Characterization of a Lithium Disilicate CAD/CAM Material with Firing Temperature-Controlled Translucency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flexural Strength
2.2. Translucency Measurement
2.3. Scanning Electron Microscopy Observation
2.4. Statistical Analysis
3. Results
3.1. Flexural Strength
3.2. Translucency–Contrast Ratio
3.3. Translucency—Translucency Parameter
3.4. Scanning Electron Microscopy Observation
4. Discussion
5. Conclusions
- The use of different firing protocols resulted in different translucencies of the tested material (Amber Mill).
- The translucencies obtained are ranked according to the manufacturer’s indications. However, the differences between HT, MT, and LT were statistically not significant for both CR and TP and were below the available thresholds for translucency perceptibility. Only MO was significantly more opaque than the other three translucencies and above the threshold.
- The different translucencies obtained showed statistically significant differences in flexural strength when measured using the 3-PBT.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TP | Translucency Parameter |
CR | Contrast Ratio |
3-PBT | Three-Point Bending Test |
HT | High Translucency |
MT | Medium Translucency |
LT | Low Translucency |
MO | Medium Opacity |
CAD/CAM | Computer-Aided Design/Computer-Aided Manufacturing |
SEM | Scanning Electron Microscopy |
TPT | Translucency Perception Threshold |
References
- Denry, I.; Holloway, J.A. Ceramics for Dental Applications: A Review. Materials 2010, 3, 351–368. [Google Scholar] [CrossRef]
- Zarone, F.; Di Mauro, M.I.; Ausiello, P.; Ruggiero, G.; Sorrentino, R. Current Status on Lithium Disilicate and Zirconia: A Narrative Review. BMC Oral Health 2019, 19, 134. [Google Scholar] [CrossRef]
- Munoz, A.; Zhao, Z.; Paolone, G.; Louca, C.; Vichi, A. Flexural Strength of CAD/CAM Lithium-Based Silicate Glass-Ceramics: A Narrative Review. Materials 2023, 16, 4398. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.R.; Essig, M.E. Panorama of Dental CAD/CAM Restorative Systems. Compend. Contin. Educ. Dent. 2008, 29, 482, 484, 486–488. [Google Scholar]
- Furtado de Mendonca, A.; Shahmoradi, M.; Gouvêa, C.V.D.; De Souza, G.M.; Ellakwa, A. Microstructural and Mechanical Characterization of CAD/CAM Materials for Monolithic Dental Restorations. J. Prosthodont. 2019, 28, e587–e594. [Google Scholar] [CrossRef] [PubMed]
- Li, R.W.; Chow, T.W.; Matinlinna, J.P. Ceramic Dental Biomaterials and CAD/CAM Technology: State of the Art. J. Prosthodont. Res 2014, 58, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Lubauer, J.; Belli, R.; Peterlik, H.; Hurle, K.; Lohbauer, U. Grasping the Lithium Hype: Insights into Modern Dental Lithium Silicate Glass-Ceramics. Dent. Mater. 2022, 38, 318–332. [Google Scholar] [CrossRef]
- Phark, J.H.; Duarte, S., Jr. Microstructural Considerations for Novel Lithium Disilicate Glass Ceramics: A Review. J. Esthet. Restor. Dent. 2022, 34, 92–103. [Google Scholar] [CrossRef]
- Culp, L.; McLaren, E.A. Lithium Disilicate: The Restorative Material of Multiple Options. Compend. Contin. Educ. Dent. 2010, 31, 716–720+722+724–725. [Google Scholar]
- Stawarczyk, B.; Mandl, A.; Liebermann, A. Modern CAD/CAM Silicate Ceramics, Their Translucency Level and Impact of Hydrothermal Aging on Translucency, Martens Hardness, Biaxial Flexural Strength and Their Reliability. J. Mech. Behav. Biomed. Mater. 2021, 118, 104456. [Google Scholar] [CrossRef]
- Vichi, A.; Carrabba, M.; Paravina, R.; Ferrari, M. Translucency of Ceramic Materials for CEREC CAD/CAM System. J. Esthet. Restor. Dent. 2014, 26, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-K. Influence of Scattering/Absorption Characteristics on the Color of Resin Composites. Dent. Mater. 2007, 23, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Della Bona, A. Bonding to Ceramics: Scientific Evidences for Clinical Dentistry; Artes Medicas: São Paulo, Brazil, 2009; ISBN 85-367-0091-2. [Google Scholar]
