Recent Advances in Carbon-Based Sensors for Food and Medical Packaging Under Transit: A Focus on Humidity, Temperature, Mechanical, and Multifunctional Sensing Technologies—A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Database Selection and Search Strategy
2.2. Screening
2.3. Data Extraction
3. Results
3.1. Humidity Sensors
Material | Fabrication Technique | Type | Sensing Range (%RH) | Sensitivity | Response/ Recovery Time (s) | Stability (Days) | Linearity | Remarks/Comments | Ref |
---|---|---|---|---|---|---|---|---|---|
Li-doped GO | Drop casting | Resistive | 11–97 | 17.13–3038.16% | 4/25 | Not reported (N) | Yes | Hysteresis is 0.83% and thermal stability is 850 °C. | [45] |
GO functionalized with hydroxyl groups | 6–95 | ~38.5 | 8.5/13 | 390 | Yes | Hysteresis is 0.63%. High selectivity to humidity. Power consumption is 15 µW. | [46] | ||
Oxidized CNH/GO/SnO2/PVP nanocomposite film | 0–100 | 0.9021 Ω/% RH | 42/164 | N | Yes | CNHox/GO/SnO2/PVP mass ratio is 1/1/1/1. Power consumption is <2 mW. | [47] | ||
GO-oxidized CNH-PVP | 0–100 | 0.15–0.2 | 40–90/62–73 | N | Yes | Optimal GO:CNH:PVP is 1:1:1. Power consumption is <2 mW. | [48] | ||
Ultra-thin, single-layer GO film | 10%–95 | 120.57%/%RH | 0.49/0.65 | 60 | No | Optimal sensor has 300 nm GO with 20 μm electrodes spacing. | [49] | ||
Oxidized single-walled carbon nanohorns (SWCNHs) | 10–90 | ~2.1 × 107 Ω/RH (air) | 3/N (air) | N | Yes | Surface area is 1300–1400 m2/g. | [115] | ||
~9.1 × 106 Ω/RH (N2) | 8/N (N2) | ||||||||
GO/PVA composite | Resistive Frequency | 20–80 | −12,000 Ω/%RH | N | N | N | It achieves ~1.8% RH resolution. | [50] | |
0.0001 kHz/%RH | |||||||||
rGO/PVDF composite | Solution casting | Resistive | 11–97 | 98.99% | 21/26 | 90 | Yes | Optimal is 30 vol% rGO/PVDF. Hysteresis is 5.5% and decomposition from 434° C. | [95] |
Endohedral lithium-doped SWCNT/sodium dodecylbenzenesulfonate (Li@SWCNT/SDBS) | Arc discharge and drop casting | 11–97 | 4%/%RH | N | N | No | Optimal sensor is five-layer thin film (~5 µm thickness). Hysteresis is 4.3%. | [104] | |
GQDs/Ag nanoparticles (AgNPs) | Hydrothermal and drop casting | 25–95 | 98.14% | 15/15 | N | No | Optimal GQDs/AgNPs is 1:1. | [109] | |
GO film | Drop casting | Capacitive | 15–95 | 37,800% | 10.5/41 | 30 | Yes | Hysteresis is ~5%. | [51] |
GO/Ag composite | 11–97 | 25,809 pF/%RH | ~8/~12 | 30 | N | Optimal Ag content is 2 wt%. Good selectivity for H2O vapor. | [52] | ||
GO | 0–97 | 1800 pF/% RH | 16/9 | N | Yes | Spiral LIG as electrodes. Optimal GO thickness is 50 nm. 3.03% hysteresis. | [53] | ||
GO | 10–90 | 3862 pF/%RH | 58/15 | 42 | N | Hysteresis is 1.2%. Optimal sensor used 60 µL GO and 150 µm gap size for LIG interdigitated electrodes (IDE). | [54] | ||
GO/MoTe2 composite nanosheets | 11.3–97.3 | 94.12 pF/%RH | 39/12 | 35 | N | Optimal GO to MoTe2 ratio is 1:2. High humidity selectivity. | [55] | ||
ZnO/PVP-rGO nanocomposite | 15–95 | ~0.022 | ~12/~3 | 87 | Yes | [96] | |||
GO-Mn-doped ZnO nanocomposite | Capacitive | 10–90 | N | 4.5/21 | 30 | Yes | 95.7 times higher sensitivity in capacitance and 97 times in resistance compared to conventional GO. | [56] | |
Resistive | |||||||||
GO-doped P(VDF-TrFE)/LiCl composite | Capacitive change | 25–95 | 1708.8 pF/%RH | 7.8/4.5 | N | Yes | Pores from 300 nm to 1.1 µm. Reduced hysteresis due to GO and LiCl modification. | [57] | |
GO | Resonant frequency | 10–90 | 0.719 kHz/%RH | <78/54 | 30 | No | Resolution (0.4% RH), hysteresis (<4%), and minimal response to CO2. | [58] | |
HGO/GO/Mg2+ composite membrane | 11–97 | 0.0343 kHz/%RH | 7/6 | 10 | Yes | Hysteresis is ~3.2% RH. High humidity selectivity. | [59] | ||
GO | Voltage | 33–98 | 1.1–10.0 mV/%RH | 0.28/0.3 | 2.5 | Yes | GO thickness is 10 μm. | [61] | |
2D MoS2/graphene nanocomposite foam | Impedance | 0–100 | 50,000– 385,000 Ω/%RH | 4/2 | N | No | Sensor used LIG as electrodes. Hysteresis is 3.8%. | [78] | |
Laser-reduced GO/MWCNT | Drop casting and direct laser scribing | Impedance | 11–97 | 350,000 Ω/%RH | 0.061/2.3 | 1095 | Yes | Sensor used rGO IDE. Hysteresis is 3.1%. | [97] |
Capacitance | 798 pF/%RHc | ||||||||
Thermally reduced GO | Spin-coating | Resistive | 32–65 | 5% | 35/N | N | Yes | Highly thermal-reduced GO has the optimal performance. | [98] |
P(VDF-TrFE) with graphene flower composite | Capacitance Impedance | 8–98 | 0.0558 pF/% RH | 0.8/2.5 | 15 | Yes | N | [79] | |
GO | Impedance | 6–97 | 182,068.791/%RH | 0.8/0.9 | 1 | Yes | Ti3C2Tx MXene-based sensor exhibited faster response than sensors using metallic electrodes. | [60] | |
N-S co-doped GQDs | Hydrothermal and spin-coating | 40–90 | N | 15/55 | 90 | N | Optimal GQDs content is 10 mg with 2.2% hysteresis. | [110] | |
GQDs/carbon nitride (g-C3N4) composite | 7–97 | 100,000 Ω/RH | 44 /10 | N | Yes | Low hysteresis (<1%) and high surface area (545 m2/g) | [111] | ||
Bi-layered PVA/graphene flower composite film | Spin-coating and spray-coating | Capacitance | 40–90 | 29,000 pF/%RH | 2/3.5 | 15 | N | Uniform dispersion of PVA/GF layer with ~2.32 µm thickness. | [80] |
Impedance | |||||||||
Shellac-derived carbon (SDC) thin film | Spray coating and thermal annealing | Resistive | 0–90 | 0.54/% RH | 0.14/1.7 | 28 | Yes | Carbon IDE. High selective to humidity. Power consumption is ~1 mW. | [113] |
rGO-sodium dodecyl sulfate (SDS) composite film | Drop-coating | Resistive | 25–95 | 11.4143 Ω/% RH (RT) | 9/10 | 10 | Yes | Hysteresis is 0.04852%. | [99] |
GO | 11–97 | 1.113 Ω/Ω–%RH | 2/35 | N | Yes | Sensor used 300 nm wrinkled GO film on the LIG electrode. Hysteresis is 3%. High humidity selectivity. | [62] | ||
GO | Quartz crystal microbalance (QCM) | 11.3–97.3 | 0.1605 kHz/%RH | 30/5 | N | Yes | The study used the finite element analysis software COMSOL Multiphysics. | [63] | |
Polydopamine-coated cellulose nanocrystals/GO nanocomposite (PDA@CNC/GO) | Drop-coating | Resonance frequency | 11.3–97.3 | 0.05466 kHz/% RH | 37/5 | 21 | N | Optimal composition is 30 wt% PDA@CNC. Hysteresis is 4.3% RH. | [64] |
Graphene flower/ZnO composite | Sol–gel and spray-coating | Resistive | 15–86 | 7.7 µA/%RH | 0.4/4 | N | N | High surface area to volume ratio and pore composite. | [81] |
GO on tilted fiber grating (TFG) | Dip-coating | Resonance wavelength Intensity | 30–80 | 0.0185 nm/%RH | 0.042/0.115 | N | Yes | GO thickness is 54 nm. | [65] |
GO/PVA composite film | Intensity | 20–99.9 | 0.529 RH (%) | 147/293 | N | Yes | N | [66] | |
Graphene–carbon ink | Screen printing | Resistive | 25–91.7 | 12.4 Ω/%RH | ~31/~8 | 120 | N | Optimal configuration is single-layer sensor. | [82] |
G/polypyrrole/carbon black (CB) composite | 23–92.7 | 12.2 Ω/%RH | 5/7 | 21 | N | Durability is 100 bending cycles Single-layer is the most effective configuration. | [83] | ||
Graphite/WO3 nanocomposite | 11–97 | 12.7–60.8% | N | N | Yes | Optimal sensor using graphite/WO3 ratio is 1:3, with <1% hysteresis. 120° bending angles. | [116] | ||
Multilayer GO | Resonance frequency Backscattered phase | 11–98 | 0.5°/%RH | N | N | N | 30 µm GO film and printed graphene antenna electrodes. | [67] | |
Cellulose nanofiber (CNF) and graphene nanoplatelet (GNP) composite | Mixing and screen printing | Resistive | 30–90 | 240% | 17/22 | 240 | N | Composite with 200 mg GNP as electrode. | [84] |
Graphene ink | Inkjet printing | Capacitive | 10–70 | 0.03 pF/%RH | 2.46/2.63 | 10 | N | Optimal sensor is six-layer graphene film with graphene IDEs. | [85] |
GO/CNT−OH/Nafion nanocomposite | Resonance frequency | 30–95 | 547 kHz/%RH | 110/115 | 2.08 | Yes | Hysteresis is 3%. | [68] | |
Functionalized MWCNTs and hydroxyethyl cellulose (HEC) composite | Gravure printing | Resistive | 20–80 | 0.0485/%RH | 20/35 | 0.4 | Yes | The optimal FMWCNT concentration is 2.5 wt%. | [105] |
Carboxymethyl cellulose@graphene (CMC/G) composite | 3D printed groove mold | Impedance | 11–95 | 97% | 300/N | 16 | Yes | Optimal graphene content is 0.16 wt%. | [86] |
Graphene film | Liquid phase exfoliation and LB assembly | Resistive | 8–95 | 5% | 0.028/0.03 | N | Yes | The thickness is ~3.4 nm (~ 10 layers). Flexibility is 10° bending. | [87] |
GO | Self-assembly | Capacitive | 30–90 | 0.00565 pF/% RH | 180/N | 14 | N | Optimal sensor is 2 mg/mL GO with 2.85% hysteresis. | [69] |
Pyranine modified-rGO composite | One-step supramolecular assembly | Impedance | 11–95 | IL/IH = 6000 | <2/~6 | N | Yes | Hysteresis is 8% RH. Stable for 100 cycles. | [100] |
TEMPO-oxidized cellulose fibers (TOCFs)/CNTs | Electrostatic self-assembly | Current | 11–95 | 87% | 333/523 | 90 | Yes | Optimal TOCFs-to-CNTs ratio is 30:1 with a thickness of 48.2 µm and 7.3% hysteresis. | [106] |
G with 3D flower-like ZnO composite | Hydrothermal | Impedance | 12–90 | 446 | 120/160 | 30 | N | Optimal G content is 70 wt% with 2.32% hysteresis. High humidity selectivity. | [88] |
PVDF (polyvinylidene fluoride) with 0.5 wt% G | Electrospinning | Capacitive | 35–90 | 0.0463 pF/%RH | N | N | Yes | PVDF/G with Ag electrode, showed 21.3 times faster than DHT11. | [89] |
SnO2/rGO nanocomposite | 11–95 | 37,491% | 80/4 | N | N | Optimal rGO doping content is 2 wt%. Durability is 1000 bending cycles. | [101] | ||
BP/G hybrid | Electrospray | Resistive | 15–70 | 43.40% | 9/30 | 28 | Yes | [90] | |
GO | Electrospray deposition | Resonant frequency | 11–97 | 1.74%/%RH | 54–68/12–22 | 30 | No | Low thermal noise. Optimal is 250 MHz sensor. | [70] |
Holey-reduced graphene oxide (HRGO) | H2O2-etching-reaction-assisted hydrothermal | Impedance | 11–97 | −0.04317 log Z/%RH | <3/29 | 28 | Yes | Surface area is 274.5 m2/g. Hysteresis is 2.57%. | [102] |
GO | Dripping and vacuum heating | Capacitive | 20–90 | 1.77–164.98 pF/% RH | 10/2 | N | N | Hysteresis is 1%. | [71] |
GO | Dripping and coating | 10–90 | 16.7 pF/%RH | 0.0208/0.0199 | 80 | N | The optimal sensor used 1 mg/mL GO and CNTs as electrodes. Hysteresis (<0.44%). | [72] | |
ZnO nanowires and GQDs composite | Dripping | Resonance frequency | 30–90 | 40.16 kHz/%RH | ~30/~35 | N | No | Optimal GQDs content is 2 mg/mL. 30° bending angle. | [112] |
SWCNTs | Vacuum filtration | Resistive | 15–98 | 246.90% | 290/510 | N | Yes | Optimal sensor is suspended aligned. SWCNT beams, with 36 μm suspension lengths. | [107] |
rGO/PANI composite | Filtration | 0–98 | 580% | ~70/~139 | N | Yes | Hysteresis is 3%. Optimal rGO to PANI ratio is 5%. | [103] | |
Laser-induced graphene (LIG) | Laser Direct Writing (LDW) | Capacitive | 30–90 | N | 8/10 | N | No | The porous, hair-like LIG pattern was designed with 2-CAD. | [91] |
Light-scribed GO | Laser scribe | Impedance | 7–97 | 1.67 × 106 Ω/%RH | N | 1 | Yes | Hysteresis is 0.3–7%. | [73] |
G/ZrO2 nanocomposite | Sol–gel | 12–90 | 4011 | 5/20 | 6 | Yes | Hysteresis is <1.95%. Optimal is 40 wt% G/ZrO2 | [92] | |
3D graphene foam | Modified Hummers’ method | Resistive | 0–85.9 | N | 0.089/0.189 | N | N | Energy structure of 3DGF model analyzed via CASTEP in Materials Studio 8.0. | [93] |
Nanocrystalline graphite | Plasma-enhanced CVD | Resistive | 15–85 | 0.0334%/%RH | 0.02/N | N | Yes | Hysteresis is 5%. It is meandered strip structure. | [114] |
