Effect of MgO Additive on Properties of Corundum–Mullite Duplex Ceramic Synthesized from High-Alumina Fly Ash
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phase Analysis of the Ceramic Composites
3.2. Microstructure of the Corundum–Mullite Ceramics
3.3. Mechanical Properties of the Corundum–Mullite Ceramics
3.4. FEA of the Corundum–Mullite Ceramics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mukherjee, A.B.; Zevenhoven, R.; Bhattacharya, P.; Sajwan, K.S.; Kikuchi, R. Mercury flow via coal and coal utilization by-products: A global perspective. Resour. Conserv. Recycl. 2008, 52, 571–591. [Google Scholar] [CrossRef]
- Al-Shmaisani, S.; Kalina, R.D.; Douglas Ferron, R.; Juenger, M.C.G. Assessment of blended coal source fly ashes and blended fly ashes. Constr. Build. Mater. 2022, 342, 127918. [Google Scholar] [CrossRef]
- Treadwell, D.R.; Dabbs, D.M.; Aksay, I.A. Mullite (3Al2O3−2SiO2) Synthesis with Aluminosiloxanes. Chem. Mater. 1996, 8, 2056–2060. [Google Scholar] [CrossRef]
- Amrhein, C.; Haghnia, G.H.; Kim, T.S.; Mosher, P.A.; Gagajena, R.C.; Amanios, T.; de la Torre, L. Synthesis and Properties of Zeolites from Coal Fly Ash. Environ. Sci. Technol. 1996, 30, 735–742. [Google Scholar] [CrossRef]
- Hossain, S.S.; Roy, P.K. Sustainable ceramics derived from solid wastes: A review. J. Asian Ceram. Soc. 2020, 8, 984–1009. [Google Scholar] [CrossRef]
- Lin, S.D.; Jiang, X.G.; Zhao, Y.M.; Yan, J.H. Zeolite greenly synthesized from fly ash and its resource utilization: A review. Sci. Total Environ. 2022, 851, 158182. [Google Scholar] [CrossRef]
- Park, Y.M.; Yang, T.Y.; Yoon, S.Y.; Stevens, R.; Park, H.C. Mullite whiskers derived from coal fly ash. Mater. Sci. Eng. A 2007, 454–455, 518–522. [Google Scholar] [CrossRef]
- Ojha, K.; Pradhan, N.; Samanta, A. Zeolite from fly ash: Synthesis and characterization. Bull. Mater. Sci. 2004, 27, 555–564. [Google Scholar] [CrossRef]
- Kudyba-Jansen, A.A.; Hintzen, H.T.; Metselaar, R. Ca-α/β-sialon ceramics synthesised from fly ash—Preparation, characterization and properties. Mater. Res. Bull. 2001, 36, 1215–1230. [Google Scholar] [CrossRef]
- Guerrero, A.; Goñi, S.; Campillo, I.; Moragues, A. Belite Cement Clinker from Coal Fly Ash of High Ca Content. Optimization of Synthesis Parameters. Environ. Sci. Technol. 2004, 38, 3209–3213. [Google Scholar] [CrossRef]
- Raghavendra, S.C.; Khasim, S.; Revanasiddappa, M.; Ambika Prasad, M.V.N.; Kulkarni, A.B. Synthesis, characterization and low frequency a.c. conduction of polyaniline/fly ash composites. Bull. Mater. Sci. 2003, 26, 733–739. [Google Scholar] [CrossRef]
- Daoud, A. Effect of fly ash addition on the structure and compressive properties of 4032–fly ash particle composite foams. J. Alloys Compd. 2009, 487, 618–625. [Google Scholar] [CrossRef]
- Moutsatsou, A.; Itskos, G.; Vounatsos, P.; Koukouzas, N.; Vasilatos, C. Microstructural characterization of PM-Al and PM-Al/Si composites reinforced with lignite fly ash. Mater. Sci. Eng. A 2010, 527, 4788–4795. [Google Scholar] [CrossRef]
- Gu, J.; Wu, G.; Zhang, Q. Preparation and damping properties of fly ash filled epoxy composites. Mater. Sci. Eng. A 2007, 452–453, 614–618. [Google Scholar] [CrossRef]