- Heffernan, M.J.; Aquilino, S.A.; Diaz-Arnold, A.M.; Haselton, D.R.; Stanford, C.M.; Vargas, M.A. Relative Translucency of Six All-Ceramic Systems. Part II: Core and Veneer Materials. J. Prosthet. Dent. 2002, 88, 10–15. [Google Scholar] [CrossRef]
- Miyagawa, Y.; Powers, J.M.; O’Brien, W.J. Optical Properties of Direct Restorative Materials. J. Dent. Res. 1981, 60, 890–894. [Google Scholar] [CrossRef]
- Bayindir, F.; Ozbayram, O. Effect of Number of Firings on the Color and Translucency of Ceramic Core Materials with Veneer Ceramic of Different Thicknesses. J. Prosthet. Dent. 2018, 119, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, C.; Eckert, H.; Apel, E.; Rheinberger, V.M.; Höland, W. Phase Evolution in Lithium Disilicate Glass-Ceramics Based on Non-Stoichiometric Compositions of a Multi-Component System: Structural Studies by 29Si Single and Double Resonance Solid State NMR. Phys. Chem. Chem. Phys. 2011, 13, 4540–4551. [Google Scholar] [CrossRef]
- Plengsombut, K.; Brewer, J.D.; Monaco, E.A., Jr.; Davis, E.L. Effect of Two Connector Designs on the Fracture Resistance of All-Ceramic Core Materials for Fixed Dental Prostheses. J. Prosthet. Dent. 2009, 101, 166–173. [Google Scholar] [CrossRef]
- Wang, F.; Gao, J.; Wang, H.; Chen, J. Flexural Strength and Translucent Characteristics of Lithium Disilicate Glass–Ceramics with Different P2O5 Content. Mater. Des. 2010, 31, 3270–3274. [Google Scholar] [CrossRef]
- Huang, S.; Huang, Z.; Gao, W.; Cao, P. Trace Phase Formation, Crystallization Kinetics and Crystallographic Evolution of a Lithium Disilicate Glass Probed by Synchrotron XRD Technique. Sci. Rep. 2015, 5, 9159. [Google Scholar] [CrossRef]
- Apel, E.; van’t Hoen, C.; Rheinberger, V.; Höland, W. Influence of ZrO2 on the Crystallization and Properties of Lithium Disilicate Glass-Ceramics Derived from a Multi-Component System. J. Eur. Ceram. Soc. 2007, 27, 1571–1577. [Google Scholar] [CrossRef]
- Anusavice, K.J.; Zhang, N.Z. Effect of Crystallinity on Strength and Fracture Toughness of Li2O-Al2O3-CaO-SiO2 Glass-Ceramics. J. Am. Ceram. Soc. 1997, 80, 1353–1358. [Google Scholar] [CrossRef]
- Hasselman, D.P.H.; Fulrath, R.M. Proposed Fracture Theory of a Dispersion-Strengthened Glass Matrix. J. Am. Ceram. Soc. 1966, 49, 68–72. [Google Scholar] [CrossRef]
- Heffernan, M.J.; Aquilino, S.A.; Diaz-Arnold, A.M.; Haselton, D.R.; Stanford, C.M.; Vargas, M.A. Relative Translucency of Six All-Ceramic Systems. Part I: Core Materials. J. Prosthet. Dent. 2002, 88, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Antonson, S.A.; Anusavice, K.J. Contrast Ratio of Veneering and Core Ceramics as a Function of Thickness. Int. J. Prosthodont. 2001, 14, 316–320. [Google Scholar]
- Simba, B.G.; Ribeiro, M.V.; R.P.Alves, M.F.; Vasconcelos Amarante, J.E.; Strecker, K.; dos Santos, C. Effect of the Temperature on the Mechanical Properties and Translucency of Lithium Silicate Dental Glass-Ceramic. Ceram. Int. 2021, 47, 9933–9940. [Google Scholar] [CrossRef]
- Fabian Fonzar, R.; Carrabba, M.; Sedda, M.; Ferrari, M.; Goracci, C.; Vichi, A. Flexural Resistance of Heat-Pressed and CAD-CAM Lithium Disilicate with Different Translucencies. Dent. Mater. 2017, 33, 63–70. [Google Scholar] [CrossRef]
- ISO 6872:2024; Dentistry-Ceramic Materials. International Organization for Standardization: Geneva, Switzerland, 2024.
- HASSBio. Amber Mill Instruction for Use. Available online: https://hassbio.com/eng/board/detail.html?f_uid=1025&f_div=&page=3&s_value=amber%20mill&s_ref=14&s_ref_2=32&s_c1=2 (accessed on 22 January 2025).