SWCNT | Immersion | 20–80 | 54.7% (s-CNT) | 40/100 | N | Yes | Hysteresis is 11.45% (semiconducting-CNT) and 0.31% (metallic-CNT). | [108] | |
2.9% (m-CNT) | |||||||||
G/p-aminophenol/poly-2-hydroxyethyl acrylate (G/p-AP/PHEA) | In situ free-radical polymerization | 0–94 | 29% | N | N | N | N | [94] | |
Etched GO film | Etching | Capacitive | 10–100 | 0.000106 pF/% RH | 1.011/N | N | N | The study using COMSOL Multiphysics. | [74] |
Nanofibrillated cellulose (NFC)/GO/PDMS aerogel composite | Ultrasonic dispersion and freeze-drying | 11–97 | 6576.41 pF/% RH | 57/2 | N | No | Porosity is 99.6%. | [75] | |
GO/MWCNTs hybrid on tilted Fiber Bragg Grating (TFBG) | Physical precipitation | Optical fiber Amplitude | 30–90 | 0.377 dB/%RH | 4/N | N | Yes | Hysteresis is 0.7%. | [76] |
Paper cellulose fiber/GO matrix (PCFGOM) | N | Impedance | 10–90 | 9,750,000% (1 kHz) | 1.3 /0.8 | 1 | Yes | The sensor used 0.15 w/w% PCFGOM as active layer and 20 w/w% PCFGOM as electrode layers. | [77] |
Capacitance | 1,442,500% (10 kHz) |
3.2. Temperature Sensors
Material | Fabrication Technique | Sensing Range (◦C) | Sensitivity/TCR (%/°C) | Response/ Recovery Time (s) | Stability (Days) | Remarks/Comments | Ref |
---|---|---|---|---|---|---|---|
GO | Drop casting | 20–70 | 822 Ω/°C | 306/554 (uncovered) | N | Encapsulation: PDMS | [155] |
Spray coating | 20–60 | N | 0.525/0.35 (uncovered) | ||||
5.18/9.68 (covered) | |||||||
rGO | Spray coating | 30–100 | 0.6345%/°C | 1.2/N | N | Encapsulation: high-temperature transparent insulating tape. | [136] |
Multilayer graphene ink film | 30–90 | 43.27 μV/K | 0.15 /15 | N | Optimal sensors have 108 nm thickness and provide 300 μV output voltage, and signal-to-noise ratio is 35. | [117] | |
rGO | Spin coating | −196.15–299.85 | −0.801–−32.04%/°C | 52/285 | N | Optimal rGO concentration is 3wt%, with 0.1 °C resolution. | [137] |
MWCNT doped in polyethylene glycol and PU (MWCNT-PEG-PU) nanocomposites | 25–50 | ~80% | N | 7 | Optimal MWCNT concentration is 8 wt% and stable 30 bending cycles. | [146] | |
Graphene-coated microfiber (GCM) | Coating | 22–40 | 2.1 dB/°C | N | N | Minimum resolution is 0.0005 °C. | [118] |
Polyaniline/graphene (GPANI) embedded in Polyvinyl Butyral (PVB) composite film | Coating using Mayer rod | 25–80 °C | −1.2%/°C | N | N | Sensor also responds to external pressures (0–30 kPa). Encapsulation: Bezel tape | [119] |
Graphene and gelatin nanocomposite | Blade coating | −13–37 | −5.3–−23 mV/°C | 10.4/N | N | Stable for 20 cycles. | [120] |
Graphene/gelatin nanocomposite | −13–37 | −19 mV/K | 41.8/N (pristine sensor) | 2 | Energy consumption is 8.1 μWh for pristine sensor. | [121] | |
28.9/N (aged sensor) | Energy consumption is 8.5 μWh for aged devices. | ||||||
PU/G Nanocomposite | In situ polymerization and dip coating | 25–60 | 6 pm/°C | N | N | Thermal stability to 217 °C from 204 °C. | [122] |
rGO | Air brush spray coating | 0–100 | 45.1% | 121/N | N | N | [123] |
Graphene nanoplatelets (GNP) | 52% | 89/N | |||||
Plasma-grown graphene (Gpl) | Plasma discharge | 20.5% | 125/N | ||||
Graphene via CVD (Gcvd) | CVD | 27% | 68/N | ||||
GO | Post-COMS MEMS Drop casting | −70–40 | 155.73–58,555.26 pF/°C | Not reported (N) | 30 | Capacitance sensor. | [156] |
rGO/Ag nanocomposite | Ultrasonication and drop casting | −60–80 | 0.555 Ω/°C | 0.47/N (cold) | 730 | Encapsulation: Parylene. | [138] |
3.45/N (hot) | |||||||
CNT/PEDOT:PSS composite | Drop casting | 25–45 | −1.97%/°C (initial) | N | 6 | Encapsulation: PDMS Optimal CNT/PEDOT ratios is 1:5. | [147] |
−2.80%/°C (6 days aging) | |||||||
CNT and methylcellulose (CNT/MC) composite | Solution casting | 20–70 | 0.2%/°C | 6.1/3.1 (hot) 5.2/7.2 (ice) | N | Stable over 480 cycles. | [148] |
Graphene Nanoribbons (GNRs) | Mask spraying or direct handwriting | 30–80 | 172% TCR = 1.27%/°C | 0.5/0.5 | N | Using MWCNT ink electrodes and Scotch tape encapsulation. 0.2 °C resolution and stable 5000 bending cycles. | [124] |
CNT | Gravure printing | −40–100 | −0.4%/°C | 0.3/4 | N | High accuracy (±0.5 °C). Encapsulation: organic and silver. | [149] |
GO/PEDOT: PSS composite | Mask printing | 25–100 | −1.09%/°C | 18/32 | N | Encapsulation: Kapton tape. Stable 1000 bending cycles. | [157] |
Functionalized and reduced graphene oxide via sulfonated aromatic diamine (f-rGO) | Inkjet printing | 30–82 | −0.0164/°C | 176.4/316.8 | N | [139] | |
CNT/PEDOT-PSS composite | 25–50 | 0.31%/°C | ~39/~196 | N | Encapsulation: translucent polyurethane welding tape. Stable 1000 cycles bending. | [150] | |
rGO with alkali lignin | 25–135 | 0.59%/°C | N | 180 | Sensor used meander-shaped rGO as electrode. | [140] | |
rGO/Ag | Aerosol jet printing | 0–200 | 0.001162–0.001519/°C | N | N | Optimal four layers rGO/Ag. Stable 1000 bending cycles. | [141] |
Porous LIG | CO2 laser-induced Direct laser writing | 1–8 | N | 16/58 | N | Encapsulation: PDMS. Stable 200 bending cycles. | [125] |
LIG | Laser direct writing | 24–80 | −0.58%/°C | N | 14 | Sensors optimized by finite element analysis photothermal model. | [126] |
Amorphous carbon films | DC Magnetron Sputtering | 20–150 | 1.62 mV/°C TCR = 0.00128/°C | N | N | DC magnetron sputtered sensors are more stable and practical than ion-beam-deposited sensor. | [161] |
Micro-fabricated single-layer graphene | CVD | 10–30 | 1.25 Ω/°C (SiO2/Si substrate) | N | N | Sensor used graphene electrodes and PDMS gasket encapsulation. | [127] |
2.15 Ω/°C (SiN substrate) | |||||||
1.90 Ω/°C (suspended graphene substrate) | |||||||
CNT forest-PDMS composite | 30–90 | 0.55 Ω/°C | N | N | Encapsulation: PDMS. | [151] | |
Graphene and Lithium Niobate (LiNbO3) | 10–70 | −0.23 nm/°C | N | N | Encapsulation: PDMS. | [128] | |
Multilayer graphene | −266.55–26.85 | −1 (THS < −243.15 °C) | ~0.030/N | N | Sensor made by seven layers of single-layer graphene. | [129] | |
<0.1 (THS > −173.15 °C) | |||||||
Vertically aligned CNT film | TCVD | 20–110 | 4.74 μA/°C (air) | N | 30 | Triple-electrode structure enables long-term sensor operation. | [152] |
22.72 μA/°C (N2) | |||||||
MWCNT | CVD and wet transfer | 22–200 | 0.0033 V/°C TCR = 0.00103/°C | N | N | 2.7 μm MWCNT sensor had carrier mobility (−28.5574 cm2/Vs). | [153] |
Single-layer graphene | 27–302 | 0.00207/°C (27–177 °C) | N | N | Resistance is almost unaffected by humidity. | [130] | |
0.00239/°C (177–302 °C) | |||||||
Suspended few-layer and multilayer graphene | 25–120 | 1.07–3.5%/°C | N | N | N | [131] | |
Graphene | CVD and AI sacrificial layer process | 25–200 | 2.134 Ω/◦C | N | N | Enhanced 41.93% consistency. Encapsulation: SiO2 layer. | [132] |
GQDs embedded in a rGO/alumina composite film | Sol–gel | −196.15–26.85 26.85–99.85 | −1999%/°C −0.98%/°C | ~0.3/0.8 3.96/6.01 | N | Short-term stability is 50 cycles. | [142] |
CNC-assisted carbon dots (CDs)-grafted SrAl2O4: Eu2+, Dy3+ (SAO) phosphors composite film | Sol–gel and vacuum filtration | −30–110 | 0.257 | N | N | Short-term stability is 3.5 cycles. | [160] |
High-strength metallurgical graphene (HSMG) | Modified PMMA-based transfer | −253.15–21.85 | −0.007/°C | N | N | Encapsulation: transparent polymer. | [133] |
Polyethyleneimine/reduced graphene oxide (PEI/rGO) | Spray dipping | 25–45 0–60 | 1.3%/°C | 0.33–0.443/N | 120 | Encapsulation: PDMS. 0.1 °C resolution and 500 bending cycle stability. | [143] |
GO/PEDOT: PSS micro/nanowires | Soft lithography | 30–80 | −0.007599/°C | 3.5 /13.4 | 30 | Optimal GO doping ratio is 13:1. | [158] |
LIG | CO2 laser irradiation | 30–60 | −0.04145%/°C | 30/N | N | High measurement accuracy (±0.15 °C). | [134] |
PDA-rGO/sodium alginate/polyacrylamide composite organohydrogel | Solvent displacement and cross-linking | −20–60 | 97.6%/°C (−20–−5 °C) | 0.2/0.3 | N | Encapsulation: VHB tape. Stable over 3 h. | [144] |
10.57%/°C (−5–15 °C) | |||||||
1.45%/°C (15–60 °C) | |||||||
Star-like rGO/SnO2/Co3O4 composite | Facile wet chemical precipitation | 25–125 | 0.561%/°C | N | N | [145] | |
GNP/PDMS nanocomposite | Three-roll milling and molding | 30–80 | 0.052–11.7/°C | N | N | The optimal GNP concentration is 6 wt%. | [135] |
Carboxyl-SWCNTs | N | 0–80 | −225 Ω/°C | N | N | Encapsulation: thermos-reversible polymer. Self-healing 30 bending cycles. | [154] |
GQDs/hollow-core fiber | N | 10–80 | −0.01375/°C | N | N | N | [159] |
3.3. Mechanical Sensors
Material | Fabrication Technique | Sensing Range (kPa) | Sensitivity/Gauge Factor (GF) | Response/ Recovery Time (s) | Durability (Cycles) | Remarks/Comments | Ref |
---|---|---|---|---|---|---|---|
Suspended monolayer graphene (G) | CVD | 0–80 | GF = 6.73 (circular membrane) | Not reported (N) | Not reported (N) | An improved theoretical model was developed to predict GF and confirm their independence of doping concentration and graphene crystallographic orientation. | [162] |
GF = 3.91 (rectangular membrane) | |||||||
Graphene | Plasma-enhanced CVD | 0–20,000 | 0.03313 mV/V/kPa | N | 35 days | Encapsulation: Si3N4 film. Error of hysteresis (2.0119%), nonlinear (3.3622%), and repeatability (4.0271%). | [163] |
GF = ~1.35 | |||||||
Graphene/PDMS sponge | Mixing and molding | 0.005–500 | 37.5–2200 kHz/kPa | ~0.007/0.06 | 5000 | LC technology used for long-distance wireless transmission. Optimal graphene concentration is 20%. | [164] |
Porous PDMS | Sugar-cube mold | 0–1200 | 360–1120 kPa−1 | 1/<1 | 10,000 | Sensor used MWCNT/PEDOT composite electrode and low-pass filter. | [171] |
Tannic acid (TA)-rGO/PVA hydrogel | Sonication, molding via freeze–thaw | 0–20 | 2.2695 kPa−1 | 0.67/0.84 | 100 | Optimal concentration is 2 mg/mL and tensile strength is 440.213 kPa. | [167] |
Carbon ink-coated filter paper | Dip coating | 0.1–100 | 0.0259–0.627 kPa−1 | N | 4000 | N | [169] |
PU/G foams | Solvent extraction | 0–500 | 0.05–7.62 kPa−1 | 0.81/0.81 | 1000 | Optimal graphene content is 30 wt%. | [165] |
Nitrogen-doped GO, dopamine, and polyaniline composite aerogel | Self-assembly, freeze-drying, and thermal annealing | 0–25.48 | 0.10 kPa−1 | N | 150 | The optimal mass ratio of GO:DA:PANI is 5:2:2, with 1.46% nitrogen. | [166] |
P(VDF-TrFE) matrix with MWCNTs | Electrospinning and mechanical drawing | 5–50 | ~540 mV/N | N | N | Self-powered sensor achieved piezoelectric coefficient of 50 pm/V with 98% linearity. | [168] |
PDMS/CB/graphene nanosheets | Laser thermoforming | 0–100 | 109.4 kPa−1 | 0.079/0.055 | 5000 | CB as an endothermic agent and glucose as a porogen. | [170] |
Material | Fabrication Technique | Sensing Range (%) | Sensitivity | Response/ Recovery Time (ms) | Durability (Cycles) | Remarks/Comments | Ref |
---|---|---|---|---|---|---|---|
Patterned MWCNT/PDMS | Microelectromechanical system-assisted EPD | 0–14 | 13–120 | N | N | Sensitivity tailored by MWCNT film thickness and entanglement. Sensor adapted to an arbitrarily curve surface. | [173] |
Polymer-free CNTs | Hot-wall atmospheric CVD | 0–42.1 MPa | 1461 | N | N | Higher sensitivity in IDE devices than single-gap electrodes. | [174] |
CNT/Agar composite | Solution casting | 0–118 | 0.28 | 160/250 | 10,000 | Increasing filler concentration improved strain from 0.8 to 1.1, and stress from 35.2 to 45.8 kPa. | [175] |
