Recrystallization Behavior of Cold-Rolled AA5083 Microalloyed with 0.1 wt.% Sc and 0.08 wt.% Zr †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microhardness Evolution During Annealing
3.2. Grain Structure Evolution During Annealing
3.3. TEM Observations
4. Discussion
4.1. Recrystallization Resistance
4.2. Boundary Strengthening Contribution
5. Conclusions
- During annealing, the hardness of the base alloy significantly decreased from 118 HV at 250 °C to 88.4 HV at 300 °C, indicating that static recrystallization occurred at 250–300 °C. In contrast, the Sc-bearing alloy showed a gradual decrease in hardness with increasing annealing temperature up to 500 °C, suggesting that static recrystallization commenced at about 500 °C. The hardness of the Sc-bearing alloy consistently surpassed that of the base alloy at all annealing temperatures.
- A minor addition of 0.1 wt.%Sc and 0.08 wt.% Zr improved the alloy strength and recrystallization resistance. The recrystallization temperature was effectively doubled from 250 °C for the base alloy to 500 °C for the Sc-bearing alloy.
- The addition of Sc/Zr to AA5083 generated a high number density of nano-sized Al3(Sc,Zr) precipitates. The increased recrystallization resistance of the Sc-bearing alloy was mainly attributed to the presence of those nanoparticles, which enhanced the Zener drag pressure and delayed recrystallization due to their strong pinning effects on dislocations and grain/subgrain boundaries.
- The grain boundary strengthening effects at various annealing temperatures were estimated using a constitutive equation. The calculated yield strength and measured hardness values exhibited similar trends with the annealing temperature, implying that the grain structure change and corresponding grain boundary strengthening effect were predominant factors controlling the alloy’s strength evolution during annealing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Algendy, A.Y.; Liu, K.; Rometsch, P.; Parson, N.; Chen, X.-G. Effects of AlMn dispersoids and Al3 (Sc, Zr) precipitates on the microstructure and ambient/elevated-temperature mechanical properties of hot-rolled AA5083 alloys. Mater. Sci. Eng. A 2022, 855, 143950. [Google Scholar] [CrossRef]
- Pan, S.; Wang, Z.; Li, C.; Wan, D.; Chen, X.; Chen, K.; Li, Y. Achieving superior dispersion-strengthening effect in an AA5xxx Al-Mg-Mn alloy by mico-alloying. Mater. Des. 2023, 226, 111647. [Google Scholar] [CrossRef]
- Qiu, Y.; Yang, X.; Li, J.; Xiang, S.; Shi, J.; Xu, J.; Sanders, R.E. The influence of Sc and Zr additions on microstructure and corrosion behavior of AA5182 alloy sheet. Corros. Sci. 2022, 199, 110181. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, G.; Yang, Z.; Xu, G. Microstructure characteristics and mechanical properties of new aerospace Al-Mg-Mn alloys with Al3 (Sc1—xZrx) or Al3 (Er1—xZrx) nanoparticles. Mater. Charact. 2019, 153, 79–91. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.; Chen, X.-G. Improvement in the mechanical properties and creep resistance of Al-Mn-Mg 3004 alloy with Sc and Zr addition. Mater. Sci. Eng. A 2018, 729, 196–207. [Google Scholar] [CrossRef]
- Tang, Z.; Jiang, F.; Long, M.; Jiang, J.; Liu, H.; Tong, M. Effect of annealing temperature on microstructure, mechanical properties and corrosion behavior of Al-Mg-Mn-Sc-Zr alloy. Appl. Surf. Sci. 2020, 514, 146081. [Google Scholar] [CrossRef]