- Woszuk, A.; Bandura, L.; Franus, W. Fly ash as low cost and environmentally friendly filler and its effect on the properties of mix asphalt. J. Clean. Prod. 2019, 235, 493–502. [Google Scholar] [CrossRef]
- Dong, Y.; Hampshire, S.; Zhou, J.-e.; Ji, Z.; Wang, J.; Meng, G. Sintering and characterization of flyash-based mullite with MgO addition. J. Eur. Ceram. Soc. 2011, 31, 687–695. [Google Scholar] [CrossRef]
- Sarin, P.; Yoon, W.; Haggerty, R.P.; Chiritescu, C.; Bhorkar, N.C.; Kriven, W.M. Effect of transition-metal-ion doping on high temperature thermal expansion of 3:2 mullite—An in situ, high temperature, synchrotron diffraction study. J. Eur. Ceram. Soc. 2008, 28, 353–365. [Google Scholar] [CrossRef]
- Hamidouche, M.; Bouaouadja, N.; Olagnon, C.; Fantozzi, G. Thermal shock behaviour of mullite ceramic. Ceram. Int. 2003, 29, 599–609. [Google Scholar] [CrossRef]
- Li, J.-H.; Ma, H.-W.; Huang, W.-H. Effect of V2O5 on the properties of mullite ceramics synthesized from high-aluminum fly ash and bauxite. J. Hazard. Mater. 2009, 166, 1535–1539. [Google Scholar] [CrossRef]
- Shen, Y.; Xu, X.; Wu, J.; Qiu, S.; Zhang, D.; Shi, X. Fabrication and characterization of corundum-mullite composite solar thermal storage ceramics with enhanced thermophysical properties. Ceram. Int. 2025, 51, 23598–23610. [Google Scholar] [CrossRef]
- Wu, J.; Ding, C.; Xu, X.; Liu, Y.; Wang, Y. Microstructure and performances of corundum−mullite composite ceramics for heat transmission pipelines: Effects of Ho2O3 additive content. Ceram. Int. 2021, 47, 34794–34801. [Google Scholar] [CrossRef]
- Prusty, S.; Mishra, D.K.; Mohapatra, B.K.; Singh, S.K. Effect of MgO in the microstructure formation of zirconia mullite composites from sillimanite and zircon. Ceram. Int. 2012, 38, 2363–2368. [Google Scholar] [CrossRef]
- Li, K.; Ge, S.; Yuan, G.; Zhang, H.; Zhang, J.; He, J.; Jia, Q.; Zhang, S. Effects of V2O5 addition on the synthesis of columnar self-reinforced mullite porous ceramics. Ceram. Int. 2021, 47, 11240–11248. [Google Scholar] [CrossRef]
- Kong, X.; Tian, Y.; Chai, Y.; Zhao, P.; Wang, K.; Li, Z. Effects of pyrolusite additive on the microstructure and mechanical strength of corundum–mullite ceramics. Ceram. Int. 2015, 41, 4294–4300. [Google Scholar] [CrossRef]
- Feng, M.; Wu, Y.-q.; Ji, G.-r.; Zhou, Y.; Wang, X.-j.; Hao, J.-y.; Wu, Y.-q.; Tian, Y.-m. Sintering mechanism and properties of corundum-mullite duplex ceramic with MnO2 addition. Ceram. Int. 2022, 48, 14237–14245. [Google Scholar] [CrossRef]
- Xu, X.; Xu, X.; Wu, J.; Lao, X.; Zhang, Y.; Li, K. Effect of Sm2O3 on microstructure, thermal shock resistance and thermal conductivity of cordierite-mullite-corundum composite ceramics for solar heat transmission pipeline. Ceram. Int. 2016, 42, 13525–13534. [Google Scholar] [CrossRef]
- ASTM C373; Standard Test Methods for Determination of Water Absorption and Associated Properties by Vacuum Method for Pressed Ceramic Tiles and Glass Tiles and Boil Method for Extruded Ceramic Tiles and Non-Tile. ASTM International: West Conshohocken, PA, USA, 2023.