- Johnston, W.M.; Ma, T.; Kienle, B.H. Translucency Parameter of Colorants for Maxillofacial Prostheses. Int. J. Prosthodont. 1995, 8, 79–86. [Google Scholar]
- Borom, M.P.; Turkalo, A.M.; Dorms, R.H. Strength and Microstructure in Lithium Disilicate Glass-Ceramics. J. Am. Ceram. Soc. 1975, 58, 385–391. [Google Scholar] [CrossRef]
- Albakry, M.; Guazzato, M.; Swain, M.V. Biaxial Flexural Strength, Elastic Moduli, and x-Ray Diffraction Characterization of Three Pressable All-Ceramic Materials. J. Prosthet. Dent. 2003, 89, 374–380. [Google Scholar] [CrossRef]
- Albakry, M.; Guazzato, M.; Swain, M.V. Fracture Toughness and Hardness Evaluation of Three Pressable All-Ceramic Dental Materials. J. Dent. 2003, 31, 181–188. [Google Scholar] [CrossRef]
- Gao, J.; Chen, J.H.; Wang, F.; Deng, Z.X.; Li, F.; Wu, D. Effect of Heat-Pressing on the Microstructure and Properties of a Novel Lithium Disilicate Glass-Ceramic. Adv. Mater. Res. 2011, 177, 441–446. [Google Scholar] [CrossRef]
- Lien, W.; Roberts, H.W.; Platt, J.A.; Vandewalle, K.S.; Hill, T.J.; Chu, T.-M.G. Microstructural Evolution and Physical Behavior of a Lithium Disilicate Glass–Ceramic. Dent. Mater. 2015, 31, 928–940. [Google Scholar] [CrossRef] [PubMed]
- Anusavice, K.J.; Zhang, N.Z.; Moorhead, J.E. Influence of Colorants on Crystallization and Mechanical Properties of Lithia-Based Glass-Ceramics. Dent. Mater. 1994, 10, 141–146. [Google Scholar] [CrossRef]
- Wen, G.; Zheng, X.; Song, L. Effects of P2O5 and Sintering Temperature on Microstructure and Mechanical Properties of Lithium Disilicate Glass-Ceramics. Acta Mater. 2007, 55, 3583–3591. [Google Scholar] [CrossRef]
- Anusavice, K.J.; Zhang, N.Z.; Moorhead, J.E. Influence of P2O5, AgNO3, and FeCl3 on Color and Translucency of Lithia-Based Glass-Ceramics. Dent. Mater. 1994, 10, 230–235. [Google Scholar] [CrossRef]
- Yuan, K.; Wang, F.; Gao, J.; Sun, X.; Deng, Z.X.; Wang, H.; Jin, L.; Chen, J.H. Effect of Zircon-Based Tricolor Pigments on the Color, Microstructure, Flexural Strength and Translucency of a Novel Dental Lithium Disilicate Glass-Ceramic. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 98–107. [Google Scholar] [CrossRef]
- Rodrigues, S.A., Jr.; Ferracane, J.L.; Della Bona, A. Flexural Strength and Weibull Analysis of a Microhybrid and a Nanofill Composite Evaluated by 3- and 4-Point Bending Tests. Dent. Mater. 2008, 24, 426–431. [Google Scholar] [CrossRef]
- Anusavice, K.J.; Kakar, K.; Ferree, N. Which Mechanical and Physical Testing Methods Are Relevant for Predicting the Clinical Performance of Ceramic-Based Dental Prostheses? Clin. Oral Implant. Res. 2007, 18 (Suppl. S3), 218–231. [Google Scholar] [CrossRef]
- Ritter, J.E. Critique of Test Methods for Lifetime Predictions. Dent. Mater. 1995, 11, 147–151. [Google Scholar] [CrossRef]
- Miura, D.; Ishida, Y.; Miyasaka, T.; Aoki, H.; Shinya, A. Reliability of Different Bending Test Methods for Dental Press Ceramics. Materials 2020, 13, 5162. [Google Scholar] [CrossRef]
- Jin, J.; Takahashi, H.; Iwasaki, N. Effect of Test Method on Flexural Strength of Recent Dental Ceramics. Dent. Mater. J. 2004, 23, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Diken Türksayar, A.A.; Demirel, M.; Donmez, M.B. Optical Properties, Biaxial Flexural Strength, and Reliability of New-Generation Lithium Disilicate Glass-Ceramics after Thermal Cycling. J. Prosthodont. 2023, 32, 815–820. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Jang, Y.-S.; Lee, M.-H.; Bae, T.-S. Comparative Evaluation of Mechanical Properties and Wear Ability of Five CAD/CAM Dental Blocks. Materials 2019, 12, 2252. [Google Scholar] [CrossRef]
