Enhancement of Magnesium Oxysulfate Cement by Acid Modifiers and Its Reaction Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of MOSC
2.3. Testing Methods and Characterization
2.3.1. Testing Methods
2.3.2. Characterization
3. Results
3.1. Compressive Strength
3.2. Flexural Strength
3.3. Water Resistance
3.4. Fluidity and Setting Time
3.5. FT-IR and Raman Analysis
3.6. TG-DSC Analysis
3.7. XRD Analysis
3.8. SEM and EDS Analysis
4. Discussion
5. Conclusions
- (1)
- PBTC and HPMA improved the mechanical properties of MOSC. At a PBTC doping level of 0.50%, the 7-day compressive strength of MOSC reached 91.14% of its 28-day compressive strength, demonstrating early strength development. With 2.00% HPMA doping, the 28-day compressive and flexural strengths of MOSC were 104.42 and 29.87 MPa, respectively, representing increases of 127.45 and 72.76% compared to the control sample.
- (2)
- The incorporation of PBTC and HPMA notably improved the water resistance of MOSC. At 2.00% HPMA doping, the softening coefficient reached a peak value of 0.94, which was 147.37% higher than that of the control sample. Additionally, the modifiers increased the fluidity and prolonged the setting time of MOSC.
- (3)
- The chelating action of PBTC and HPMA produced a new strength phase, the 5·1·7 phase, in the MOSC system. This phase altered the hydration products of MOSC and prevented the formation of Mg(OH)2. The needle-and-rod-shaped, cluster-like 5·1·7 phase provides a source of strength to MOSC that can effectively prevent the ingress of free water, thereby improving the mechanical properties and water resistance of MOSC.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, K.; Chen, B.; Jiang, Z. Properties and High-Temperature Resistance of Tailing-Based Magnesium Oxysulfate (MOS) Cement Affected by Phosphogypsum and Water-Binder Ratio. Constr. Build. Mater. 2023, 405, 133341. [Google Scholar] [CrossRef]
- Zhu, M.; Ahmad, M.R.; Wei, Z.; Chen, B. Characterization of Cost-Effective Green Engineered Magnesium Oxysulfide Cement-Based Composites (MOSC-ECC) Prepared by Replacing MgO in Magnesium Oxysulfate Cement with Slag. Constr. Build. Mater. 2024, 438, 137217. [Google Scholar] [CrossRef]
- Runčevski, T.; Wu, C.; Yu, H.; Yang, B.; Dinnebier, R.E. Structural Characterization of a New Magnesium Oxysulfate Hydrate Cement Phase and Its Surface Reactions with Atmospheric Carbon Dioxide. J. Am. Ceram. Soc. 2013, 96, 3609–3616. [Google Scholar] [CrossRef]
- Wu, C.; Chen, W.; Zhang, H.; Yu, H.; Zhang, W.; Jiang, N.; Liu, L. The Hydration Mechanism and Performance of Modified Magnesium Oxysulfate Cement by Tartaric Acid. Constr. Build. Mater. 2017, 144, 516–524. [Google Scholar] [CrossRef]
- Tang, S.; Yuan, J.; Cai, R.; Wei, C.; Chen, J.; Chen, E. In Situ Monitoring of Hydration of Magnesium Oxysulfate Cement Paste: Effect of MgO/MgSO4 Ratio. Constr. Build. Mater. 2020, 251, 119003. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, J.; Cui, C.; Yu, C.; Chang, J.; Hu, Z.; Bi, W. Stability and Phase Transition of 5·1·7 Phase in Alkaline Solutions. Constr. Build. Mater. 2020, 258, 119683. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, J.; Chang, J.; Bi, W.; Cheeseman, C.; Chen, X. Hydration and Strength Development in Magnesium Oxysulfate (MOS) Cement Incorporating Silicic Acid. Compos. Part B Eng. 2024, 268, 111081. [Google Scholar] [CrossRef]