PDMS-TDI (2,4′-Tolylene diisocyanate)-carboxyl-functionalized MWCNTs nanocomposite | One-pot synthesis, ultrasonication, and casting | 0–1000 | 0.65–2.43 | N | 1000 | Sensor had 98.1% self-healing efficiency at 60 °C over 9 h. | [176] |
Fragmentized rGO sponge (FGS)/AgNPs/polystyrene-butadiene-styrene (SBS) composite | Multiple-step process | 0–120 | 20.5–1.25 × 107 | 20/N | 2000 | Microcrack contributed to sensitivity. Sensor had 1521 S/cm conductivity and 680% break elongation. | [177] |
CNTs/PDMS | 0.007–100 | 87 | 65/N | 1500 | Optimal sensor had network cracks and 15 layers of CNT. | [178] | |
rGO/MWCNTs composite | Direct writing printing | 10–40 | 18.55 | N | 900 | N | [179] |
Carbon grease | Embedded 3D printing | 400 | 3.8 | N | 1000 | Up to 10% variation from its original value after large strains. | [184] |
Few-layer graphene | Mechanical exfoliation and screen printing | 0–6 | 20.02 | N | 100,000 flexing cycles | Number of prepared graphene layers was 2–5 layers. | [181] |
1000 abrasion cycles | |||||||
TA-rGO/PVA hydrogel | Sonication and molding via freeze–thaw cycles | 0–280 | 1.936 78 | 670/840 | 100 | Optimal concentration is 2 mg/mL and tensile strength is 440.213 kPa. | [167] |
PEI-rGO nanocomposite | LBL self-assembly | 0–5 (~800 kPa) | N | N | 500 | Rapid self-healing (~10 s), and 98% efficiency at room temperature. | [180] |
Ultrathin graphene film | Single-step Marangoni self-assembly | 2 | 1037 | N | N | Optimal thickness is 4.4 nm with 3.4% failure strain. | [182] |
Chitosan-graphene | Bath sonication and vacuum filtration | 0–2 | 18.6 | N | N | Chitosan-G had better graphene electrical properties than pullulan and alginate. | [183] |
3.4. Multifunctional Sensor
No. Modes | Carbon Materials | Modes | Fabrication | Mechanism | Working Range | Sensitivity | Response/ Recovery Time (s) | Durability (Cycles) | Ref |
---|---|---|---|---|---|---|---|---|---|
2 | Monolayer graphene | Humidity | CVD and oxygen plasma etching | Capacitive | 2–90%RH | 17–32%/%RH | ~8/~19 | 1000 | [185] |
Resistive | |||||||||
Temperature | Current | 10–90 °C | N | ~4/~10 | N | ||||
Cracked paddy-shaped MoS2/graphene foam/Ecoflex | Strain | Thermal CVD, dipping, and annealing | Piezoresistive | 0–22% | GF = 24.1 | N | N | [186] | |
Pressure | 0.6–25.4 kPa | 3.28–6.06/kPa | N | 4000 | |||||
SWCNTs/PDMS | Pressure | Coating and molding | Capacitance | 0–25 kPa | 0.7/kPa | 0.05/N | 10,000 | [187] | |
rGO | Temperature | Spray-coating | Resistive | 22–70 °C | 0.83%/°C | 0.1/N | N | ||
PDMS/SWCNT composite | Pressure | Spray coating and leather mold | Piezoresistive | 0–400 kPa | 0.03–7.76/kPa | 0.132/0.12 | 10,000 | [188] | |
PDMS/SWCNT composite with thermochromic material | Temperature | Resistive | 23–90 °C | N | N | N | |||
Graphene–CNT–Silicone adhesive nanocomposite | Humidity | Doctor blade and drop casting | Impedance | 36–94% RH | −84.5 Ω/%RH | 26/74 | N | [189] | |
Capacitance | 1336.7 pF/%RH | ||||||||
Temperature | Impedance | 37–87 °C | −19.8 Ω/°C | 34/82 | N | ||||
PU@CNT composite | Temperature | Hot pressing | Resistive | 30–110 °C | −2.84 × 10−3/°C | N | 5000 | [190] | |
PU dielectric | Pressure | Capacitive | 0.1–50 kPa | 0.0549/kPa | 0.094/0.134 | 5000 | |||
GO/SWCNTs/PDMS composite | Humidity | Screen and inkjet printing Blading and doctor blade | Resistive | 25–80%RH | 0.137–11.145%/%RH | 0.5/0.3 | N | [191] | |
SWCNTs/PDMS composite | Pressure | Piezoresistive | 0.024–230 kPa | 27.91–77.78 /kPa | 0.03/0.03 | 6000 | |||
Graphene/PEDOT:PSS hydrogel | Strain | One-pot method | Resistive | 1000% | 8.1 | 0.2/N | 10,000 | [192] | |
Temperature | 7–60 °C | −7.16–−0.162%/°C | N | N | |||||
2 | CNTs sponge/PEDOT:PSS/PDMS | Pressure | Soaking and oven drying | Piezoresistive | 0–40 kPa | 26.8–902.2/kPa | 0.063/0.071 | 500 | [193] |
Temperature | Resistive | 20–80 °C | 0.84%/°C | 1.1/1.5 | 5 days | ||||
3 | GO | Humidity | Spray coating | Capacitive | 20–90% | 0.0589 pF/%RH | N | N | [194] |
rGO | Temperature | Resistive | 0–100 °C | −3.4 kΩ/°C | N | N | |||
PDMS | Pressure | Lamination | Resistive | 0–450 kPa | 0.002/kPa | 0.2/N | 2000 | ||
Capacitive | |||||||||
rGO/CNCs | Compression Strain | Mixing, freezing, freeze-drying, and carbonization | Resistive | 0–99% | GF = 369.4 | N | 10,000 | [195] | |
Pressure | 0.00075 kPa | N | N | N | |||||
Bending | 0.052–180° | N | N | 10,000 | |||||
Graphene-glycerol | Strain | Coating | Piezoresistive | 0–1000% | GF = 45.13 | 0.2/0.2 | 10,000 | [196] | |
Pressure | Resistive | 0–50 kPa | 80% | N | N | ||||
Twisting | 0–180° | 100% | N | N | |||||
PDMS-coated microporous polypyrrole/graphene foam (PDMS/PPy/GF) | Pressure | CVD, electrochemical deposition, and dip-coating | Piezoresistive | 0–50 kPa | 2.01/kPa | 0.02/N | 10,000 | [197] | |
Temperature | Thermoelectric | 25–70 °C | 49.8 µV/K | 1.5/8.3 | N | ||||
Strain | Resistive | 0–50% | GF = −1.38 (<10%) | 1/2.5 | N | ||||
GF = −0.09 (10–50%) | |||||||||
Carbon fibers and MWCNTs (CFs-MWCNT) composite | Temperature | Resistive | 30–50 °C | 1.49–2.46%/°C | N | N | [198] | ||
Pressure | Piezoresistive | 0–60 kPa | 0.91–42.5/kPa | 0.1/0.1 | 6000 | ||||
Bending | 0–180° | 95.5%/rad | N | 1000 | |||||
GO-doped-PU nanofiber membrane coated with PEDOT | Pressure | Electrospinning, in situ polymerization, low-temperature oxygen plasma | Piezoresistive | 0.001–20 kPa | 0.15–20.6/kPa | 0.012/N | 10,000 | [199] | |
Strain | 0–550% | 10.1–193.2 | N | 10,000 | |||||
Flexion | 1.0 cm−1 | N | N | 6000 | |||||
CNT/PDMS composite | Pressure | Replica molding and ultraviolet-ozone exposure | Piezoresistive | 0–270 kPa | 6.67/kPa | 0.024/0.03 | 10,000 | [200] | |
Bending | 1–6.5 mm | 17.7/mm | N | N | |||||
Tensile strain | 0–50% | GF = 409 | N | N | |||||
Nanopapillae-decorated carbon nanosheet (NP-CNS) | Humidity | Pyrolysis and screen printing | Resistive | 0–96%RH | 8.25 | 1.7/100.1 | N | [201] | |
Strain | Piezoresistive | 0–500% | GF = 21.9–99.9 | 0.07/N | N | ||||
Pressure | 0.005–0.6 kPa | N | 0.032/N | N | |||||
3 | rGO/polyorganosiloxane aerogels | Temperature | Copolycondensation | Resistive | 20–100 °C | 50.20% | N | 10,000 | [202] |
Pressure | 0.01–110 kPa | 83.50% | N | ||||||
Strain | 0.1–80% | 84% | N | ||||||
CNC (10 mg)-CNT (30 mg) buckypaper | Strain | Mixed vacuum filtration and curing | Piezoresistive | 0–100% | GF = 352,085 | 0.033/0.016 | 10,000 | [203] | |
Pre-stretched CNC (10 mg)-CNT (80 mg) buckypaper | Temperature | Mixed vacuum filtration, pre-stretch, and curing | Resistive | −266.15–126.85 °C | 1.88%/°C | N | 10 | ||
CNC-CNT on cellulose filter paper (1:1) | Humidity | Dripping | Resistive | 10–80%RH | N | N | 10 | ||
Graphene woven fabric (GWF)/PDMS composite | Pressure | Catalytic decomposition and dipping | Piezoresistive | 0–20 kPa | 0.0142/kPa | N | 1000 | [204] | |
Strain | 0–140% | GF = 582 | N | N | |||||
Temperature | Thermoresistive | 25–80 °C | 0.0238/°C | N | N | ||||
4 | CB/rGO composite | Strain | Spray coating | Resistive | N | GF = 14.6 (compression) | ~0.34/N | 1000 | [205] |
GF = 1.8 (tension) | |||||||||
Humidity | 16–95%RH | 2.04/%RH | ~300/~80 | N | |||||
Temperature | 20–60 °C | 0.6%/°C | ~100/N | ||||||
Pressure | 0–250 kPa | 0.09–0.59%/kPa | ~0.25/N | ||||||
CB-PDMS | Strain | Spin coating | Resistive | 0–40% | GF = 81.2 (0–5%) | <0.05/N | 4000 | [206] | |
GF = 28.5 (5–40%) | |||||||||
Pressure | 0–20 kPa | 4 × 104% | 0.1/0.1 | N | |||||
Flexion | 0–150° | N | N | ||||||
Temperature | 25–150 °C | 0.515 ppm/°C | 8.4/N | ||||||
Polyaniline-coated MWCNTs | Humidity | Two-step assembly | Conductive | 30–80% RH | 4.80% | 25/38 (Basal layer) | 2500 | [207] | |
56/55 (double layer) | |||||||||
Pressure | Piezoresistive | 0.028–100 kPa | GF = 10 | 0.11/0.13 | 10,000 | ||||
Bending strain | 0–2.7% | GF = 35.8 | |||||||
Twisting strain | 0–90° | GF = 20.8 |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
3D | Three-Dimensional |
ACBS | All Carbon-Based Sensor |
Ag | Silver |
BP | Black Phosphorus |
CB | Carbon Black |
CDs | Carbon Dots |
CFs | Carbon Fibers |
CMC | Carboxymethyl Cellulose |
CNC | Cellulose Nanocrystals |
CNCs | Carbon Nanocoils |
CNF | Carbon Nanofiber |
CNHs | Carbon Nanohorns |
CNS | Carbon Nanosheet |
CNT−OH | Hydroxyl-functionalized Carbon Nanotubes |
CNTs | Carbon Nanotubes |
Co3O4 | Cobalt (II,III) Oxide |
CVD | Chemical Vapor Deposition |
DA | Dopamine |
DLS | Direct Laser-Scribed |
EPD | Electrophoretic Deposition |
f-rGO | Functionalized Reduced Graphene Oxide |
FGS | Fragmentized rGO sponge |
G | Graphene |
g-C3N4 | Carbon nitride |
GCM | Graphene-coated microfiber |
Gcvd | Graphene via Chemical Vapor Deposition |
GF | Gauge Factor |
GF | Graphene Foam |
GNP | Graphene Nanoplatelets |
GNRs | Graphene Nanoribbons |
GO | Graphene Oxide |
GPANI | Polyaniline/Graphene |
Gpl | Plasma-Grown Graphene |
GQDs | Graphene Quantum Dots |
GWF | Graphene Woven Fabrics |
HEC | Hydroxyethyl Cellulose |
HGO | Hummer’s Graphene Oxide |
HRGO | Holey-Reduced Graphene Oxide |
HSMG | High Strength Metallurgical Graphene |
LB | Langmuir-Blodgett |
LBL | Layer-by-Layer |
LDW | Laser Direct Writing |
Li | Lithium |
LiCl | Lithium Chloride |
LIG | Laser-Induced Graphene |
LiNbO3 | Lithium Niobate |
MC | Methyl Cellulose |
Mg | Magnesium |
Mn | Manganese |
MoS2 | Molybdenum Disulfide |
MoTe2 | Molybdenum Ditelluride |
MWCNT | Multi-Walled Carbon Nanotubes |
N | Nitrogen |
NFC | Nanofibrillated Cellulose |
NP | Nanopapillae |
p-AP | p-aminophenol |
P(VDF-TrFE) | Poly(Vinylidene Fluoride-Trifluoroethylene) |
PAM | Polyacrylamide |
PANI | Polyaniline |
PCFGOM | Paper Cellulose Fiber/GO Matrix |
PDA | Polydopamine |
PDMS | Polydimethylsiloxane |
PEDOT:PSS | Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate |
PEG | Polyethylene Glycol |
PEI | Polyethyleneimine or Polyetherimide |
PHEA | Poly-2-hydroxyethyl acrylate |
POS | Polyorganosiloxane |
PPy | Polypyrrole |
PU | Polyurethane |
PVA | Polyvinyl Alcohol |
PVB | Polyvinyl Butyral |
PVDF | Poly(vinylidene fluoride) |
PVP | Poly(vinylpyrrolidone) |
QCM | Quartz Crystal Microbalance |
rGO | Reduced Graphene Oxide |
S | Sulfur |
SA | Sodium Alginate |
SAO | SrAl2O4: Eu2+, Dy3+ |
SBS | Styrene-Butadiene-Styrene |
SDBS | Sodium Dodecylbenzenesulfonate |
SDC | Shellac-derived Carbon |
SDS | Sodium Dodecyl Sulfate |
SnO2 | Tin(IV) Oxide |
SWCNHs | Single-Walled Carbon Nanohorns |
SWCNT | Single-Walled Carbon Nanotubes |
TA | Tannic Acid |
TDI | 2,4’-Tolylene Diisocyanate |
TEMPO | 2,2,6,6-Tetramethylpiperidine 1-oxyl |
TFBG | Tilted Fiber Bragg Grating |
TFG | Tilted Fiber Grating |
TOCFs | TEMPO-Oxidized Cellulose Fibers |
VOCs | Volatile Organic Compounds |
WO3 | Tungsten Trioxide |
ZnO | Zinc Oxide |
ZrO2 | Zirconium Dioxide |
References
- Janik-Karpinska, E.; Brancaleoni, R.; Niemcewicz, M.; Wojtas, W.; Foco, M.; Podogrocki, M.; Bijak, M. Healthcare Waste—A Serious Problem for Global Health. Healthcare 2023, 11, 242. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, B. SDG TARGET 12.3 ON FOOD LOSS AND WASTE: 2023 PROGRESS REPORT|Champions 12.3; World Resources Institute: Washington, DC, USA, 2023; Available online: https://champions123.org/publication/sdg-target-123-2023-progress-report (accessed on 21 November 2024).