- Zhang, P.; Li, X.; Yang, J.; Xu, S. The Crystallization and Microstructure Evolution of Lithium Disilicate-Based Glass-Ceramic. J. Non-Cryst. Solids 2014, 392–393, 26–30. [Google Scholar] [CrossRef]
- Fu, L.; Engqvist, H.; Xia, W. Glass-Ceramics in Dentistry: A Review. Materials 2020, 13, 1049. [Google Scholar] [CrossRef]
- Anderson, T.L. Fracture Mechanics: Fundamentals and Applications, 4th ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-4987-2813-3. [Google Scholar]
- Quinn, G. NIST Recommended Practice Guide: Fractography of Ceramics and Glasses, 3rd ed.; NIST: Gaithersburg, MD, USA, 2020. [Google Scholar] [CrossRef]
- Matinlinna, J. Handbook of Oral Biomaterials; Pan Stanford Publishing: Singapore, 2014; ISBN 978-981-4463-13-3. [Google Scholar]
- McCabe, J.F.; Carrick, T.E. A Statistical Approach to the Mechanical Testing of Dental Materials. Dent. Mater. 1986, 2, 139–142. [Google Scholar] [CrossRef]
- Vichi, A.; Zhao, Z.; Paolone, G.; Scotti, N.; Mutahar, M.; Goracci, C.; Louca, C. Factory Crystallized Silicates for Monolithic Metal-Free Restorations: A Flexural Strength and Translucency Comparison Test. Materials 2022, 15, 7834. [Google Scholar] [CrossRef]
- Vichi, A.; Zhao, Z.; Mutahar, M.; Paolone, G.; Louca, C. Translucency of Lithium-Based Silicate Glass-Ceramics Blocks for CAD/CAM Procedures: A Narrative Review. Materials 2023, 16, 6441. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Takahashi, H.; Iwasaki, N. Translucency of Dental Ceramics with Different Thicknesses. J. Prosthet. Dent. 2013, 110, 14–20. [Google Scholar] [CrossRef]
- Basegio, M.M.; Pecho, O.E.; Ghinea, R.; Perez, M.M.; Della Bona, A. Masking Ability of Indirect Restorative Systems on Tooth-Colored Resin Substrates. Dent. Mater. 2019, 35, e122–e130. [Google Scholar] [CrossRef]
- Bagis, B.; Turgut, S. Optical Properties of Current Ceramics Systems for Laminate Veneers. J. Dent. 2013, 41 (Suppl. S3), e24–e30. [Google Scholar] [CrossRef]
- Barizon, K.T.L.; Bergeron, C.; Vargas, M.A.; Qian, F.; Cobb, D.S.; Gratton, D.G.; Geraldeli, S. Ceramic Materials for Porcelain Veneers. Part I: Correlation between Translucency Parameters and Contrast Ratio. J. Prosthet. Dent. 2013, 110, 397–401. [Google Scholar] [CrossRef]
- Hernández, M.; Cobb, D.; Swift, E.J., Jr. Current Strategies in Dentin Remineralization. J. Esthet. Restor. Dent. 2014, 26, 139–145. [Google Scholar]
- Pérez, M.M.; Ghinea, R.; Ugarte-Alván, L.I.; Pulgar, R.; Paravina, R.D. Color and Translucency in Silorane-Based Resin Composite Compared to Universal and Nanofilled Composites. J. Dent. 2010, 38 (Suppl. S2), e110–e116. [Google Scholar] [CrossRef]
- Shono, N.N.; Al Nahedh, H.N.A. Contrast Ratio and Masking Ability of Three Ceramic Veneering Materials. Oper. Dent. 2012, 37, 406–416. [Google Scholar] [CrossRef]
- Pecho, O.E.; Ghinea, R.; Ionescu, A.M.; de la Cruz Cardona, J.; Paravina, R.D.; del Mar Pérez, M. Color and Translucency of Zirconia Ceramics, Human Dentine and Bovine Dentine. J. Dent. 2012, 40 (Suppl. S2), e34–e40. [Google Scholar] [CrossRef]
- Spink, L.S.; Rungruanganut, P.; Megremis, S.; Kelly, J.R. Comparison of an Absolute and Surrogate Measure of Relative Translucency in Dental Ceramics. Dent. Mater. 2013, 29, 702–707. [Google Scholar] [CrossRef]
- Liu, M.-C.; Aquilino, S.A.; Lund, P.S.; Vargas, M.A.; Diaz-Arnold, A.M.; Gratton, D.G.; Qian, F. Human Perception of Dental Porcelain Translucency Correlated to Spectrophotometric Measurements. J. Prosthodont. 2010, 19, 187–193. [Google Scholar] [CrossRef]