- Montanaro, L.; Perrot, C.; Esnouf, C.; Thollet, G.; Fantozzi, G.; Negro, A. Sintering of Industrial Mullites in the Presence of Magnesia as a Sintering Aid. J. Am. Ceram. Soc. 2000, 83, 189–196. [Google Scholar] [CrossRef]
- Kleebe, H.-J.; Hilz, G.; Ziegler, G. Transmission Electron Microscopy and Electron Energy-Loss Spectroscopy Characterization of Glass Phase in Sol-Gel-Derived Mullite. J. Am. Ceram. Soc. 1996, 79, 2592–2600. [Google Scholar] [CrossRef]





| Oxides | SiO2 | TiO2 | Al2O3 | Fe2O3 | FeO | MgO | CaO | MnO | K2O | P2O5 |
|---|---|---|---|---|---|---|---|---|---|---|
| Ratio (wt%) | 46.83 | 1.12 | 37.05 | 6.93 | 0.00 | 0.66 | 2.78 | 0.05 | 0.54 | 0.2 |
| Samples | MgO (wt%) | Mullite | Corundum | ||||
|---|---|---|---|---|---|---|---|
| a0/Å | b0/Å | c0/Å | V/Å3 | a0/Å | V/Å3 | ||
| No. 1 | 0 | 7.574 | 7.715 | 2.898 | 169.3 | 5.137 | 85.100 |
| No. 2 | 3 | 7.567 | 7.725 | 2.897 | 169.3 | 5.135 | 85.010 |
| No. 3 | 6 | 7.556 | 7.729 | 2.892 | 168.9 | 5.135 | 85.080 |
| No. 4 | 9 | 7.552 | 7.733 | 2.889 | 168.7 | 5.114 | 84.710 |
| No. 5 | 12 | 7.504 | 7.766 | 2.888 | 168.3 | — | — |
| Element (in wt%) | |||||
|---|---|---|---|---|---|
| O | Mg | Al | Si | Others | |
| With 3 wt% MgO | |||||
| Spectrum-1 | 42.06 | 1.26 | 21.59 | 17.72 | 17.37 |
| Spectrum-2 | 46.75 | 3.55 | 26.09 | 12.87 | 10.74 |
| With 9 wt% MgO | |||||
| Spectrum-3 | 43.19 | 1.62 | 18.34 | 22.43 | 14.42 |
| Spectrum-4 | 47.55 | 4.23 | 25.40 | 18.07 | 4.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, S.; Wu, X.; Luo, B. Effect of MgO Additive on Properties of Corundum–Mullite Duplex Ceramic Synthesized from High-Alumina Fly Ash. Materials 2025, 18, 4805. https://doi.org/10.3390/ma18204805
Dai S, Wu X, Luo B. Effect of MgO Additive on Properties of Corundum–Mullite Duplex Ceramic Synthesized from High-Alumina Fly Ash. Materials. 2025; 18(20):4805. https://doi.org/10.3390/ma18204805
Chicago/Turabian StyleDai, Suwei, Xiaowen Wu, and Bingcheng Luo. 2025. "Effect of MgO Additive on Properties of Corundum–Mullite Duplex Ceramic Synthesized from High-Alumina Fly Ash" Materials 18, no. 20: 4805. https://doi.org/10.3390/ma18204805
APA StyleDai, S., Wu, X., & Luo, B. (2025). Effect of MgO Additive on Properties of Corundum–Mullite Duplex Ceramic Synthesized from High-Alumina Fly Ash. Materials, 18(20), 4805. https://doi.org/10.3390/ma18204805