- NHS. NHS Clinical Waste Strategy; NHS England: London, UK, 2023; Available online: https://www.england.nhs.uk/long-read/nhs-clinical-waste-strategy/ (accessed on 21 November 2024).
- UKHSA. Vaccine Incident Guidance: Responding to Errors in Vaccine Storage, Handling and Administration; UK Health Security Agency: London, UK, 2022. Available online: https://assets.publishing.service.gov.uk/media/62c598188fa8f54e855dfe17/UKHSA-vaccine-incident-guidance-6-july-2022.pdf (accessed on 21 November 2024).
- WRAP. Returning to Normality After COVID-19: Food Waste Attitudes and Behaviours in 2021; WRAP: Banbury, UK, 2021; Available online: https://www.wrap.ngo/sites/default/files/2021-08/food-trends-report-august-2021.pdf (accessed on 21 November 2024).
- UNEP. United Nations Environment Programme Food Waste Index Report 2021; UNEP: Nairobi, Kenya, 2021; Available online: https://www.unep.org/resources/report/unep-food-waste-index-report-2021 (accessed on 21 November 2024).
- Food Wastage Footprint: Impacts on Natural Resources: Summary Report; FAO: Rome, Italy, 2013; ISBN 978-92-5-107752-8.
- Fortune Business Insights. Smart Packaging Market Size, Share & Industry Analysis, By Technology Type (Modified Atmosphere Packaging (MAP), Active Packaging, and Intelligent Packaging), By Application (Food & Beverages, Personal Care & Cosmetics, Pharmaceuticals, Electronics, E-Commerce, and Others), and Regional Forecast, 2024–2032. 2024. Available online: https://www.fortunebusinessinsights.com/smart-packaging-market-109166 (accessed on 6 November 2024).
- Biji, K.B.; Ravishankar, C.N.; Mohan, C.O.; Srinivasa Gopal, T.K. Smart Packaging Systems for Food Applications: A Review. J. Food Sci. Technol. 2015, 52, 6125–6135. [Google Scholar] [CrossRef] [PubMed]
- Ghaani, M.; Cozzolino, C.A.; Castelli, G.; Farris, S. An Overview of the Intelligent Packaging Technologies in the Food Sector. Trends Food Sci. Technol. 2016, 51, 1–11. [Google Scholar] [CrossRef]
- Yusufu, D.; Mills, A. A Colourimetric Vacuum Air-Pressure Indicator. Analyst 2019, 144, 5947–5952. [Google Scholar] [CrossRef]
- Sterr, J.; Fleckenstein, B.S.; Langowski, H.-C. The Effect of High-Pressure Processing on Tray Packages with Modified Atmosphere. Food Eng. Rev. 2015, 7, 209–221. [Google Scholar] [CrossRef]
- Li, X.; Koh, K.H.; Farhan, M.; Lai, K.W.C. An Ultraflexible Polyurethane Yarn-Based Wearable Strain Sensor with a Polydimethylsiloxane Infiltrated Multilayer Sheath for Smart Textiles. Nanoscale 2020, 12, 4110–4118. [Google Scholar] [CrossRef]
- Boz, Z.; Welt, B.A. Permeable Gas Cavity at Elevated Pressure Enhances Modified Atmosphere Packaging of Fresh Produce. J. Food Sci. 2018, 83, 1639–1649. [Google Scholar] [CrossRef]
- Seo, J.; Li, S.; Tsogbayar, D.; Hwang, T.; Park, J.; Ko, E.; Park, S.-J.; Yang, C.; Lee, H.S. Advanced Multiparallel-Connected Piezoresistive Physical Sensors: Elevating Performance Reliability of Flexible Strain and Pressure Sensors. ACS Appl. Mater. Interfaces 2024, 16, 22229–22237. [Google Scholar] [CrossRef]
- Bradford, K.J.; Dahal, P.; Van Asbrouck, J.; Kunusoth, K.; Bello, P.; Thompson, J.; Wu, F. The Dry Chain: Reducing Postharvest Losses and Improving Food Safety in Humid Climates. Trends Food Sci. Technol. 2018, 71, 84–93. [Google Scholar] [CrossRef]
- Kurmanov, N.; Tolysbayev, B.; Abilmazhinov, Y. The Limiting Storage Life of Perishables During Joint Transportation. CBUP 2015, 3, 499–505. [Google Scholar] [CrossRef]
- WHO. Good Storage and Distribution Practices; WHO: Geneva, Switzerland, 2019; Available online: https://www.who.int/publications/i/item/978-92-4-000182-4 (accessed on 13 October 2024).
- ISO 23412:2020; Indirect, Temperature-Controlled Refrigerated Delivery Services—Land Transport of Parcels with Intermediate Transfer. International Organization for Standardization: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/75468.html (accessed on 14 October 2024).
- ISO 23416:2023; General Specifications and Testing Methods for Temperature-Sensitive Medicinal Packages in Good Distribution Practice Principles. International Organization for Standardization: Geneva, Switzerland, 2023. Available online: https://www.iso.org/obp/ui/#iso:std:iso:23416:ed-1:v1:en (accessed on 14 October 2024).
- ISO 22982-1:2021; Packaging—Temperature-Controlled Transport Packaging for Parcels—Part 1: General Requirements and Testing Methods. International Organization for Standardization: Geneva, Switzerland, 2021. Available online: https://www.iso.org/standard/74273.html (accessed on 14 October 2024).
- ISO 12048:1994; Packaging—Complete, Filled Transport Packages—Compression and Stacking Tests. International Organization for Standardization: Geneva, Switzerland, 1994. Available online: https://www.iso.org/standard/21579.html (accessed on 14 October 2024).
- ISO 18602:2013; Packaging and the Environment—Optimization of the Packaging System. International Organization for Standardization: Geneva, Switzerland, 2013. Available online: https://www.iso.org/standard/55870.html (accessed on 14 October 2024).
- ISO 13355:2016; Packaging—Complete, Filled Transport Packages and Unit Loads—Vertical Random Vibration Test. International Organization for Standardization: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/62098.html (accessed on 14 October 2024).
- Tarcan, R.; Todor-Boer, O.; Petrovai, I.; Leordean, C.; Astilean, S.; Botiz, I. Reduced Graphene Oxide Today. J. Mater. Chem. C 2020, 8, 1198–1224. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, X.; Gao, S.; Yue, W.; Li, Y.; Shen, G. Recent Advances in Carbon Material-Based Multifunctional Sensors and Their Applications in Electronic Skin Systems. Adv. Funct. Mater. 2021, 31, 2104288. [Google Scholar] [CrossRef]
- Hou, P.-X.; Liu, C.; Cheng, H.-M. Purification of Carbon Nanotubes. Carbon 2008, 46, 2003–2025. [Google Scholar] [CrossRef]
- Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S.W. Carbon Nanotubes: Properties, Synthesis, Purification, and Medical Applications. Nanoscale Res. Lett. 2014, 9, 393. [Google Scholar] [CrossRef] [PubMed]
- Rao, N.; Singh, R.; Bashambu, L. Carbon-Based Nanomaterials: Synthesis and Prospective Applications. Mater. Today Proc. 2021, 44, 608–614. [Google Scholar] [CrossRef]
- Nasir, S.; Hussein, M.; Zainal, Z.; Yusof, N. Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications. Materials 2018, 11, 295. [Google Scholar] [CrossRef]
- Kirchner, E.-M.; Hirsch, T. Recent Developments in Carbon-Based Two-Dimensional Materials: Synthesis and Modification Aspects for Electrochemical Sensors. Microchim. Acta 2020, 187, 441. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. The Production of Carbon Materials by Hydrothermal Carbonization of Cellulose. Carbon 2009, 47, 2281–2289. [Google Scholar] [CrossRef]
- Simeonova, D.D.; Pollmann, K.; Bianco, A.; Lièvremont, D. Graphene Oxide and Bacteria Interactions: What Is Known and What Should We Expect? mSphere 2024, 9, e00715-23. [Google Scholar] [CrossRef]
- Lv, C.; Hu, C.; Luo, J.; Liu, S.; Qiao, Y.; Zhang, Z.; Song, J.; Shi, Y.; Cai, J.; Watanabe, A. Recent Advances in Graphene-Based Humidity Sensors. Nanomaterials 2019, 9, 422. [Google Scholar] [CrossRef]
- Zhu, S.; Kim, D.; Jeong, C. Recent Development of Mechanical Stimuli Detectable Sensors, Their Future, and Challenges: A Review. Sensors 2023, 23, 4300. [Google Scholar] [CrossRef] [PubMed]
- Mitura, K.; Kornacka, J.; Kopczyńska, E.; Kalisz, J.; Czerwińska, E.; Affeltowicz, M.; Kaczorowski, W.; Kolesińska, B.; Frączyk, J.; Bakalova, T.; et al. Active Carbon-Based Nanomaterials in Food Packaging. Coatings 2021, 11, 161. [Google Scholar] [CrossRef]
- Kamran, U.; Heo, Y.-J.; Lee, J.W.; Park, S.-J. Functionalized Carbon Materials for Electronic Devices: A Review. Micromachines 2019, 10, 234. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Adam, M.L.; Zhao, Y.; Zheng, W.; Gao, L.; Yin, Z.; Zhao, H. Machine Learning-Enhanced Flexible Mechanical Sensing. Nano-Micro Lett. 2023, 15, 55. [Google Scholar] [CrossRef]
- Yang, T.; Jiang, X.; Huang, Y.; Tian, Q.; Zhang, L.; Dai, Z.; Zhu, H. Mechanical Sensors Based on Two-Dimensional Materials: Sensing Mechanisms, Structural Designs and Wearable Applications. iScience 2022, 25, 103728. [Google Scholar] [CrossRef]
- Tang, C.; Wang, Y.; Li, Y.; Zeng, S.; Kong, L.; Li, L.; Sun, J.; Zhu, M.; Deng, T. A Review of Graphene-Based Temperature Sensors. Microelectron. Eng. 2023, 278, 112015. [Google Scholar] [CrossRef]
- European Parliament; Council of the European Union. Regulation (EU) 2025/40 of the European Parliament and of the Council of 19 December 2024 on Packaging and Packaging Waste, Amending Regulation (EU) 2019/1020 and Directive (EU) 2019/904, and Repealing Directive 94/62/EC (Text with EEA Relevance). Available online: http://data.europa.eu/eli/reg/2025/40/oj (accessed on 1 March 2025).
- European Parliament; Council of the European Union. European Parliament and Council Directive 94/62/EC of 20 December 1994 on Packaging and Packaging Waste; Publications Office of the European Union: Luxembourg, 2018; Volume 31994L0062, Available online: http://data.europa.eu/eli/dir/1994/62/oj (accessed on 1 March 2025).
