Discrete Element Method Modeling of the Rheological Properties of Coke/Pitch Mixtures
Abstract
:1. Introduction
2. Theory
3. Experimental
Numerical Method
4. Results and Discussion
4.1. DSR of Pitch and Model Verification
4.2. DEM Simulation of Coke/Pitch Pastes
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mannwller, U. Anodes for the Aluminium Industry; R & D Carbon Ltd.: Sierre, Switzerland, 1995. [Google Scholar]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Apostolou, K.; Hrymak, A.N. Discrete element simulation of liquid-particle flows. Comput. Chem. Eng. 2008, 32, 841–856. [Google Scholar] [CrossRef]
- Guo, Y.; Curtis, J.S. Discrete Element Method Simulations for Complex Granular Flows. Annu. Rev. Fluid Mech. 2015, 47, 21–46. [Google Scholar] [CrossRef]
- Marketos, G.; Bolton, M.D. Compaction bands simulated in Discrete Element Models. J. Struct. Geol. 2009, 31, 479–490. [Google Scholar] [CrossRef]
- Harthong, B.; Jérier, J.F.; Dorémus, P.; Imbault, D.; Donzé, F.V. Modeling of high-density compaction of granular materials by the Discrete Element Method. Int. J. Solids Struct. 2009, 46, 3357–3364. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Q.; Jina, F.; Liu, Q. Studies on structural and mechanical properties under isostatic compression with large-scale discrete element simulations. Acta Mech. Solida Sin. 2014, 27, 129–136. [Google Scholar] [CrossRef]
- Fenga, H.; Pettinari, M.; Hofko, B.; Stang, H. Study of the internal mechanical response of an asphalt mixture by 3D discrete element modeling. Constr. Build. Mat. 2015, 77, 187–196. [Google Scholar] [CrossRef]
- Dondi, G.; Simone, A.; Vignali, V.; Manganelli, G. Discrete particle element analysis of aggregate interaction in granular mixes for asphalt: Combined DEM and experimental study. In 7th RILEM International Conference on Cracking in Pavements; Springer: Berlin, Germany, 2012. [Google Scholar]
- Khattak, M.J.; Khattab, A.; Rizvi, H.R.; Das, S. Imaged-based discrete element modeling of hot mix asphalt mixtures. Mater. Struct. 2015, 48, 2417–2430. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, D.; Zhang, Y.; Zhao, Y.; Huang, X. Effect of air voids on the high-temperature creep behavior of asphalt mixture based on three-dimensional discrete element modeling. Mater. Des. 2016, 89, 304–313. [Google Scholar] [CrossRef]
- Vignali, V.; Mazzotta, F.; Sangiorgi, C.; Simone, A.; Lantieri, C.; Dondi, G. Rheological and 3D DEM characterization of potential rutting of cold bituminous mastics. Constr. Build. Mater. 2014, 73, 339–349. [Google Scholar] [CrossRef]
- Dondi, G.; Vignali, V.; Pettinari, M.; Mazzotta, F.; Simone, A.; Sangiorgi, C. Modeling the DSR complex shear modulus of asphalt binder using 3D discrete element approach. Constr. Build. Mater. 2014, 54, 236–246. [Google Scholar] [CrossRef]
- Zelelew, H.M. Simulation of the Permanent Deformation of Asphalt Concrete Mixtures Using Discrete Element Method (DEM). Ph.D. Thesis, Washington State University, Washington, WA, USA, 2008. [Google Scholar]
- Šmilauer, V.; Catalano, E.; Chareyre, B.; Dorofeenko, S.; Duriez, J.; Gladky, A.; Kozicki, J.; Modenese, C.; Scholtès, L.; Sibille, L.; et al. Yade Reference Documentation. 2010. Available online: http://yade-dem.org/doc/ (access on 29 April 2016).
- Yusoff, N.I.M.; Shaw, M.T.; Airey, G.D. Modelling the linear viscoelastic rheological properties of bituminous binders. Constr. Build. Mater. 2011, 25, 2171–2189. [Google Scholar] [CrossRef]
- Liu, Y.; You, Z. Accelerated Discrete-Element Modeling of Asphalt-Based Materials with the Frequency-Temperature Superposition Principle. J. Eng. Mech. 2011, 137, 355–365. [Google Scholar] [CrossRef]
- Majidi, B.; Azari, K.; Alamdari, H.; Fafard, M.; Ziegler, D. Simulation of vibrated bulk density of anode-grade coke particles using discrete element method. Powder Technol. 2014, 261, 154–160. [Google Scholar] [CrossRef]
- Pasquino, R. Rheology of Viscoelastic Suspensions. Ph.D. Thesis, University of Naples Federico II, Naples, Italy, 2008. [Google Scholar]
- Hashin, Z.; Shtrikman, S. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 1963, 11, 127–140. [Google Scholar] [CrossRef]
- Krieger, I.M.; Dougherty, T.J. A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 1959, 3, 137–152. [Google Scholar] [CrossRef]
Km (Pa) | Cm (Pa.s) | Kk (Pa) | Ck (Pa.s) |
---|---|---|---|
3867.136 | 37.111 | 10.047 | 7.375 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majidi, B.; Taghavi, S.M.; Fafard, M.; Ziegler, D.P.; Alamdari, H. Discrete Element Method Modeling of the Rheological Properties of Coke/Pitch Mixtures. Materials 2016, 9, 334. https://doi.org/10.3390/ma9050334
Majidi B, Taghavi SM, Fafard M, Ziegler DP, Alamdari H. Discrete Element Method Modeling of the Rheological Properties of Coke/Pitch Mixtures. Materials. 2016; 9(5):334. https://doi.org/10.3390/ma9050334
Chicago/Turabian StyleMajidi, Behzad, Seyed Mohammad Taghavi, Mario Fafard, Donald P. Ziegler, and Houshang Alamdari. 2016. "Discrete Element Method Modeling of the Rheological Properties of Coke/Pitch Mixtures" Materials 9, no. 5: 334. https://doi.org/10.3390/ma9050334
APA StyleMajidi, B., Taghavi, S. M., Fafard, M., Ziegler, D. P., & Alamdari, H. (2016). Discrete Element Method Modeling of the Rheological Properties of Coke/Pitch Mixtures. Materials, 9(5), 334. https://doi.org/10.3390/ma9050334