- Brooks, R.L. The Fundamentals of Atomic and Molecular Physics; Springer: New York, NY, USA, 2013. [Google Scholar]
- Doye, J.P.K.; Wales, D.J. Structural consequences of the range of the interatomic potential a menagerie of clusters. J. Chem. Soc. Faraday Trans 1997, 93, 4233–4243. [Google Scholar] [CrossRef]
- The Cambridge Energy Landscape Database. Available online: http://www.wales.ch.cam.ac.uk/CCD.html (accessed on 15 August 2022).
- Cruz, S.M.A.; Marques, J.M.C.; Pereira, F.B. Improved evolutionary algorithm for the global optimization of clusters with competing attractive and repulsive interactions. J. Chem. Phys. 2016, 145, 154109. [Google Scholar] [CrossRef]
- Yuan, Y. A review of trust region algorithms for optimization. Iciam 2000, 99, 271–282. [Google Scholar]
- Yuan, Y. Recent advances in trust region algorithms. Math. Program. 2015, 151, 249–281. [Google Scholar] [CrossRef]
- Gornov, A.Y.; Anikin, A.S.; Zarodnyuk, T.S.; Sorokovikov, P.S. Modified trust region algorithm based on the main diagonal approximation of the Hessian matrix for solving optimal control problems. Autom. Remote Control 2022, 10, 122–133. (In Russian) [Google Scholar]
- Ding, K.; Tan, Y. CuROB: A GPU-based test suit for real-parameter optimization. In Proceedings of the Advances in Swarm Intelligence: 5th International Conference. Part II, Hefei, China, 17–20 October 2014; pp. 66–78. [Google Scholar]
- Rastrigin, L.A. Extreme Control Systems; Nauka: Moscow, Russia, 1974. (In Russian) [Google Scholar]
- Sorokovikov, P.S.; Gornov, A.Y. Modifications of genetic, biogeography and particle swarm algorithms for solving multiextremal optimization problems. In Proceedings of the 10th International Workshop on Mathematical Models and their Applications (IWMMA 2021), Krasnoyarsk, Russia, 16–18 November 2021. in print. [Google Scholar]
- Doye, J.P.K.; Wales, D.J. Global minima for transition metal clusters described by Sutton–Chen potentials. New J. Chem. 1998, 22, 733–744. [Google Scholar] [CrossRef] [Green Version]
- Todd, B.D.; Lynden-Bell, R.M. Surface and bulk properties of metals modelled with Sutton-Chen potentials. Surf. Sci. 1993, 281, 191–206. [Google Scholar] [CrossRef]
- Liem, S.Y.; Chan, K.Y. Simulation study of platinum adsorption on graphite using the Sutton-Chen potential. Surf. Sci. 1995, 328, 119–128. [Google Scholar] [CrossRef]
- Ozgen, S.; Duruk, E. Molecular dynamics simulation of solidification kinetics of aluminium using Sutton–Chen version of EAM. Mater. Lett. 2004, 58, 1071–1075. [Google Scholar] [CrossRef]
- Sorokovikov, P.S.; Gornov, A.Y.; Anikin, A.S. Computational technology for the study of atomic-molecular Morse clusters of extremely large dimensions. IOP Conf. Ser. Mater. Sci. Eng. 2020, 734, 012092. [Google Scholar] [CrossRef]
- Wales, D.J.; Doye, J.P.K. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 1997, 101, 5111–5116. [Google Scholar] [CrossRef]