- Secretary of State for Environment, Food and Rural Affairs. 2024 No. 1332 The Producer Responsibility Obligations (Packaging and Packaging Waste) Regulations 2024; The Stationery Office: London, UK, 2024. Available online: https://www.legislation.gov.uk/uksi/2024/1332/made (accessed on 1 March 2025).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Rathi, K.; Pal, K. Impact of Doping on GO: Fast Response–Recovery Humidity Sensor. ACS Omega 2017, 2, 842–851. [Google Scholar] [CrossRef]
- Fatima, Q.; Haidry, A.A.; Yao, Z.; He, Y.; Li, Z.; Sun, L.; Xie, L. The Critical Role of Hydroxyl Groups in Water Vapor Sensing of Graphene Oxide. Nanoscale Adv. 2019, 1, 1319–1330. [Google Scholar] [CrossRef]
- Serban, B.-C.; Cobianu, C.; Buiu, O.; Bumbac, M.; Dumbravescu, N.; Avramescu, V.; Nicolescu, C.M.; Brezeanu, M.; Radulescu, C.; Craciun, G.; et al. Quaternary Oxidized Carbon Nanohorns—Based Nanohybrid as Sensing Coating for Room Temperature Resistive Humidity Monitoring. Coatings 2021, 11, 530. [Google Scholar] [CrossRef]
- Serban, B.-C.; Cobianu, C.; Buiu, O.; Bumbac, M.; Dumbravescu, N.; Avramescu, V.; Nicolescu, C.M.; Brezeanu, M.; Pachiu, C.; Craciun, G.; et al. Ternary Nanocomposites Based on Oxidized Carbon Nanohorns as Sensing Layers for Room Temperature Resistive Humidity Sensing. Materials 2021, 14, 2705. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Cao, Y.; Chen, H.; Fan, B.; Zou, X.; Cheng, J.; Zhang, C. Rapid-Response Humidity Sensors Based on Ultra-Thin Films Stacked with Single-Layer Graphene Oxide. Results Chem. 2024, 7, 101444. [Google Scholar] [CrossRef]
- Trigona, C.; Al-Hamry, A.; Kanoun, O.; Baglio, S. Analysis of a Hybrid Micro-Electro-Mechanical Sensor Based on Graphene Oxide/Polyvinyl Alcohol for Humidity Measurements. Sensors 2019, 19, 1720. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.; Yin, K.; Xie, X.; Ji, J.; Wan, S.; Sun, L.; Terrones, M.; Dresselhaus, M.S. Ultrahigh Humidity Sensitivity of Graphene Oxide. Sci. Rep. 2013, 3, 2714. [Google Scholar] [CrossRef]
- Li, N.; Chen, X.; Chen, X.; Ding, X.; Zhao, X. Ultrahigh Humidity Sensitivity of Graphene Oxide Combined with Ag Nanoparticles. RSC Adv. 2017, 7, 45988–45996. [Google Scholar] [CrossRef]
- Paterakis, G.; Vaughan, E.; Gawade, D.R.; Murray, R.; Gorgolis, G.; Matsalis, S.; Anagnostopoulos, G.; Buckley, J.L.; O’Flynn, B.; Quinn, A.J.; et al. Highly Sensitive and Ultra-Responsive Humidity Sensors Based on Graphene Oxide Active Layers and High Surface Area Laser-Induced Graphene Electrodes. Nanomaterials 2022, 12, 2684. [Google Scholar] [CrossRef]
- Fei, X.; Huang, J.; Shi, W. Humidity Sensor Composed of Laser-Induced Graphene Electrode and Graphene Oxide for Monitoring Respiration and Skin Moisture. Sensors 2023, 23, 6784. [Google Scholar] [CrossRef]
- Ni, L.; Li, X.; Cai, F.; Dong, Z.; Deng, Y.; Jiang, T.; Su, Z.; Chang, H.; Zhang, Z.; Luo, Y. Printable and Flexible Humidity Sensor Based on Graphene -Oxide-Supported MoTe2 Nanosheets for Multifunctional Applications. Nanomaterials 2023, 13, 1309. [Google Scholar] [CrossRef]
- Priyadharshini, B.; Valsalal, P. An Improved Humidity Sensor with GO-Mn-Doped ZnO Nanocomposite and Dimensional Orchestration of Comb Electrode for Effective Bulk Manufacturing. Nanomaterials 2022, 12, 1659. [Google Scholar] [CrossRef]
- Ganbold, E.; Sharma, P.K.; Kim, E.-S.; Lee, D.-N.; Kim, N.-Y. Capacitive Humidity Sensor with a Rapid Response Time on a GO-Doped P(VDF-TrFE)/LiCl Composite for Noncontact Sensing Applications. Chemosensors 2023, 11, 122. [Google Scholar] [CrossRef]
- Sun, C.; Shi, Q.; Yazici, M.S.; Lee, C.; Liu, Y. Development of a Highly Sensitive Humidity Sensor Based on a Piezoelectric Micromachined Ultrasonic Transducer Array Functionalized with Graphene Oxide Thin Film. Sensors 2018, 18, 4352. [Google Scholar] [CrossRef] [PubMed]
- Yi, R.; Peng, B.; Zhao, Y.; Nie, D.; Chen, L.; Zhang, L. Quartz Crystal Microbalance Humidity Sensors Based on Structured Graphene Oxide Membranes with Magnesium Ions: Design, Mechanism and Performance. Membranes 2022, 12, 125. [Google Scholar] [CrossRef] [PubMed]
- Waheed, W.; Anwer, S.; Khan, M.U.; Sajjad, M.; Alazzam, A. 2D Ti3C2Tx-MXene Nanosheets and Graphene Oxide Based Highly Sensitive Humidity Sensor for Wearable and Flexible Electronics. Chem. Eng. J. 2024, 480, 147981. [Google Scholar] [CrossRef]
- Zeng, S.; Pan, Q.; Huang, Z.; Gu, C.; Wang, T.; Xu, J.; Yan, Z.; Zhao, F.; Li, P.; Tu, Y.; et al. Ultrafast Response of Self-Powered Humidity Sensor of Flexible Graphene Oxide Film. Mater. Des. 2023, 226, 111683. [Google Scholar] [CrossRef]
- Yao, X.; Chen, L.; Luo, Z.; Ye, C.; Liang, F.; Yang, T.; Liu, X.; Tian, X.; Bi, H.; Wang, C.; et al. High-performance Flexible Humidity Sensors for Breath Detection and Non-touch Switches. Nano Sel. 2022, 3, 1168–1177. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, X.; Yao, Y.; Mao, K. Analysis of the Effect of Electrode Materials on the Sensitivity of Quartz Crystal Microbalance. Nanomaterials 2022, 12, 975. [Google Scholar] [CrossRef]
- Yao, Y.; Huang, X.; Chen, Q.; Zhang, Z.; Ling, W. High Sensitivity and High Stability QCM Humidity Sensors Based on Polydopamine Coated Cellulose Nanocrystals/Graphene Oxide Nanocomposite. Nanomaterials 2020, 10, 2210. [Google Scholar] [CrossRef]
- Jiang, B.; Bi, Z.; Hao, Z.; Yuan, Q.; Feng, D.; Zhou, K.; Zhang, L.; Gan, X.; Zhao, J. Graphene Oxide-Deposited Tilted Fiber Grating for Ultrafast Humidity Sensing and Human Breath Monitoring. Sens. Actuators B Chem. 2019, 293, 336–341. [Google Scholar] [CrossRef]
- Syuhada, A.; Shamsudin, M.S.; Daud, S.; Krishnan, G.; Harun, S.W.; Aziz, M.S.A. Single-Mode Modified Tapered Fiber Structure Functionalized With GO-PVA Composite Layer for Relative Humidity Sensing. Photonic Sens. 2021, 11, 314–324. [Google Scholar] [CrossRef]
- Huang, X.; Leng, T.; Georgiou, T.; Abraham, J.; Raveendran Nair, R.; Novoselov, K.S.; Hu, Z. Graphene Oxide Dielectric Permittivity at GHz and Its Applications for Wireless Humidity Sensing. Sci. Rep. 2018, 8, 43. [Google Scholar] [CrossRef]
- Wang, C.; Jiao, C.; Wang, M.; Pan, J.; Wang, Q. GO/CNT−OH/Nafion Nanocomposite Humidity Sensor Based on the LC Wireless Method. Nanomaterials 2023, 13, 1925. [Google Scholar] [CrossRef] [PubMed]
- Alrammouz, R.; Podlecki, J.; Vena, A.; Garcia, R.; Abboud, P.; Habchi, R.; Sorli, B. Highly Porous and Flexible Capacitive Humidity Sensor Based on Self-Assembled Graphene Oxide Sheets on a Paper Substrate. Sens. Actuators B Chem. 2019, 298, 126892. [Google Scholar] [CrossRef]
- Jung, S.I.; Jang, I.R.; Ryu, C.; Park, J.; Padhan, A.M.; Kim, H.J. Graphene Oxide Decorated Multi-Frequency Surface Acoustic Wave Humidity Sensor for Hygienic Applications. Sci. Rep. 2023, 13, 6838. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Huang, J.; Chen, W.; Huang, Q. Fabrication and Characterization of Flexible Capacitive Humidity Sensors Based on Graphene Oxide on Porous PTFE Substrates. Sensors 2021, 21, 5118. [Google Scholar] [CrossRef]
- Wang, X.; Deng, Y.; Chen, X.; Jiang, P.; Cheung, Y.K.; Yu, H. An Ultrafast-Response and Flexible Humidity Sensor for Human Respiration Monitoring and Noncontact Safety Warning. Microsyst. Nanoeng. 2021, 7, 99. [Google Scholar] [CrossRef]
- Ouda, E.; Yousf, N.; Morsy, M.; Duraia, E.-S.M. Flexible Humidity Sensor Based on Light-Scribed Graphene Oxide. J. Mater. Sci. Mater. Electron. 2022, 33, 18241–18251. [Google Scholar] [CrossRef]
- Mohammedture, M.; Al Hashmi, S.; Lu, J.-Y.; Gutierrez, M.; Esawi, A.M.K.; Al Teneiji, M. Numerical Study of a Capacitive Graphene Oxide Humidity Sensor with Etched Configuration. ACS Omega 2021, 6, 29781–29787. [Google Scholar] [CrossRef]
- Yang, Y.; Su, G.; Li, Q.; Zhu, Z.; Liu, S.; Zhuo, B.; Li, X.; Ti, P.; Yuan, Q. Performance of the Highly Sensitive Humidity Sensor Constructed with Nanofibrillated Cellulose/Graphene Oxide/Polydimethylsiloxane Aerogel via Freeze Drying. RSC Adv. 2021, 11, 1543–1552. [Google Scholar] [CrossRef]
- Wang, F.; Wang, B.; Zhang, X.; Lu, M.; Zhang, Y.; Sun, C.; Peng, W. High Sensitivity Humidity Detection Based on Functional GO/MWCNTs Hybrid Nano-Materials Coated Titled Fiber Bragg Grating. Nanomaterials 2021, 11, 1134. [Google Scholar] [CrossRef]
- Khan, M.U.; Abbas, Y.; Abunahla, H.; Rezeq, M.; Alazzam, A.; Alamoodi, N.; Mohammad, B. Biocompatible Humidity Sensor Using Paper Cellulose Fiber/GO Matrix for Human Health and Environment Monitoring. Sens. Actuators B Chem. 2023, 393, 134188. [Google Scholar] [CrossRef]
- Khattak, Z.J.; Sajid, M.; Javed, M.; Zeeshan Rizvi, H.M.; Awan, F.S. Mass-Producible 2D Nanocomposite-Based Temperature-Independent All-Printed Relative Humidity Sensor. ACS Omega 2022, 7, 16605–16615. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Saqib, M.; Rehman, M.M.; Mutee Ur Rehman, H.M.; Rahman, S.A.; Yang, Y.; Kim, S.; Kim, W.-Y. A Full-Range Flexible and Printed Humidity Sensor Based on a Solution-Processed P(VDF-TrFE)/Graphene-Flower Composite. Nanomaterials 2021, 11, 1915. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.A.; Khan, S.A.; Rehman, M.M.; Kim, W.-Y. Highly Sensitive and Stable Humidity Sensor Based on the Bi-Layered PVA/Graphene Flower Composite Film. Nanomaterials 2022, 12, 1026. [Google Scholar] [CrossRef]
- Saqib, M.; Ali Khan, S.; Mutee Ur Rehman, H.M.; Yang, Y.; Kim, S.; Rehman, M.M.; Young Kim, W. High-Performance Humidity Sensor Based on the Graphene Flower/Zinc Oxide Composite. Nanomaterials 2021, 11, 242. [Google Scholar] [CrossRef]
- Beniwal, A.; Ganguly, P.; Aliyana, A.K.; Khandelwal, G.; Dahiya, R. Screen-Printed Graphene-Carbon Ink Based Disposable Humidity Sensor with Wireless Communication. Sens. Actuators B Chem. 2023, 374, 132731. [Google Scholar] [CrossRef]
- Parthasarathy, P. Graphene/Polypyrrole/Carbon Black Nanocomposite Material Ink-Based Screen-Printed Low-Cost, Flexible Humidity Sensor. Emergent Mater. 2023, 6, 2053–2060. [Google Scholar] [CrossRef]
- Yoshida, A.; Wang, Y.-F.; Tachibana, S.; Hasegawa, A.; Sekine, T.; Takeda, Y.; Hong, J.; Kumaki, D.; Shiba, T.; Tokito, S. Printed, All-Carbon-Based Flexible Humidity Sensor Using a Cellulose Nanofiber/Graphene Nanoplatelet Composite. Carbon Trends 2022, 7, 100166. [Google Scholar] [CrossRef]
- Lim, W.Y.; Goh, C.-H.; Yap, K.Z.; Ramakrishnan, N. One-Step Fabrication of Paper-Based Inkjet-Printed Graphene for Breath Monitor Sensors. Biosensors 2023, 13, 209. [Google Scholar] [CrossRef]
- Wang, H.; Tang, C.; Xu, J. A Highly Sensitive Flexible Humidity Sensor Based on Conductive Tape and a Carboxymethyl Cellulose@graphene Composite. RSC Adv. 2023, 13, 27746–27755. [Google Scholar] [CrossRef]
- Andrić, S.; Tomašević-Ilić, T.; Bošković, M.V.; Sarajlić, M.; Vasiljević-Radović, D.; Smiljanić, M.M.; Spasenović, M. Ultrafast Humidity Sensor Based on Liquid Phase Exfoliated Graphene. Nanotechnology 2021, 32, 025505. [Google Scholar] [CrossRef]
- Lin, W.-D.; Lin, Y.-C.; Wu, R.-J.; Chavali, M. Gr/3D–ZnO Nanocomposites as Humidity Sensors with Enhanced Sensing Response. Polymers 2021, 13, 1623. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Rivera, D.; Rodríguez-Roldán, G.; Mora-Martínez, R.; Suaste-Gómez, E. A Capacitive Humidity Sensor Based on an Electrospun PVDF/Graphene Membrane. Sensors 2017, 17, 1009. [Google Scholar] [CrossRef] [PubMed]