- Chen, X.; Wang, S.; Zhou, Y.; Cheeseman, C.; Bi, W.; Zhang, T. Improved Low-Carbon Magnesium Oxysulfate Cement Pastes Containing Boric Acid and Citric Acid. Cem. Concr. Compos. 2022, 134, 104813. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, A.; Cao, J.; Ye, Q.; Zhao, Z.; Zhou, W.; Li, C.; Li, J. Performance Improvement of Magnesium Oxysulfate Cement by the Combination of Additives. Constr. Build. Mater. 2023, 408, 133683. [Google Scholar] [CrossRef]
- Guidone, R.E.; Gaona, X.; Altmaier, M.; Lothenbach, B. Gluconate and Formate Uptake by Hydrated Cement Phases. Appl. Geochem. 2024, 175, 106145. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, Y.; Liu, X.; Tian, C.; Wang, Y.; Mu, Y.; Zhang, M.; Hao, Y. Comparative Investigation of Effect of Borax and Sodium Gluconate Retarders on Properties of Magnesium Phosphate Cement. Arab. J. Sci. Eng. 2022, 47, 13187–13198. [Google Scholar] [CrossRef]
- Xu, X.; Zhu, B.; Lin, T.; Li, Y.; Sun, Y.; Yu, B.; Hu, H.; Hu, Z.; Dong, Q. Investigation on Water Resistance of Basic Magnesium Sulfate Cement Containing Weak Organic Acids. Adv. Cem. Res. 2023, 35, 466–479. [Google Scholar] [CrossRef]
- Guo, T.; Wang, H.; Yang, H.; Cai, X.; Ma, Q.; Yang, S. The Mechanical Properties of Magnesium Oxysulfate Cement Enhanced with 517 Phase Magnesium Oxysulfate Whiskers. Constr. Build. Mater. 2017, 150, 844–850. [Google Scholar] [CrossRef]
- Zhang, N.; Feng, W.; Su, Y.; Yu, H.; Ba, M.; He, Z. Different Effects for Phosphoric Acid and Calcium Citrate on Properties of Magnesium Oxysulfate Cement. Constr. Build. Mater. 2023, 374, 130931. [Google Scholar] [CrossRef]
- Song, J.; Chen, R.; Fu, J.; Xu, M.; Wang, X.; Wu, Z. Improvement of Magnesium Oxysulfide Cement Used in Geological Environment of Oil and Gas Wells. Constr. Build. Mater. 2024, 413, 134896. [Google Scholar] [CrossRef]
- Xiao, R.; Lai, Z.; Luo, X.; Liu, Z.; Liu, M.; Deng, Q.; Chen, J.; Lu, Z.; Lv, S. Effects of Sodium Dihydrogen Phosphate on Properties of Magnesium Phosphate Cement. J. Build. Eng. 2022, 60, 105216. [Google Scholar] [CrossRef]
- Pu, L.; Wang, J.; Pang, K.S.H.; Ruan, S. Enhancing Water Resistance in Magnesium Oxychloride Cement Modified with Sodium Dihydrogen Phosphate at Low MgO Concentrations. Constr. Build. Mater. 2024, 440, 137407. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, Z.; Yang, H.; Liu, X.; Qiao, Z. Properties and Hydration Mechanism of Foamed Magnesium Oxysulfate Cement under Acid Modification. Case Stud. Constr. Mater. 2024, 20, e03003. [Google Scholar] [CrossRef]
- Liang, H.; Liu, J.; Kang, B.; Zhang, Y.; He, Y.; Yang, H. Optimizing 1-Hydroxyethylidene-1,1-Diphosphonic Acid and Mechanically-Activated Iron Ore Tailings to Prepare Low-Cost and Retarded Magnesium Oxysulfate Cement. Case Stud. Constr. Mater. 2022, 17, e01631. [Google Scholar] [CrossRef]
- Mutke, X.A.M.; Tavichaiyuth, K.; Drees, F.; Lutze, H.V.; Schmidt, T.C. Oxidation of the Nitrogen-Free Phosphonate Antiscalants HEDP and PBTC in Reverse Osmosis Concentrates: Reaction Kinetics and Degradation Rate. Water Res. 2023, 233, 119571. [Google Scholar] [CrossRef]