- Dietschi, D.; Ardu, S.; Krejci, I. A New Shading Concept Based on Natural Tooth Color Applied to Direct Composite Restaurations. Quintessence Int. 2006, 37, 91–102. [Google Scholar]
- Yu, B.; Ahn, J.-S.; Lee, Y.-K. Measurement of Translucency of Tooth Enamel and Dentin. Acta Odontol. Scand. 2009, 67, 57–64. [Google Scholar] [CrossRef]
- Campanelli de Morais, D.; de Oliveira Abu-Izze, F.; Rivoli Rossi, N.; Gallo Oliani, M.; de Assunção E Souza, R.O.; de Siqueira Anzolini Saavedra, G.; Bottino, M.A.; Marques de Melo Marinho, R. Effect of Consecutive Firings on the Optical and Mechanical Properties of Silicate and Lithium Disilicate Based Glass-Ceramics. J. Prosthodont. 2021, 30, 776–782. [Google Scholar] [CrossRef] [PubMed]
- Jurado, C.A.; Afrashtehfar, K.I.; Hyer, J.; Alhotan, A. Effect of Sintering on the Translucency of CAD-CAM Lithium Disilicate Restorations: A Comparative in Vitro Study. J. Prosthodont. 2023, 32, 861–866. [Google Scholar] [CrossRef] [PubMed]
Material | Acronym | Manufacturer | Translucency * | Chemical Composition [8] ± | Definition | Thermal Treatment | Batch |
---|---|---|---|---|---|---|---|
Amber Mill | AM | Hassbio, Gangneung-si, Republic of Korea | HT, MT, LT, MO | <78% SiO2; <12% Li2O; <12% coloring oxides | Lithium disilicate | Yes | EBE05ND0801 |
T | VAC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Predrying Temperature | Predrying Time | Heating Time | Temperature Rise Rate | End Temperature | Holding Time | Vacuum Holding Time | Long-Term Cooling | |||
°C | min. | min. | °C/min. | °C | min. | min. | °C * | |||
400 | 3.00 | HT | 6.50 | 60 | HT | 815 | 15.00 | HT | 21.50 | 690 |
MT | 7.05 | MT | 825 | MT | 22.05 | |||||
LT | 7.20 | LT | 840 | LT | 22.20 | |||||
MO | 7.40 | MO | 860 | MO | 22.40 |
Flexural Strength | Weibull Statistics | ||||
---|---|---|---|---|---|
Material | Firing Protocol | σ (MPa) | Sig | m | σ0 (MPa) |
Amber Mill | MO | 272.31 ± 17.57 | a | 18.43 | 279.96 |
Amber Mill | LT | 267.74 ± 16.53 | ab | 19.37 | 274.53 |
Amber Mill | MT | 257.73 ± 6.91 | bc | 44.55 | 260.61 |
Amber Mill | HT | 252.45 ± 11.29 | c | 26.24 | 256.89 |
Translucency | |||
---|---|---|---|
Material | Firing Protocol | CR | Sig |
Amber Mill | HT | 52.6 ± 3.9 | a |
Amber Mill | MT | 54.3 ± 4.1 | a |
Amber Mill | LT | 56.4 ± 2.0 | a |
Amber Mill | MO | 63.0 ± 1.8 | b |
Translucency | |||
---|---|---|---|
Material | Firing Protocol | TP | Sig |
Amber Mill | HT | 21.7 ± 1.9 | a |
Amber Mill | MT | 21.2 ± 1.6 | a |
Amber Mill | LT | 20.1 ± 1.1 | a |
Amber Mill | MO | 17.5 ± 1.1 | b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munoz, A.; Louca, C.; Vichi, A. Characterization of a Lithium Disilicate CAD/CAM Material with Firing Temperature-Controlled Translucency. Materials 2025, 18, 1591. https://doi.org/10.3390/ma18071591
Munoz A, Louca C, Vichi A. Characterization of a Lithium Disilicate CAD/CAM Material with Firing Temperature-Controlled Translucency. Materials. 2025; 18(7):1591. https://doi.org/10.3390/ma18071591
Chicago/Turabian StyleMunoz, Alvaro, Chris Louca, and Alessandro Vichi. 2025. "Characterization of a Lithium Disilicate CAD/CAM Material with Firing Temperature-Controlled Translucency" Materials 18, no. 7: 1591. https://doi.org/10.3390/ma18071591
APA StyleMunoz, A., Louca, C., & Vichi, A. (2025). Characterization of a Lithium Disilicate CAD/CAM Material with Firing Temperature-Controlled Translucency. Materials, 18(7), 1591. https://doi.org/10.3390/ma18071591