- Phan, D.-T.; Park, I.; Park, A.-R.; Park, C.-M.; Jeon, K.-J. Black P/Graphene Hybrid: A Fast Response Humidity Sensor with Good Reversibility and Stability. Sci. Rep. 2017, 7, 10561. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-U.; Ma, Y.-W.; Jeong, S.-Y.; Shin, B.-S. Direct Fabrication of Ultra-Sensitive Humidity Sensor Based on Hair-Like Laser-Induced Graphene Patterns. Micromachines 2020, 11, 476. [Google Scholar] [CrossRef]
- Lin, W.-D.; Chang, T.-C.; Wu, R.-J. Humidity Sensors Based on High Performance Graphene/Zirconium Dioxide Nanocomposite Material. Sens. Mater. 2018, 30, 1297. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Y.; Jin, L.; Chen, Z.; Li, Y.; Li, Q.; Cao, M.; Che, Y.; Yang, J.; Yao, J. A Fast Response−Recovery 3D Graphene Foam Humidity Sensor for User Interaction. Sensors 2018, 18, 4337. [Google Scholar] [CrossRef]
- Muñoz, R.; León-Boigues, L.; López-Elvira, E.; Munuera, C.; Vázquez, L.; Mompeán, F.; Martín-Gago, J.Á.; Palacio, I.; García-Hernández, M. Acrylates Polymerization on Covalent Plasma-Assisted Functionalized Graphene: A Route to Synthesize Hybrid Functional Materials. ACS Appl. Mater. Interfaces 2023, 15, 46171–46180. [Google Scholar] [CrossRef]
- Shilpa, M.P.; Chethan, B.; Shetty, S.J.; Murari, M.S.; Waikar, M.R.; Sonkawade, R.G.; Gurumurthy, S.C. Highly Responsive Reduced Graphene Oxide Embedded PVDF Flexible Film-Based Room Temperature Operable Humidity Sensor. Sens. Actuators A Phys. 2024, 366, 115011. [Google Scholar] [CrossRef]
- Yang, H.; Ye, Q.; Zeng, R.; Zhang, J.; Yue, L.; Xu, M.; Qiu, Z.-J.; Wu, D. Stable and Fast-Response Capacitive Humidity Sensors Based on a ZnO Nanopowder/PVP-RGO Multilayer. Sensors 2017, 17, 2415. [Google Scholar] [CrossRef]
- Al-Hamry, A.; Lu, T.; Chen, H.; Adiraju, A.; Nasraoui, S.; Brahem, A.; Bajuk-Bogdanović, D.; Weheabby, S.; Pašti, I.A.; Kanoun, O. Ultra-Sensitive and Fast Humidity Sensors Based on Direct Laser-Scribed Graphene Oxide/Carbon Nanotubes Composites. Nanomaterials 2023, 13, 1473. [Google Scholar] [CrossRef]
- Papamatthaiou, S.; Argyropoulos, D.-P.; Farmakis, F.; Georgoulas, N. Investigation of the H 2 O Sensing Mechanism of DC-Operated Chemiresistors Based on Graphene Oxide and Thermally Reduced Graphene Oxide. IEEE Sens. J. 2019, 19, 7841–7848. [Google Scholar] [CrossRef]
- Lei, C.; Zhang, J.; Liang, T.; Liu, R.; Zhao, Z.; Xiong, J.; Yin, K. Humidity Sensor Based on rGO-SDS Composite Film. Micromachines 2022, 13, 504. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, Y.; Shang, Y.; Umar, A.; Xie, P.; Qi, Q.; Zhou, G. One-Step Fabrication of Pyranine Modified- Reduced Graphene Oxide with Ultrafast and Ultrahigh Humidity Response. Sci. Rep. 2017, 7, 2713. [Google Scholar] [CrossRef]
- Yan, H.; Chen, Z.; Zeng, L.; Wang, Z.; Zheng, G.; Zhou, R. The Effect of rGO-Doping on the Performance of SnO2/rGO Flexible Humidity Sensor. Nanomaterials 2021, 11, 3368. [Google Scholar] [CrossRef]
- Kim, S.J.; Park, H.J.; Yoon, E.S.; Choi, B.G. Preparation of Reduced Graphene Oxide Sheets with Large Surface Area and Porous Structure for High-Sensitivity Humidity Sensor. Chemosensors 2023, 11, 276. [Google Scholar] [CrossRef]
- Du, Y.; Li, X.; Zhao, X.; Wang, N.; Li, D. Fabrication and Humidity Sensing of Reduced Graphene Oxide/Polyaniline Composite Film on Flexible Paper Substrate. Sens. Mater. 2022, 34, 2065. [Google Scholar] [CrossRef]
- Müller, C.; Al-Hamry, A.; Kanoun, O.; Rahaman, M.; Zahn, D.R.T.; Matsubara, E.Y.; Rosolen, J.M. Humidity Sensing Behavior of Endohedral Li-Doped and Undoped SWCNT/SDBS Composite Films. Sensors 2019, 19, 171. [Google Scholar] [CrossRef]
- Turkani, V.S.; Maddipatla, D.; Narakathu, B.B.; Saeed, T.S.; Obare, S.O.; Bazuin, B.J.; Atashbar, M.Z. A Highly Sensitive Printed Humidity Sensor Based on a Functionalized MWCNT/HEC Composite for Flexible Electronics Application. Nanoscale Adv. 2019, 1, 2311–2322. [Google Scholar] [CrossRef]
- Zhu, P.; Kuang, Y.; Wei, Y.; Li, F.; Ou, H.; Jiang, F.; Chen, G. Electrostatic Self-Assembly Enabled Flexible Paper-Based Humidity Sensor with High Sensitivity and Superior Durability. Chem. Eng. J. 2021, 404, 127105. [Google Scholar] [CrossRef]
- Arunachalam, S.; Gupta, A.A.; Izquierdo, R.; Nabki, F. Suspended Carbon Nanotubes for Humidity Sensing. Sensors 2018, 18, 1655. [Google Scholar] [CrossRef]
- Lee, Y.; Yoon, J.; Kim, Y.; Kim, D.M.; Kim, D.H.; Choi, S.-J. Humidity Effects According to the Type of Carbon Nanotubes. IEEE Access 2021, 9, 6810–6816. [Google Scholar] [CrossRef]
- Chaloeipote, G.; Samarnwong, J.; Traiwatcharanon, P.; Kerdcharoen, T.; Wongchoosuk, C. High-Performance Resistive Humidity Sensor Based on Ag Nanoparticles Decorated with Graphene Quantum Dots. R. Soc. Open Sci. 2021, 8, 210407. [Google Scholar] [CrossRef]
- Jlassi, K.; Mallick, S.; Eribi, A.; Chehimi, M.M.; Ahmad, Z.; Touati, F.; Krupa, I. Facile Preparation of N-S Co-Doped Graphene Quantum Dots (GQDs) from Graphite Waste for Efficient Humidity Sensing. Sens. Actuators B Chem. 2021, 328, 129058. [Google Scholar] [CrossRef]
- Morsy, M.; Gomaa, I.; Mokhtar, M.M.; ElHaes, H.; Ibrahim, M. Design and Implementation of Humidity Sensor Based on Carbon Nitride Modified with Graphene Quantum Dots. Sci. Rep. 2023, 13, 2891. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yin, C.; Zhou, J.; Li, H.; Liu, Y.; Shen, Y.; Garner, S.; Fu, Y.; Duan, H. Ultra-Thin Glass Based Flexible, Transparent and Ultra-Sensitive Surface Acoustic Wave Humidity Sensor with ZnO Nanowires and Graphene Quantum Dots. ACS Appl. Mater. Interfaces 2020, 12, 39817–39825. [Google Scholar] [CrossRef]
- Joshi, S.R.; Kim, B.; Kim, S.-K.; Kim, G.-H.; Song, W.; Park, K.; Shin, H. Low-Cost and Fast-Response Resistive Humidity Sensor Comprising Biopolymer-Derived Carbon Thin Film and Carbon Microelectrodes. J. Electrochem. Soc. 2020, 167, 147511. [Google Scholar] [CrossRef]
- Ling, T.Y.; Pu, S.H.; Fishlock, S.J.; Han, Y.; Reynolds, J.D.; McBride, J.W.; Chong, H.M.H. Sensing Performance of Nanocrystalline Graphite-Based Humidity Sensors. IEEE Sens. J. 2019, 19, 5421–5428. [Google Scholar] [CrossRef]
- Serban, B.C.; Buiu, O.; Dumbravescu, N.; Cobianu, C.; Avramescu, V.; Brezeanu, M.; Bumbac, M.; Nicolescu, C.M. Oxidized Carbon Nanohorns as Novel Sensing Layer for Resistive Humidity Sensor. ACSi 2020, 67, 469–475. [Google Scholar] [CrossRef]
- Saquib, M.; Shiraj, S.; Nayak, R.; Nirmale, A.; Selvakumar, M. Synthesis and Fabrication of Graphite/WO3 Nanocomposite-Based Screen-Printed Flexible Humidity Sensor. J. Electron. Mater. 2023, 52, 4226–4238. [Google Scholar] [CrossRef]
- Koskinen, T.; Juntunen, T.; Tittonen, I. Large-Area Thermal Distribution Sensor Based on Multilayer Graphene Ink. Sensors 2020, 20, 5188. [Google Scholar] [CrossRef]
- Wang, S.; Feng, M.; Wu, S.; Wang, Q.; Zhang, L. Highly Sensitive Temperature Sensor Based on Gain Competition Mechanism Using Graphene Coated Microfiber. IEEE Photonics J. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Pan, J.; Liu, S.; Zhang, H.; Lu, J. A Flexible Temperature Sensor Array with Polyaniline/Graphene–Polyvinyl Butyral Thin Film. Sensors 2019, 19, 4105. [Google Scholar] [CrossRef] [PubMed]
- Landi, G.; Granata, V.; Germano, R.; Pagano, S.; Barone, C. Low-Power and Eco-Friendly Temperature Sensor Based on Gelatin Nanocomposite. Nanomaterials 2022, 12, 2227. [Google Scholar] [CrossRef]
- Landi, G.; Pagano, S.; Granata, V.; Avallone, G.; La Notte, L.; Palma, A.L.; Sdringola, P.; Puglisi, G.; Barone, C. Regeneration and Long-Term Stability of a Low-Power Eco-Friendly Temperature Sensor Based on a Hydrogel Nanocomposite. Nanomaterials 2024, 14, 283. [Google Scholar] [CrossRef]
- Jasmi, F.; Azeman, N.H.; Bakar, A.A.A.; Zan, M.S.D.; Haji Badri, K.; Su’ait, M.S. Ionic Conductive Polyurethane-Graphene Nanocomposite for Performance Enhancement of Optical Fiber Bragg Grating Temperature Sensor. IEEE Access 2018, 6, 47355–47363. [Google Scholar] [CrossRef]
- Štulík, J.; Musil, O.; Josefík, F.; Kadlec, P. Graphene-Based Temperature Sensors–Comparison of the Temperature and Humidity Dependences. Nanomaterials 2022, 12, 1594. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, L.; Huang, Y.; Wang, S.; Pan, G.; Li, L. Directly Writing Flexible Temperature Sensor with Graphene Nanoribbons for Disposable Healthcare Devices. RSC Adv. 2020, 10, 22222–22229. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, R.; Wan, Z.; Wu, Z.; Song, D.; Xiao, X. Laser-Induced Graphene Based Flexible Sensing and Heating for Food Monitoring. ACS Appl. Electron. Mater. 2024, 6, 3597–3609. [Google Scholar] [CrossRef]
- Li, Q.; Bai, R.; Guo, L.; Gao, Y. All Laser Direct Writing Process for Temperature Sensor Based on Graphene and Silver. Front. Optoelectron. 2024, 17, 5. [Google Scholar] [CrossRef]
- Davaji, B.; Cho, H.D.; Malakoutian, M.; Lee, J.-K.; Panin, G.; Kang, T.W.; Lee, C.H. A Patterned Single Layer Graphene Resistance Temperature Sensor. Sci. Rep. 2017, 7, 8811. [Google Scholar] [CrossRef]
- Irfan, M.; Khan, Y.; Rehman, A.U.; Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Plasmonic Refractive Index and Temperature Sensor Based on Graphene and LiNbO3. Sensors 2022, 22, 7790. [Google Scholar] [CrossRef] [PubMed]
- Viti, L.; Riccardi, E.; Beere, H.E.; Ritchie, D.A.; Vitiello, M.S. Real-Time Measure of the Lattice Temperature of a Semiconductor Heterostructure Laser via an On-Chip Integrated Graphene Thermometer. ACS Nano 2023, 17, 6103–6112. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.; Su, N.; Li, M. Thermal-Resistance Effect of Graphene at High Temperatures in Nanoelectromechanical Temperature Sensors. Micromachines 2022, 13, 2078. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Zhou, S.; Mei, L.; Guo, M.; Zhang, H.; Li, Q.; Zhang, S.; Niu, Y.; Zhuang, Y.; Geng, W.; et al. Nanoelectromechanical Temperature Sensor Based on Piezoresistive Properties of Suspended Graphene Film. Nanomaterials 2023, 13, 1103. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Su, N.; Li, M. Improving Consistency and Performance of Graphene-Based Devices via Al Sacrificial Layer. Colloid Interface Sci. Commun. 2023, 56, 100743. [Google Scholar] [CrossRef]
- Pawlak, R.; Lebioda, M.; Rymaszewski, J.; Szymanski, W.; Kolodziejczyk, L.; Kula, P. A Fully Transparent Flexible Sensor for Cryogenic Temperatures Based on High Strength Metallurgical Graphene. Sensors 2016, 17, 51. [Google Scholar] [CrossRef]
- Kun, H.; Bin, L.; Orban, M.; Donghai, Q.; Hongbo, Y. Accurate Flexible Temperature Sensor Based on Laser-Induced Graphene Material. Shock Vib. 2021, 2021, 9938010. [Google Scholar] [CrossRef]
- Fernández Sánchez-Romate, X.X.; Del Bosque García, A.; Sánchez, M.; Ureña, A. Electrical Transport Mechanisms in Graphene Nanoplatelet Doped Polydimethylsiloxane and Application to Ultrasensitive Temperature Sensors. ACS Appl. Mater. Interfaces 2023, 15, 22377–22394. [Google Scholar] [CrossRef]
- Liu, G.; Tan, Q.; Kou, H.; Zhang, L.; Wang, J.; Lv, W.; Dong, H.; Xiong, J. A Flexible Temperature Sensor Based on Reduced Graphene Oxide for Robot Skin Used in Internet of Things. Sensors 2018, 18, 1400. [Google Scholar] [CrossRef]
- Sehrawat, P.; Abid; Islam, S.S.; Mishra, P. Reduced Graphene Oxide Based Temperature Sensor: Extraordinary Performance Governed by Lattice Dynamics Assisted Carrier Transport. Sens. Actuators B Chem. 2018, 258, 424–435. [Google Scholar] [CrossRef]