- Ou, H.-H.; Chiang Hsieh, L.-H. A Synergistic Effect of Sodium Gluconate and 2-Phosphonobutane-1,2,4-Tricarboxylic Acid on the Inhibition of CaCO3 Scaling Formation. Powder Technol. 2016, 302, 160–167. [Google Scholar] [CrossRef]
- Jindakaew, J.; Kaewsaneha, C.; Ratanatawanate, C.; Lebaz, N.; Suwannin, P.; Zine, N.; Opaprakasit, P.; Elaissari, A. Rapid and Facile Detection of PBTC Antiscalant Using Functionalized Polystyrene Nanoparticles and Latex Agglutination. Colloids Surf. Physicochem. Eng. Asp. 2024, 685, 133108. [Google Scholar] [CrossRef]
- Rott, E.; Happel, O.; Armbruster, D.; Minke, R. Behavior of PBTC, HEDP, and Aminophosphonates in the Process of Wastewater Treatment. Water 2019, 12, 53. [Google Scholar] [CrossRef]
- Shi, J.; Lv, J.; Wang, J.; Cao, Z.; Sun, Y.; Wang, J.; Lu, W.; Cao, Y.; Tang, J.; Wang, X. Hydrolytic Polymaleic Acid: An Environmentally Friendly Inhibitor for the Flotation Separation of Parisite from Calcite and Fluorite. Appl. Surf. Sci. 2025, 680, 161396. [Google Scholar] [CrossRef]
- Liao, R.; Feng, Q.; Wen, S.; Zuo, Q.; Zhou, Y.; Liu, J. Hydrolytic Polymaleic Anhydride as a Depressant for Flotation Separation of Fine Smithsonite from Calcite: An Experimental and MD Study. Colloids Surf. Physicochem. Eng. Asp. 2023, 678, 132471. [Google Scholar] [CrossRef]
- GB/T 17671-2021; Test Method of Cement Mortar Strength (ISO Method). National Standard of the People’s Republic of China: Beijing, China, 2021.
- GB/T 8077-2012; Methods for Testing Uniformity of Concrete Admixture. National Standard of the People’s Republic of China: Beijing, China, 2012.
- GB/T 1346-2011; Test Methods for Water Requirement of Normal Consistency, Setting Time and Soundness of the Portland Cement. National Standard of the People’s Republic of China: Beijing, China, 2011.
- Viani, A.; Mácová, P.; Ševčík, R.; Zárybnická, L. Mechanism of Magnesium Phosphate Cement Retardation by Citric Acid. Ceram. Int. 2023, 49, 11112–11122. [Google Scholar] [CrossRef]
- Tan, Y.; Yu, H.; Yang, D.; Feng, T. Basic Magnesium Sulfate Cement: Autogenous Shrinkage Evolution and Mechanism under Various Chemical Admixtures. Cem. Concr. Compos. 2022, 128, 104412. [Google Scholar] [CrossRef]
- Ning, X.; Wu, C.; Chen, H. Preparation and Characterization of Novel 5Mg(OH)2·MgSO4·7H2O Whiskers. Materials 2022, 15, 8018. [Google Scholar] [CrossRef]
- You, J.-J.; Song, Q.-Y.; Tan, D.; Yang, C.; Liu, Y.-F. Mechanical Properties and Microstructure of Basalt Fiber-Biobased- Basic Magnesium Sulfate Cement. Cem. Concr. Compos. 2023, 137, 104934. [Google Scholar] [CrossRef]
- Wang, D.; Jin, K.; Wang, N.; Zhang, H.; Wang, J.; Zhou, X. Compressive Strength and Water Resistance of Magnesium Oxysulfate (MOS) Cement Incorporating Magnesium Slag. Constr. Build. Mater. 2024, 453, 139053. [Google Scholar] [CrossRef]
- Lin, Z.; Zheng, L.; Li, X.; Zuo, Y. Preparation of Bamboo Scraps/Magnesium Oxychloride Lightweight Composites with High Water Resistance by PVAc. Constr. Build. Mater. 2023, 393, 131977. [Google Scholar] [CrossRef]
- Wu, C.; Huang, L. Properties and Effective Improvement Approaches of Basic Magnesium Sulfate Cement under High-Temperature Pre-Curing. Constr. Build. Mater. 2024, 411, 134561. [Google Scholar] [CrossRef]