- Polyak, B.T. Minimization of nonsmooth functionals. USSR Comput. Math. Math. Phys. 1969, 9, 14–29. [Google Scholar] [CrossRef]
- Gornov, A.Y.; Anikin, A.S. Modification of the Eremin-Polyak method for multivariate optimization problems. In Proceedings of the Conference “Lyapunov Readings”, Irkutsk, Russia, 30 November–2 December 2015; p. 20. (In Russian). [Google Scholar]
- Gornov, A.Y. Raider method for quasi-separable problems of unconstrained optimization. In Proceedings of the Conference “Lyapunov Readings”, Irkutsk, Russia, 3–7 December 2018; p. 28. (In Russian). [Google Scholar]
- Gornov, A.Y.; Andrianov, A.N.; Anikin, A.S. Algorithms for the solution of huge quasiseparable optimization problems. In Proceedings of the International workshop “Situational management, intellectual, agent-based computing and cybersecurity in critical infrastructures”, Irkutsk, Russia, 11–16 March 2016; p. 76. [Google Scholar]
- Levin, A.Y. On a minimization algorithm for convex functions. Rep. Acad. Sci. USSR 1965, 160, 1244–1247. (In Russian) [Google Scholar]
- Sorokovikov, P.S.; Gornov, A.Y.; Anikin, A.S. Computational technology for studying atomic-molecular Sutton-Chen clusters of extremely large dimensions. In Proceedings of the 8th International Conference on Systems Analysis and Information Technologies, Irkutsk, Russia, 8–14 July 2019; pp. 86–94. (In Russian). [Google Scholar]
Algorithm | Values of Parameters |
---|---|
FP (v.1) | |
FP (v.2) | |
TL (v.1) | |
TL (v.2) | |
FA (v.1) | |
FA (v.2) |
Algorithm | Griewank | Rastrigin | Schwefel | Ackley | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
FP (v.1) | 343.92 | 28.532 | 550.21 | 28.974 | 11,892.6 | 648.79 | 15.532 | 0.2518 |
FP (v.2) | 0.0496 | 0.0306 | 2.9473 | 1.5561 | 1933.58 | 106.95 | 4.3835 | 0.8977 |
TL (v.1) | 25.834 | 12.927 | 280.16 | 27.019 | 23,524.7 | 6213.6 | 7.1138 | 1.1376 |
TL (v.2) | 0.0446 | 0.0255 | 0.0433 | 0.0292 | 7808.61 | 2069.5 | 0.7892 | 0.2384 |
FA (v.1) | 205.35 | 17.120 | 818.99 | 69.126 | 21,146.8 | 942.92 | 15.872 | 0.9408 |
FA (v.2) | 11.713 | 2.4140 | 265.91 | 73.013 | 3519.01 | 157.43 | 6.2518 | 1.8042 |
GA (v.1) | 38.675 | 6.5504 | 191.98 | 18.622 | 5126.49 | 544.45 | 8.1085 | 0.5020 |
GA (v.2) | 0.0536 | 0.0262 | 0.0089 | 0.0055 | 808.215 | 91.187 | 0.4323 | 0.1315 |
BBO (v.1) | 36.248 | 5.1454 | 937.15 | 76.528 | 20,091.3 | 1201.3 | 10.998 | 0.5813 |
BBO (v.2) | 0.5953 | 0.5083 | 215.03 | 8.9858 | 3341.13 | 200.06 | 1.9491 | 0.5387 |
PSO (v.1) | 339.37 | 49.630 | 937.38 | 53.785 | 35,812.4 | 1218.7 | 15.201 | 0.5299 |
PSO (v.2) | 10.801 | 4.4535 | 269.85 | 6.2304 | 8948.39 | 304.70 | 4.1005 | 0.5175 |
Generator | Starter | Value | Starter | Value | Starter | Value |
---|---|---|---|---|---|---|
1 (LG) | Raider | −83,437.0434 | Dichotomy | −83,246.7618 | Polyak | −80,462.6233 |
2 (AG) | Raider | −83,321.4980 | Dichotomy | −83,247.6218 | Polyak | −80,383.5143 |