- Neella, N.; Gaddam, V.; Nayak, M.M.; Dinesh, N.S.; Rajanna, K. Scalable Fabrication of Highly Sensitive Flexible Temperature Sensors Based on Silver Nanoparticles Coated Reduced Graphene Oxide Nanocomposite Thin Films. Sens. Actuators A Phys. 2017, 268, 173–182. [Google Scholar] [CrossRef]
- Barmpakos, D.; Belessi, V.; Schelwald, R.; Kaltsas, G. Evaluation of Inkjet-Printed Reduced and Functionalized Water-Dispersible Graphene Oxide and Graphene on Polymer Substrate—Application to Printed Temperature Sensors. Nanomaterials 2021, 11, 2025. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Mariatti, M.; Zubir, S.A.; Rusli, A.; Manaf, A.A.; Khirotdin, R.K. Eco-Friendly Alkali Lignin-Assisted Water-Based Graphene Oxide Ink and Its Application as a Resistive Temperature Sensor. Nanotechnology 2024, 35, 055301. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Han, Y.; Cheng, H.; Xiong, Z.; Luo, B.; Ma, T.; Li, L.; Liu, S.; Chen, X.; Yi, C. Synthesized Silver Nanoparticles Decorated Reduced Graphene Oxide/Silver Ink for Aerosol Jet Printed Conformal Temperature Sensor with a Wide Sensing Range and Excellent Stability. J. Mater. Res. Technol. 2023, 25, 873–886. [Google Scholar] [CrossRef]
- Sehrawat, P.; Abid, A.; Islam, S.S. An Ultrafast Quantum Thermometer from Graphene Quantum Dots. Nanoscale Adv. 2019, 1, 1772–1783. [Google Scholar] [CrossRef]
- Liu, Q.; Tai, H.; Yuan, Z.; Zhou, Y.; Su, Y.; Jiang, Y. A High-Performances Flexible Temperature Sensor Composed of Polyethyleneimine/Reduced Graphene Oxide Bilayer for Real-Time Monitoring. Adv. Mater. Technol. 2019, 4, 1800594. [Google Scholar] [CrossRef]
- Xie, Z.; Li, H.; Mi, H.-Y.; Feng, P.-Y.; Liu, Y.; Jing, X. Freezing-Tolerant, Widely Detectable and Ultra-Sensitive Composite Organohydrogel for Multiple Sensing Applications. J. Mater. Chem. C 2021, 9, 10127–10137. [Google Scholar] [CrossRef]
- Morsy, M.; Darwish, A.G.; Mokhtar, M.M.; Elbashar, Y.; Elzwawy, A. Preparation, Investigation, and Temperature Sensing Application of rGO/SnO2/Co3O4 Composite. J. Mater. Sci. Mater. Electron. 2022, 33, 25419–25433. [Google Scholar] [CrossRef]
- Kumar, A.; Hsieh, P.-Y.; Shaikh, M.O.; Kumar, R.K.R.; Chuang, C.-H. Flexible Temperature Sensor Utilizing MWCNT Doped PEG-PU Copolymer Nanocomposites. Micromachines 2022, 13, 197. [Google Scholar] [CrossRef]
- Tsai, T.-W.; Ni, I.-C.; Wu, C.-I.; Cheng, I.-C.; Chen, J.-Z. Effect of Solution Aging on Temperature Sensitivity of CNT/PEDOT:PSS. ECS J. Solid State Sci. Technol. 2023, 12, 027001. [Google Scholar] [CrossRef]
- Xiao, Y.; Lin, J.; Xiao, J.; Weng, M.; Zhang, W.; Zhou, P.; Luo, Z.; Chen, L. A Multi-Functional Light-Driven Actuator with an Integrated Temperature-Sensing Function Based on a Carbon Nanotube Composite. Nanoscale 2021, 13, 6259–6265. [Google Scholar] [CrossRef] [PubMed]
- Turkani, V.S.; Maddipatla, D.; Narakathu, B.B.; Bazuin, B.J.; Atashbar, M.Z. A Carbon Nanotube Based NTC Thermistor Using Additive Print Manufacturing Processes. Sens. Actuators A Phys. 2018, 279, 1–9. [Google Scholar] [CrossRef]
- Kuzubasoglu, B.A.; Sayar, E.; Bahadir, S.K. Inkjet-Printed CNT/PEDOT:PSS Temperature Sensor on a Textile Substrate for Wearable Intelligent Systems. IEEE Sens. J. 2021, 21, 13090–13097. [Google Scholar] [CrossRef]
- Ben-Shimon, Y.; Ya’akobovitz, A. Flexible and Bio-Compatible Temperature Sensors Based on Carbon Nanotube Composites. Measurement 2021, 172, 108889. [Google Scholar] [CrossRef]
- Song, H.; Zhang, Y.; Cao, J. Sensing Mechanism of an Ionization Gas Temperature Sensor Based on a Carbon Nanotube Film. RSC Adv. 2017, 7, 53265–53269. [Google Scholar] [CrossRef]
- Sarma, S.; Lee, J.H. Developing Efficient Thin Film Temperature Sensors Utilizing Layered Carbon Nanotube Films. Sensors 2018, 18, 3182. [Google Scholar] [CrossRef]
- Yang, H.; Qi, D.; Liu, Z.; Chandran, B.K.; Wang, T.; Yu, J.; Chen, X. Soft Thermal Sensor with Mechanical Adaptability. Adv. Mater. 2016, 28, 9175–9181. [Google Scholar] [CrossRef]
- Leng, X.; Li, W.; Luo, D.; Wang, F. Differential Structure With Graphene Oxide for Both Humidity and Temperature Sensing. IEEE Sens. J. 2017, 17, 4357–4364. [Google Scholar] [CrossRef]
- Cai, C.; Qin, M. High-performance Bulk Silicon Interdigital Capacitive Temperature Sensor Based on Graphene Oxide. Electron. lett. 2013, 49, 488–490. [Google Scholar] [CrossRef]
- Soni, M.; Bhattacharjee, M.; Ntagios, M.; Dahiya, R. Printed Temperature Sensor Based on PEDOT: PSS-Graphene Oxide Composite. IEEE Sens. J. 2020, 20, 7525–7531. [Google Scholar] [CrossRef]
- Zhou, C.; Tang, N.; Zhang, X.; Fang, Y.; Jiang, Y.; Zhang, H.; Duan, X. Simultaneously Optimize the Response Speed and Sensitivity of Low Dimension Conductive Polymers for Epidermal Temperature Sensing Applications. Front. Chem. 2020, 8, 194. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Tong, R.-J.; Chen, M.-Q.; Xia, F. Fluorescence Temperature Sensor Based on GQDs Solution Encapsulated in Hollow Core Fiber. IEEE Photon. Technol. Lett. 2017, 29, 1544–1547. [Google Scholar] [CrossRef]
- Zhang, L.; Lyu, S.; Zhang, Q.; Wu, Y.; Melcher, C.; Chmely, S.C.; Chen, Z.; Wang, S. Dual-Emitting Film with Cellulose Nanocrystal-Assisted Carbon Dots Grafted SrAl2O4, Eu2+, Dy3+ Phosphors for Temperature Sensing. Carbohydr. Polym. 2019, 206, 767–777. [Google Scholar] [CrossRef]
- Zhang, Q.; Liang, X.; Bi, W.; Pang, X.; Zhao, Y. Integrated Amorphous Carbon Film Temperature Sensor with Silicon Accelerometer into MEMS Sensor. Micromachines 2024, 15, 1144. [Google Scholar] [CrossRef]
- Smith, A.D.; Niklaus, F.; Paussa, A.; Schröder, S.; Fischer, A.C.; Sterner, M.; Wagner, S.; Vaziri, S.; Forsberg, F.; Esseni, D.; et al. Piezoresistive Properties of Suspended Graphene Membranes under Uniaxial and Biaxial Strain in Nanoelectromechanical Pressure Sensors. ACS Nano 2016, 10, 9879–9886. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, Z.; Qi, Y.; Li, M. A Novel Crossbeam Structure with Graphene Sensing Element for N/MEMS Mechanical Sensors. Nanomaterials 2022, 12, 2101. [Google Scholar] [CrossRef]
- Kou, H.; Zhang, L.; Tan, Q.; Liu, G.; Dong, H.; Zhang, W.; Xiong, J. Wireless Wide-Range Pressure Sensor Based on Graphene/PDMS Sponge for Tactile Monitoring. Sci. Rep. 2019, 9, 3916. [Google Scholar] [CrossRef]
- Feng, C.; Yi, Z.; Jin, X.; Seraji, S.M.; Dong, Y.; Kong, L.; Salim, N. Solvent Crystallization-Induced Porous Polyurethane/Graphene Composite Foams for Pressure Sensing. Compos. Part B Eng. 2020, 194, 108065. [Google Scholar] [CrossRef]
- Deng, Z.; Gao, C.; Feng, S.; Zhang, H.; Liu, Y.; Zhu, Y.; Wang, J.; Xiang, X.; Xie, H. Highly Compressible, Light-Weight and Robust Nitrogen-Doped Graphene Composite Aerogel for Sensitive Pressure Sensors. Chem. Eng. J. 2023, 471, 144790. [Google Scholar] [CrossRef]
- Du, B.; Chao, Y.; Yang, K.; Li, B.; Luo, R.; Zhou, S.; Li, H. Stretchable and Tough Tannic Acid-Modified Graphene Oxide/Polyvinyl Alcohol Conductive Hydrogels for Strain and Pressure Sensors. AIP Adv. 2022, 12, 095206. [Google Scholar] [CrossRef]
- Wang, A.; Hu, M.; Zhou, L.; Qiang, X. Self-Powered Wearable Pressure Sensors with Enhanced Piezoelectric Properties of Aligned P(VDF-TrFE)/MWCNT Composites for Monitoring Human Physiological and Muscle Motion Signs. Nanomaterials 2018, 8, 1021. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Ran, Y.; Li, X.; Xu, H.; Huang, Q.; Duan, Z.; Yuan, Z.; Jiang, Y.; Tai, H. Amorphous Carbon Derived from Daily Carbon Ink for Wide Detection Range, Low-Cost, Eco-Friendly and Flexible Pressure Sensor. Mater. Chem. Phys. 2024, 321, 129489. [Google Scholar] [CrossRef]
- Guo, D.; Lei, X.; Chen, H.; Yi, L.; Li, Y.; Zhao, Y.; Liu, F.; Cheng, G.J. Highly Flexible and Sensitive Pressure Sensor: Fabrication of Porous PDMS/Graphene Composite via Laser Thermoforming. Adv. Sens. Res. 2024, 3, 2300165. [Google Scholar] [CrossRef]
- Park, S.W.; Das, P.S.; Park, J.Y. Development of Wearable and Flexible Insole Type Capacitive Pressure Sensor for Continuous Gait Signal Analysis. Org. Electron. 2018, 53, 213–220. [Google Scholar] [CrossRef]
- Marshall, J.E.; Zhenova, A.; Roberts, S.; Petchey, T.; Zhu, P.; Dancer, C.E.J.; McElroy, C.R.; Kendrick, E.; Goodship, V. On the Solubility and Stability of Polyvinylidene Fluoride. Polymers 2021, 13, 1354. [Google Scholar] [CrossRef]
- Xu, W.; Allen, M.G. Deformable Strain Sensors Based on Patterned MWCNTs/Polydimethylsiloxane Composites. J. Polym. Sci. B Polym. Phys. 2013, 51, 1505–1512. [Google Scholar] [CrossRef]
- Chang, W.-T.; Yang, F.-S. Extended Width in Discontinuously Connected Polymer-Free Carbon Nanotubes Grown between Electrodes. Phys. B Condens. Matter 2015, 459, 24–28. [Google Scholar] [CrossRef]
- Tippo, P.; Maruthappan, M.; Ručman, S.; Jumrus, N.; Kantarak, E.; Sroila, W.; Thongsuwan, W.; Wiranwetchayan, O.; Thongpan, W.; Kumpika, T.; et al. Processing Improvement of Response and Stability of Strain Sensor Based on CNT-bioplastic Composite for Estimation of Elbow Angles. J. Appl. Polym. Sci. 2024, 141, e55892. [Google Scholar] [CrossRef]
- Jing, X.; Ma, Z.; Antwi-Afari, M.F.; Wang, L.; Li, H.; Mi, H.-Y.; Feng, P.-Y.; Liu, Y. Synthesis and Fabrication of Supramolecular Polydimethylsiloxane-Based Nanocomposite Elastomer for Versatile and Intelligent Sensing. Ind. Eng. Chem. Res. 2021, 60, 10419–10430. [Google Scholar] [CrossRef]
- Zhao, S.; Guo, L.; Li, J.; Li, N.; Zhang, G.; Gao, Y.; Li, J.; Cao, D.; Wang, W.; Jin, Y.; et al. Binary Synergistic Sensitivity Strengthening of Bioinspired Hierarchical Architectures Based on Fragmentized Reduced Graphene Oxide Sponge and Silver Nanoparticles for Strain Sensors and Beyond. Small 2017, 13, 1700944. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, P.; Liang, Y.; Zhang, J.; Huang, Y.; Wu, S.; Kuo, S.-W.; Chen, T. Network Cracks-Based Wearable Strain Sensors for Subtle and Large Strain Detection of Human Motions. J. Mater. Chem. C 2018, 6, 5140–5147. [Google Scholar] [CrossRef]
- Chen, C.; Chu, F.; Zhang, Y.; Ma, M.; Sun, R.; Jia, P.; Sun, J. Fabricating Flexible Strain Sensor with Direct Writing Graphene/Carbon Nanotube Aerogel. ACS Appl. Electron. Mater. 2023, 5, 1429–1436. [Google Scholar] [CrossRef]
- Yao, Y.; Tai, H.; Wang, D.; Jiang, Y.; Yuan, Z.; Zheng, Y. One-Pot Preparation and Applications of Self-Healing, Self-Adhesive PAA-PDMS Elastomers. J. Semicond. 2019, 40, 112602. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, H.; Zhang, L.; Peng, S.; Weng, Z.; Wang, J.; Wu, L.; Zheng, L. Mechanical Exfoliation Assisted with Carbon Nanospheres to Prepare a Few-Layer Graphene for Flexible Strain Sensor. Appl. Surf. Sci. 2023, 611, 155649. [Google Scholar] [CrossRef]
- Li, X.; Yang, T.; Yang, Y.; Zhu, J.; Li, L.; Alam, F.E.; Li, X.; Wang, K.; Cheng, H.; Lin, C.-T.; et al. Large-Area Ultrathin Graphene Films by Single-Step Marangoni Self-Assembly for Highly Sensitive Strain Sensing Application. Adv. Funct. Mater. 2016, 26, 1322–1329. [Google Scholar] [CrossRef]
- Kasim, N.F.A.; Idris, W.F.W.; Abdullah, A.H.; Yusoh, K.; Ismail, Z. The Preparation of Graphene Ink from the Exfoliation of Graphite in Pullulan, Chitosan and Alginate for Strain-Sensitive Paper. Int. J. Biol. Macromol. 2020, 153, 1211–1219. [Google Scholar] [CrossRef]
- Muth, J.T.; Vogt, D.M.; Truby, R.L.; Mengüç, Y.; Kolesky, D.B.; Wood, R.J.; Lewis, J.A. Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers. Adv. Mater. 2014, 26, 6307–6312. [Google Scholar] [CrossRef]