- Dorin, T.; Ramajayam, M.; Vahid, A.; Langan, T. Aluminium Scandium Alloys, Fundamentals of Aluminium Metallurgy; Elsevier: Amsterdam, The Netherlands, 2018; pp. 439–494. [Google Scholar] [CrossRef]
- Guo, Z.; Zhao, G.; Chen, X.-G. Effects of two-step homogenization on precipitation behavior of Al3Zr dispersoids and recrystallization resistance in 7150 aluminum alloy. Mater. Charact. 2015, 102, 122–130. [Google Scholar] [CrossRef]
- Sun, F.; Nash, G.L.; Li, Q.; Liu, E.; He, C.; Shi, C.; Zhao, N. Effect of Sc and Zr additions on microstructures and corrosion behavior of Al-Cu-Mg-Sc-Zr alloys. J. Mater. Sci. Technol. 2017, 33, 1015–1022. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Ma, X.; Wu, R.; Sun, J.; Hou, L.; Zhang, J.; Li, X.; Zhang, M. Effects of Sc and Zr on microstructure and properties of 1420 aluminum alloy. Mater. Charact. 2019, 154, 241–247. [Google Scholar] [CrossRef]
- Humphreys, F.J.; Hatherly, M. Recrystallization and Related Annealing Phenomena; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Bai, Z.H.; Luo, B.H. The Effects of Annealing Temperature on the Microstructure and Properties of Cold-Rolled 5083 Aluminum Alloy. Adv. Mater. Res. 2011, 217, 784–789. [Google Scholar] [CrossRef]
- Lu, L.; Jiang, F.; Liu, J.; Zhang, J.; Wang, G.; Feng, B.; Tong, M.; Tang, Z. The influence of annealing temperature on microstructure, mechanical properties, and corrosion resistance of Al-6Mg-0.4 Mn-0.14 Sc-0.12 Zr alloy cold rolling plate. Front. Mater. 2020, 7, 132. [Google Scholar] [CrossRef]
- Shen, J.; Chen, B.; Wan, J.; Shen, J.; Li, J. Effect of annealing on microstructure and mechanical properties of an Al–Mg-Sc-Zr alloy. Mater. Sci. Eng. A 2022, 838, 142821. [Google Scholar] [CrossRef]
- Rometsch, P.; Fourmann, J.; Elgallad, E.; Chen, X.-G. Use of Sc to Improve the Properties of AA5083 Cast and Rolled Products. In Proceedings of the TMS Annual Meeting & Exhibition; Light Metals 2023, San Diego, CA, USA, 19–23 March 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1213–1222. [Google Scholar] [CrossRef]
- Chen, Q.; Pan, Q.-L.; Wang, Y.; Zahng, Z.-Y.; Zhou, J.; Liu, C. Microstructure and mechanical properties of Al-5.8 Mg-Mn-Sc-Zr alloy after annealing treatment. J. Cent. South Univ. 2012, 19, 1785–1790. [Google Scholar] [CrossRef]
- Ocenasek, V.; Slamova, M. Resistance to recrystallization due to Sc and Zr addition to Al–Mg alloys. Mater. Charact. 2001, 47, 157–162. [Google Scholar] [CrossRef]
- Ikeshita, S.; Strodahs, A.; Saghi, Z.; Yamada, K.; Burdet, P.; Hata, S.; Ikeda, K.-I.; Midgley, P.A.; Kaneko, K. Hardness and microstructural variation of Al–Mg–Mn–Sc–Zr alloy. Micron 2016, 82, 1–8. [Google Scholar] [CrossRef]
- Algendy, A.Y.; Liu, K.; Chen, X.G. Evolution of dispersoids during multistep heat treatments and their effect on rolling performance in an Al-5% Mg-0.8% Mn alloy. Mater. Charact. 2021, 181, 111487. [Google Scholar] [CrossRef]
- Algendy, A.Y.; Rometsch, P.; Chen, X.-G. Impact of hot rolling temperature on the mechanical properties and microstructural evolution of hot/cold-rolled AA5083 with Sc and Zr microalloying. Mater. Sci. Eng. A 2024, 896, 146275. [Google Scholar] [CrossRef]
- Li, C.; Liu, K.; Chen, X.-G. Improvement of elevated-temperature strength and recrystallization resistance via Mn-containing dispersoid strengthening in Al-Mg-Si 6082 alloys. J. Mater. Sci. Technol. 2020, 39, 135–143. [Google Scholar] [CrossRef]