- Gu, K.; Maierdan, Y.; Chen, B. Effects of Ethylenediamine Tetra-Acetic Acid (EDTA) and Its Disodium Salt Derivative (EDTA-Na) on the Characteristics of Magnesium Oxysulfate (MOS) Cement. Compos. Part B Eng. 2022, 232, 109654. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, X.; Luo, J.; Ma, C.; Xu, C. Complexation Effect of Copper (II) with HEDP Supported by Activated Carbon and Influence on Acetylene Hydration. New J. Chem. 2021, 45, 1712–1720. [Google Scholar] [CrossRef]
- Ramachandran, V.S.; Lowery, M.S.; Wise, T.; Polomark, G.M. The Role of Phosphonates in the Hydration of Portland Cement. Mater. Struct. 1993, 26, 425–432. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, G.; Li, B.; Fu, X.; Li, S. Selective Adsorption of Hydrolyzed Polymaleic Anhydride as an Eco-Friendly Depressant for the Efficient Separation of Pyrite from Serpentine. Miner. Eng. 2024, 216, 108840. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, L.; Sun, W.; Yang, Z.; Gao, W.; Liu, G. Anti-Scale Performance Degradation of Carboxylic Acid Scale Inhibitors under Corrosion Conditions. Corros. Sci. 2023, 222, 111423. [Google Scholar] [CrossRef]
- Wang, R.; Ji, X.; Zhou, R.; Jin, C.; Sun, W.; Wang, Z.; Yan, Y. Fabrication of High-Strength, Water-Resistant Homogeneous Magnesium Oxysulfate Cement via Synergistic Modification with Citric Acid and Sodium Alginate. Constr. Build. Mater. 2024, 457, 139473. [Google Scholar] [CrossRef]
- Ba, M.; Gao, Q.; Ma, Y.; Zhu, J.; Du, Y. Improved Hydration and Properties of Magnesium Oxysulfate (MOS) Cement Using Sodium Silicate as an Additive. Constr. Build. Mater. 2021, 267, 120988. [Google Scholar] [CrossRef]
- Zhang, N.; Yu, H.; Ma, H.; Ba, M. Effects of Different pH Chemical Additives on the Hydration and Hardening Rules of Basic Magnesium Sulfate Cement. Constr. Build. Mater. 2021, 305, 124696. [Google Scholar] [CrossRef]
Composition | MgO | SiO2 | Al2O3 | Fe2O3 | CaO | K2O | Others |
---|---|---|---|---|---|---|---|
Mass fraction (%) | 85.14 | 7.05 | 3.77 | 0.67 | 2.99 | 0.03 | 3.34 |
Serial Number | C | P1 | P2 | P3 | P4 | P5 |
---|---|---|---|---|---|---|
PBTC (wt%) | 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 |
Serial number | C | H1 | H2 | H3 | H4 | H5 |
HPMA (wt%) | 0.00 | 0.50 | 1.00 | 1.50 | 2.00 | 2.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, Z.; Fan, W.; Zhang, Y.; Fu, X.; Yang, H.; Zhang, F. Enhancement of Magnesium Oxysulfate Cement by Acid Modifiers and Its Reaction Mechanism. Materials 2025, 18, 1432. https://doi.org/10.3390/ma18071432
Qiao Z, Fan W, Zhang Y, Fu X, Yang H, Zhang F. Enhancement of Magnesium Oxysulfate Cement by Acid Modifiers and Its Reaction Mechanism. Materials. 2025; 18(7):1432. https://doi.org/10.3390/ma18071432
Chicago/Turabian StyleQiao, Zixuan, Wenqiang Fan, Yuting Zhang, Xinyu Fu, Hongjian Yang, and Fuqiang Zhang. 2025. "Enhancement of Magnesium Oxysulfate Cement by Acid Modifiers and Its Reaction Mechanism" Materials 18, no. 7: 1432. https://doi.org/10.3390/ma18071432
APA StyleQiao, Z., Fan, W., Zhang, Y., Fu, X., Yang, H., & Zhang, F. (2025). Enhancement of Magnesium Oxysulfate Cement by Acid Modifiers and Its Reaction Mechanism. Materials, 18(7), 1432. https://doi.org/10.3390/ma18071432