- Shehzad, K.; Shi, T.; Qadir, A.; Wan, X.; Guo, H.; Ali, A.; Xuan, W.; Xu, H.; Gu, Z.; Peng, X.; et al. Designing an Efficient Multimode Environmental Sensor Based on Graphene–Silicon Heterojunction. Adv. Mater. Technol. 2017, 2, 1600262. [Google Scholar] [CrossRef]
- Kim, S.J.; Mondal, S.; Min, B.K.; Choi, C.-G. Highly Sensitive and Flexible Strain–Pressure Sensors with Cracked Paddy-Shaped MoS2/Graphene Foam/Ecoflex Hybrid Nanostructures. ACS Appl. Mater. Interfaces 2018, 10, 36377–36384. [Google Scholar] [CrossRef]
- Bae, G.Y.; Han, J.T.; Lee, G.; Lee, S.; Kim, S.W.; Park, S.; Kwon, J.; Jung, S.; Cho, K. Pressure/Temperature Sensing Bimodal Electronic Skin with Stimulus Discriminability and Linear Sensitivity. Adv. Mater. 2018, 30, 1803388. [Google Scholar] [CrossRef]
- Abodurexiti, A.; Yang, C.; Maimaitiyiming, X. High-Performance Flexible Pressure and Temperature Sensors with Complex Leather Structure. Macro Mater. Eng. 2020, 305, 2000181. [Google Scholar] [CrossRef]
- Chani, M.T.S.; Karimov, K.S.; Asiri, A.M. Impedimetric Humidity and Temperature Sensing Properties of the Graphene–Carbon Nanotubes–Silicone Adhesive Nanocomposite. J. Mater. Sci. Mater. Electron. 2019, 30, 6419–6429. [Google Scholar] [CrossRef]
- Gao, Z.; Lou, Z.; Han, W.; Shen, G. A Self-Healable Bifunctional Electronic Skin. ACS Appl. Mater. Interfaces 2020, 12, 24339–24347. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Abodurexiti, A.; Maimaitiyiming, X. Flexible Humidity and Pressure Sensors Realized by Molding and Inkjet Printing Processes with Sandwich Structure. Macro Mater. Eng. 2020, 305, 2000287. [Google Scholar] [CrossRef]
- Li, Z.; Huang, J.; Zhou, R.; Chen, Z.; Gao, W.; He, J.; Bao, R.; Pan, C. Temperature Decoupling of a Hydrogel-Based Strain Sensor under a Dynamic Temperature Field. Adv. Mater. Technol. 2023, 8, 2300404. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Zhang, Q.; Zhao, X.; Li, B.; Zang, J.; Zhao, X.; Zhang, T. A Pressure and Temperature Dual-Parameter Sensor Based on a Composite Material for Electronic Wearable Devices. Micromachines 2023, 14, 690. [Google Scholar] [CrossRef]
- Ho, D.H.; Sun, Q.; Kim, S.Y.; Han, J.T.; Kim, D.H.; Cho, J.H. Stretchable and Multimodal All Graphene Electronic Skin. Adv. Mater. 2016, 28, 2601–2608. [Google Scholar] [CrossRef]
- Zhuo, H.; Hu, Y.; Tong, X.; Chen, Z.; Zhong, L.; Lai, H.; Liu, L.; Jing, S.; Liu, Q.; Liu, C.; et al. A Supercompressible, Elastic, and Bendable Carbon Aerogel with Ultrasensitive Detection Limits for Compression Strain, Pressure, and Bending Angle. Adv. Mater. 2018, 30, 1706705. [Google Scholar] [CrossRef]
- Qi, Z.; Bian, H.; Yang, Y.; Nie, N.; Wang, F. Graphene/Glycerin Solution-Based Multifunctional Stretchable Strain Sensor with Ultra-High Stretchability, Stability, and Sensitivity. Nanomaterials 2019, 9, 617. [Google Scholar] [CrossRef]
- Park, H.; Kim, J.W.; Hong, S.Y.; Lee, G.; Kim, D.S.; Oh, J.H.; Jin, S.W.; Jeong, Y.R.; Oh, S.Y.; Yun, J.Y.; et al. Microporous Polypyrrole-Coated Graphene Foam for High-Performance Multifunctional Sensors and Flexible Supercapacitors. Adv. Funct. Mater. 2018, 28, 1707013. [Google Scholar] [CrossRef]
- Wang, H.; Tao, J.; Jin, K.; Wang, X.; Dong, Y. Multifunctional Pressure/Temperature/Bending Sensor Made of Carbon Fibre-Multiwall Carbon Nanotubes for Artificial Electronic Application. Compos. Part A Appl. Sci. Manuf. 2022, 154, 106796. [Google Scholar] [CrossRef]
- Qi, K.; He, J.; Wang, H.; Zhou, Y.; You, X.; Nan, N.; Shao, W.; Wang, L.; Ding, B.; Cui, S. A Highly Stretchable Nanofiber-Based Electronic Skin with Pressure-, Strain-, and Flexion-Sensitive Properties for Health and Motion Monitoring. ACS Appl. Mater. Interfaces 2017, 9, 42951–42960. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Ko, H.; Park, H.; Seong, M.; Lee, S.; Yi, H.; Park, H.W.; Kim, T.; Pang, C.; Jeong, H.E. Hybrid Architectures of Heterogeneous Carbon Nanotube Composite Microstructures Enable Multiaxial Strain Perception with High Sensitivity and Ultrabroad Sensing Range. Small 2018, 14, 1803411. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Wang, H.; Zhang, M.; Liang, X.; Xia, K.; Zhang, Y. Calcium Gluconate Derived Carbon Nanosheet Intrinsically Decorated with Nanopapillae for Multifunctional Printed Flexible Electronics. ACS Appl. Mater. Interfaces 2019, 11, 20272–20280. [Google Scholar] [CrossRef]
- Zu, G.; Kanamori, K.; Nakanishi, K.; Huang, J. Superhydrophobic Ultraflexible Triple-Network Graphene/Polyorganosiloxane Aerogels for a High-Performance Multifunctional Temperature/Strain/Pressure Sensing Array. Chem. Mater. 2019, 31, 6276–6285. [Google Scholar] [CrossRef]
- Li, C.; Yang, S.; Guo, Y.; Huang, H.; Chen, H.; Zuo, X.; Fan, Z.; Liang, H.; Pan, L. Flexible, Multi-Functional Sensor Based on All-Carbon Sensing Medium with Low Coupling for Ultrahigh-Performance Strain, Temperature and Humidity Sensing. Chem. Eng. J. 2021, 426, 130364. [Google Scholar] [CrossRef]
- Tung, T.T.; Tran, M.T.; Pereira, A.L.C.; Cordeiro, C.M.B.; Nguyen, D.D.; Tai, N.-H.; Tran, V.V.; Hsu, C.-C.; Joshi, P.; Yoshimura, M.; et al. Graphene Woven Fabric-Polydimethylsiloxane Piezoresistive Films for Smart Multi-Stimuli Responses. Colloids Surf. B Biointerfaces 2023, 221, 112940. [Google Scholar] [CrossRef]
- Liu, H.; Xiang, H.; Wang, Y.; Li, Z.; Qian, L.; Li, P.; Ma, Y.; Zhou, H.; Huang, W. A Flexible Multimodal Sensor That Detects Strain, Humidity, Temperature, and Pressure with Carbon Black and Reduced Graphene Oxide Hierarchical Composite on Paper. ACS Appl. Mater. Interfaces 2019, 11, 40613–40619. [Google Scholar] [CrossRef]
- Lee, J.H.; Heo, J.S.; Kim, Y.; Eom, J.; Jung, H.J.; Kim, J.; Kim, I.; Park, H.; Mo, H.S.; Kim, Y.; et al. A Behavior-Learned Cross-Reactive Sensor Matrix for Intelligent Skin Perception. Adv. Mater. 2020, 32, 2000969. [Google Scholar] [CrossRef]
- Wang, X.; Yue, O.; Liu, X.; Hou, M.; Zheng, M. A Novel Bio-Inspired Multi-Functional Collagen Aggregate Based Flexible Sensor with Multi-Layer and Internal 3D Network Structure. Chem. Eng. J. 2020, 392, 123672. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.; Wang, F.; Chi, H. Evolution of Oxygen Content of Graphene Oxide for Humidity Sensing. Molecules 2024, 29, 3741. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.-M.B.H.; Elmasry, M.R.; Bin Jardan, Y.A.; El-Wekil, M.M. Smart Fluorometric Sensing of Metal Contaminants in Canned Foods: A Carbon Dot-Based Dual-Response System for Quantifying Aluminum and Cobalt Ions. RSC Adv. 2025, 15, 6962–6973. [Google Scholar] [CrossRef] [PubMed]
- Bricha, M.; El Mabrouk, K. Effect of Surfactants on the Degree of Dispersion of MWNTs in Ethanol Solvent. Colloids Surf. A Physicochem. Eng. Asp. 2019, 561, 57–69. [Google Scholar] [CrossRef]
- Thines, R.K.; Mubarak, N.M.; Nizamuddin, S.; Sahu, J.N.; Abdullah, E.C.; Ganesan, P. Application Potential of Carbon Nanomaterials in Water and Wastewater Treatment: A Review. J. Taiwan Inst. Chem. Eng. 2017, 72, 116–133. [Google Scholar] [CrossRef]
- Meyer, E.; Bede, A.; Zingwe, N.; Taziwa, R. Metal Sulphides and Their Carbon Supported Composites as Platinum-Free Counter Electrodes in Dye-Sensitized Solar Cells: A Review. Materials 2019, 12, 1980. [Google Scholar] [CrossRef]
- Medrano-Lopez, J.A.; Villalpando, I.; Salazar, M.I.; Torres-Torres, C. Hierarchical Nanobiosensors at the End of the SARS-CoV-2 Pandemic. Biosensors 2024, 14, 108. [Google Scholar] [CrossRef]
- Ariati, R.; Sales, F.; Souza, A.; Lima, R.A.; Ribeiro, J. Polydimethylsiloxane Composites Characterization and Its Applications: A Review. Polymers 2021, 13, 4258. [Google Scholar] [CrossRef]
- Hong, S.; Kim, H.; Qaiser, N.; Baumli, P.; Hwang, B. A Review of Recent Progress in Fabrication Methods and Applications of Polydimethylsiloxane Sponge. J. Nat. Fibers 2023, 20, 2264497. [Google Scholar] [CrossRef]
- Marcuello, C.; Foulon, L.; Chabbert, B.; Aguié-Béghin, V.; Molinari, M. Atomic Force Microscopy Reveals How Relative Humidity Impacts the Young’s Modulus of Lignocellulosic Polymers and Their Adhesion with Cellulose Nanocrystals at the Nanoscale. Int. J. Biol. Macromol. 2020, 147, 1064–1075. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Simonenko, N.; Simonenko, E.; Sysoev, V.; Brinzari, V. Paper-Based Humidity Sensors as Promising Flexible Devices, State of the Art, Part 2: Humidity-Sensor Performances. Nanomaterials 2023, 13, 1381. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Category | Condition | Type | Range | Reference |
---|---|---|---|---|
Humidity | - | Dried food | 10–65%RH | [16] |
Cold chain | Perishable food | 75–95%RH | [17] | |
Ambient | Pharmaceuticals | <60%RH | [18] | |
Temperature | Frozen | Food | −40–−18 °C | [19] |
Medical | −40–−18 °C | [19] | ||
Cold chain | Food | 0–4 °C | [19] | |
Medical | 2–8 °C | [20] | ||
Chilled | Food | 4–8 °C | [19] | |
Medical | 5–25 °C | [21] | ||
Ambient | Food | 8–40 °C | [21] | |
Medical | 15–25 °C | [18] | ||
Mechanical stress | Compression | Pressure | 34–344 kPa | [22] |
Strain | 1–15% | |||
Impact/shock | Pressure | 5–40 G | [23] | |
Strain | 1–10% | |||
Vibration | Pressure | 3–200 Hz | [24] | |
Strain | 0.1–2% over time |
Inclusion Criteria | Exclusion Criteria |
---|---|
Focus on carbon-based humidity, temperature, mechanical, and multifunctional sensors for food and medical or pharmaceutical smart packaging | Review articles, conference proceedings, books, and inaccessible articles |
Articles discussing sensor improvement with sufficient details on sensor design, fabrication methods, and performance metrics | Unrelated to sensor performance or improvements |
English language | Purely theoretical articles |
The properties suitable for transportation in Table 1. | Articles that present speculative, unvalidated, or incomplete results |
Access to full text via the authors’ institution | Publication before 2013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; Radecka, I.; Eissa, A.M.; Ivanov, E.; Stoeva, Z.; Tchuenbou-Magaia, F. Recent Advances in Carbon-Based Sensors for Food and Medical Packaging Under Transit: A Focus on Humidity, Temperature, Mechanical, and Multifunctional Sensing Technologies—A Systematic Review. Materials 2025, 18, 1862. https://doi.org/10.3390/ma18081862
Guo S, Radecka I, Eissa AM, Ivanov E, Stoeva Z, Tchuenbou-Magaia F. Recent Advances in Carbon-Based Sensors for Food and Medical Packaging Under Transit: A Focus on Humidity, Temperature, Mechanical, and Multifunctional Sensing Technologies—A Systematic Review. Materials. 2025; 18(8):1862. https://doi.org/10.3390/ma18081862
Chicago/Turabian StyleGuo, Siting, Iza Radecka, Ahmed M. Eissa, Evgeni Ivanov, Zlatka Stoeva, and Fideline Tchuenbou-Magaia. 2025. "Recent Advances in Carbon-Based Sensors for Food and Medical Packaging Under Transit: A Focus on Humidity, Temperature, Mechanical, and Multifunctional Sensing Technologies—A Systematic Review" Materials 18, no. 8: 1862. https://doi.org/10.3390/ma18081862
APA StyleGuo, S., Radecka, I., Eissa, A. M., Ivanov, E., Stoeva, Z., & Tchuenbou-Magaia, F. (2025). Recent Advances in Carbon-Based Sensors for Food and Medical Packaging Under Transit: A Focus on Humidity, Temperature, Mechanical, and Multifunctional Sensing Technologies—A Systematic Review. Materials, 18(8), 1862. https://doi.org/10.3390/ma18081862