- Liu, K.; Chen, X.G.; Al-Mn-Mg, D.O. 3004 alloy for applications at elevated temperature via dispersoid strengthening. Mater. Des. 2015, 84, 340–350. [Google Scholar] [CrossRef]
- Huang, H.; Jiang, F.; Zhou, J.; Wei, L.; Qu, J.; Liu, L. Effects of Al 3 (Sc, Zr) and Shear Band Formation on the Tensile Properties and Fracture Behavior of Al-Mg-Sc-Zr Alloy. J. Mater. Eng. Perform. 2015, 24, 4244–4252. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Tezuka, H.; Kobayashi, E.; Sato, T. Effects of Annealing Temperature on the Recrystallization Behavior and Microstructure of Al-Mn Alloys with Different Second Phase Particles. In Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing, Waikoloa, HI, USA, 4–9 August 2013; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1241–1247. [Google Scholar] [CrossRef]
- Iwamura, S.; Nakayama, M.; Miura, Y. Coherency Between Al3Sc Precipitate and the Matrix in Al Alloys Containing Sc. In Materials Science Forum; Trans Tech Publications Ltd.: Zurich-Uetikon, Switzerland, 2002; pp. 1151–1156. [Google Scholar] [CrossRef]
- Tang, B.-Y.; Li, D.-L.; Chen, P.; Yi, J.-X.; Wen, L.; Peng, L.-M.; Ding, W.-J. The thermal properties of Al–Mg–TM (TM= Sc, Zr): Ab initio study. Solid State Sci. 2010, 12, 845–850. [Google Scholar] [CrossRef]
- Fuller, C.B.; Seidman, D.N. Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part II-coarsening of Al3(Sc1-xZrx) precipitates. Acta Mater. 2005, 53, 5415–5428. [Google Scholar] [CrossRef]
- Marquis, E.A.; Seidman, D.N. Coarsening kinetics of nanoscale Al3Sc precipitates in an Al–Mg–Sc alloy. Acta Mater. 2005, 53, 4259–4268. [Google Scholar] [CrossRef]
- Xu, P.; Jiang, F.; Tang, Z.; Yan, N.; Jiang, J.; Xu, X.; Peng, Y. Coarsening of Al3Sc precipitates in Al-Mg-Sc alloys. J. Alloys Compd. 2019, 781, 209–215. [Google Scholar] [CrossRef]
- Algendy, A.Y.; Rometsch, P.; Chen, X.-G. Effects of Sc/Zr and Thermomechanical Processing on the Microstructure and Properties of AA5083 Rolled Products. In Proceedings of the TMS Annual Meeting & Exhibition, Light Metals 2025, Las Vegas, NV, USA, 23–27 March 2025; Springer: Berlin/Heidelberg, Germany, 2025; pp. 1304–1315. [Google Scholar] [CrossRef]
- Nes, E.; Ryum, N.; Hunderi, O. On the Zener. Acta Mater. 1985, 33, 11–22. [Google Scholar] [CrossRef]
- Huang, K.; Marthinsen, K.; Zhao, Q.; Logé, R.E. The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials. Prog. Mater. Sci. 2018, 92, 284–359. [Google Scholar] [CrossRef]
- Engler, O.; Liu, Z.; Kuhnke, K. Impact of homogenization on particles in the Al-Mg-Mn alloy AA 5454-Experiment and simulation. J. Alloys Compd. 2013, 560, 111–122. [Google Scholar] [CrossRef]
- Zha, M.; Tian, T.; Jia, H.-L.; Zhang, H.-M.; Wang, H.-Y. Sc/Zr ratio-dependent mechanisms of strength evolution and microstructural thermal stability of multi-scale hetero-structured Al–Mg–Sc–Zr alloys. J. Mater. Sci. Technol. 2023, 140, 67–78. [Google Scholar] [CrossRef]
- Su, Y.; Ding, L.; Zhang, Y.; Weng, Y.; Wang, C.; Jia, Z.; Zhuang, L. The dispersoid evolution, recrystallization and mechanical properties of an Al–Mg–Sc alloy under various homogenization and annealing processes. J. Mater. Sci. 2025, 60, 3558–3575. [Google Scholar] [CrossRef]
- ASTM E112-12; Standard Test Methods for Determining Average Grain Size. ASTM International: West Conshohocken, PA, USA, 2012.