3 (GG) | Raider | −83,543.6279 | Dichotomy | −83,302.7432 | Polyak | −80,516.2512 |
4 (LAG) | Raider | −83,458.6975 | Dichotomy | −83,325.1594 | Polyak | −80,523.4218 |
5 (LGG) | Raider | −83,459.8748 | Dichotomy | −83,329.1129 | Polyak | −80,524.5373 |
6 (AGG) | Raider | −83,457.2522 | Dichotomy | −83,327.2542 | Polyak | −80,522.6132 |
7 (LAGG) | Raider | −83,552.3954 | Dichotomy | −83,429.4154 | Polyak | −80,653.2337 |
– | FP (v.1) | −65,293.1424 | TL (v.1) | −65,863.6213 | FA (v.1) | −64,571.3352 |
– | FP (v.2) | −78,652.3226 | TL (v.2) | −78,926.2372 | FA (v.2) | −77,734.5137 |
N | Value | N | Value | N | Value | N | Value |
---|---|---|---|---|---|---|---|
81 | −79,382.0486 | 86 | −84,502.6321 | 91 | −89,817.3875 | 96 | −95,046.4031 |
82 | −80,478.4711 | 87 | −85,627.6685 | 92 | −90,787.2961 | 97 | −96,121.8664 |
83 | −81,403.5270 | 88 | −86,607.6112 | 93 | −91,827.6375 | 98 | −97,165.4582 |
84 | −82,468.2286 | 89 | −87,689.9154 | 94 | −92,906.8617 | 99 | −98,222.4219 |
85 | −83,552.3954 | 90 | −88,776.5998 | 95 | −93,916.8247 | 100 | −99,273.6113 |
t | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|
34.2 | 32.7 | 28.4 | 28.5 | 28.7 | 28.8 | 31.5 | 32.8 | 34.6 | |
40.3 | 38.5 | 36.7 | 34.2 | 34.4 | 34.5 | 35.7 | 36.4 | 38.2 | |
36.5 | 32.8 | 29.6 | 27.2 | 25.7 | 25.1 | 25.3 | 25.8 | 26.4 |
Algorithm | Places in the Ranking of Algorithms on the Collection of Test Problems | |||||
---|---|---|---|---|---|---|
First | Second | Third | Fourth | Fifth | Sixth | |
GA (v.2) | 45.5% (10) | 22.7% (5) | 18.2% (4) | 13.6% (3) | 0.0% (0) | 0.0% (0) |
TL (v.2) | 27.3% (6) | 40.9% (9) | 13.6% (3) | 4.5% (1) | 9.1% (2) | 4.6% (1) |
FP (v.2) | 4.5% (1) | 18.2% (4) | 27.3% (6) | 9.1% (2) | 18.2% (4) | 22.7% (5) |
BBO (v.2) | 4.5% (1) | 13.6% (3) | 31.8% (7) | 36.4% (8) | 9.1% (2) | 4.6% (1) |
FA (v.2) | 13.6% (3) | 0.0% (0) | 4.5% (1) | 13.7% (3) | 40.9% (9) | 27.3% (6) |
PSO (v.2) | 4.5% (1) | 4.5% (1) | 4.6% (1) | 22.7% (5) | 22.8% (5) | 40.9% (9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorokovikov, P.; Gornov, A. Modifications of Flower Pollination, Teacher-Learner and Firefly Algorithms for Solving Multiextremal Optimization Problems. Algorithms 2022, 15, 359. https://doi.org/10.3390/a15100359
Sorokovikov P, Gornov A. Modifications of Flower Pollination, Teacher-Learner and Firefly Algorithms for Solving Multiextremal Optimization Problems. Algorithms. 2022; 15(10):359. https://doi.org/10.3390/a15100359
Chicago/Turabian StyleSorokovikov, Pavel, and Alexander Gornov. 2022. "Modifications of Flower Pollination, Teacher-Learner and Firefly Algorithms for Solving Multiextremal Optimization Problems" Algorithms 15, no. 10: 359. https://doi.org/10.3390/a15100359
APA StyleSorokovikov, P., & Gornov, A. (2022). Modifications of Flower Pollination, Teacher-Learner and Firefly Algorithms for Solving Multiextremal Optimization Problems. Algorithms, 15(10), 359. https://doi.org/10.3390/a15100359