- Wang, H.; Geng, H.; Zhou, D.; Niitsu, K.; Muránsky, O.; Zhang, D. Multiple strengthening mechanisms in high strength ultrafine-grained Al–Mg alloys. Mater. Sci. Eng. A 2020, 771, 138613. [Google Scholar] [CrossRef]
Alloy | Condition | , nm | Number Density, , m−3 | Volume Fraction, | of Particles, MPa |
---|---|---|---|---|---|
Base alloy for Mn-dispersoids | As-Homo | 63.4 ± 3.4 | 1.5 ± 0.8 × 1020 | 0.74 | 0.099 |
Sc-bearing alloy for Al3(Sc,Zr) precipitates | As-Homo | 13.5 ± 0.8 | 5.1 ± 0.1 × 1021 | 0.479 | 0.329 |
450 °C | 13.5 ± 1.4 | 5.0 ± 0.4 × 1021 | 0.476 | 0.320 | |
500 °C | 14.2 ± 1.1 | 4.3 ± 0.8 × 1021 | 0.454 | 0.288 | |
550 °C | 30.2 ± 0.9 | 4.1 ± 1.2 × 1020 | 0.196 | 0.058 |
Ann. Temp., (°C) | Alloy | , (µm) | , (°) | , % | (MPa) | |
---|---|---|---|---|---|---|
250 | base | 0.96 | 5.33 | 85.1 | 0.53 | 61.4 |
Sc-bearing | --- | --- | --- | --- | --- | |
300 | base | 5.41 | 7.32 | 15.4 | 0.28 | 48.7 |
Sc-bearing | 0.95 | 5.98 | 88.3 | 0.65 | 60.8 | |
450 | base | 7.30 | 8.41 | 6.3 | 0.26 | 42.4 |
Sc-bearing | 1.90 | 5.13 | 72.3 | 0.53 | 58.2 | |
500 | base | 18.60 | 10.61 | 3.1 | 0.18 | 27.1 |
Sc-bearing | 3.86 | 5.05 | 69.6 | 0.45 | 45.7 | |
550 | base | 29.20 | 12.11 | 2.1 | 0.16 | 21.8 |
Sc-bearing | 10.46 | 4.86 | 30.9 | 0.32 | 35.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Algendy, A.Y.; Rometsch, P.; Chen, X.-G. Recrystallization Behavior of Cold-Rolled AA5083 Microalloyed with 0.1 wt.% Sc and 0.08 wt.% Zr. Materials 2025, 18, 1701. https://doi.org/10.3390/ma18081701
Algendy AY, Rometsch P, Chen X-G. Recrystallization Behavior of Cold-Rolled AA5083 Microalloyed with 0.1 wt.% Sc and 0.08 wt.% Zr. Materials. 2025; 18(8):1701. https://doi.org/10.3390/ma18081701
Chicago/Turabian StyleAlgendy, Ahmed Y., Paul Rometsch, and X.-Grant Chen. 2025. "Recrystallization Behavior of Cold-Rolled AA5083 Microalloyed with 0.1 wt.% Sc and 0.08 wt.% Zr" Materials 18, no. 8: 1701. https://doi.org/10.3390/ma18081701
APA StyleAlgendy, A. Y., Rometsch, P., & Chen, X.-G. (2025). Recrystallization Behavior of Cold-Rolled AA5083 Microalloyed with 0.1 wt.% Sc and 0.08 wt.% Zr. Materials, 18(8), 1701. https://doi.org/10.3390/ma18081701