Physical and Functional Properties of Toothpaste Tablets
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Material
2.2. Preparation of Tablets
2.3. Tablet Testing
2.3.1. Uniformity of Weight and Thickness Test
2.3.2. Friability Test
- m1—initial tablet sample mass [g],
- m2—tablet sample mass after shaking [g] [22].
2.3.3. Strength (Crush Resistance)
2.3.4. Colour Parameter Measurement
2.3.5. pH Testing
2.3.6. Foaming Capacity Determination
2.3.7. Determination of Disintegration Time
2.3.8. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Awartani, F.; Atassi, F. Oral Hygiene Status among Orthodontic Patients. J. Contemp. Dent. Pract. 2010, 11, 25–32. [Google Scholar] [CrossRef]
- Mitha, S.; ElNaem, M.H.; Chandran, J.; Rajah, N.P.; Fam, T.Y.; Babar, M.G.; Siddiqui, M.J.; Jamshed, S. Use of Oral Cleaning Devices and Their Perceived Benefits among Malaysians in Kuala Lumpur and Johor Bahru: An Exploratory Structured Approach. J. Pharm. Bioallied Sci. 2018, 10, 216–225. [Google Scholar] [CrossRef]
- Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products (recast). Off. J. Eur. Union 2009, L342, 59–209.
- Martins, A.M.; Marto, J.M. A Sustainable Life Cycle for Cosmetics: From Design and Development to Post-Use Phase. Sustain. Chem. Pharm. 2023, 35, 101178. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Wang, Y.; Chen, F.; Yu, Z.; Wang, L.; Chen, S.; Guo, M. Effect of Citrus Lemon Oil on Growth and Adherence of Streptococcus mutans. World J. Microbiol. Biotechnol. 2013, 29, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Chopra, V.; Pathak, R.; Samir, P.V.; Gupta, K.; Mahesh, D.R.; Rao, V. Evaluating the Remineralizing Potential of Dentifrices Containing Lemon Essential Oil. J. Pharm. Bioallied Sci. 2025, 17 (Suppl. 1), S715–S717. [Google Scholar] [CrossRef]
- Thosar, N.; Basak, S.; Bahadure, R.N.; Rajurkar, M. Antimicrobial Efficacy of Five Essential Oils Against Oral Pathogens: An In Vitro Study. Eur. J. Dent. 2013, 7 (Suppl. 1), S071–S077. [Google Scholar] [CrossRef] [PubMed]
- Karicheri, R.; Antony, B. Antibacterial and Antibiofilm Activities of Peppermint (Mentha piperita Linn) and Menthol Mint (Mentha arvensis Linn) Essential Oils on Aggregatibacter actinomycetemcomitans Isolated from Oro-Dental Infections. Eur. J. Pharm. Med. Res. 2016, 3, 577–581. [Google Scholar]
- López-Jornet, P.; Aznar-Cayuela, C. Efficacy of Topical Chamomile Management vs. Placebo in Patients with Oral Lichen Planus: A Randomized Double-Blind Study. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 1783–1786. [Google Scholar] [CrossRef]
- Carl, W.; Emrich, L.S. Management of Oral Mucositis During Local Radiation and Systemic Chemotherapy: A Study of 98 Patients. J. Prosthet. Dent. 1991, 66, 361–369. [Google Scholar] [CrossRef]
- Mirpour, M.; Siahmazgi, Z.G.; Kiasaraie, M.S. Antibacterial Activity of Clove, Gall Nut Methanolic and Ethanolic Extracts on Streptococcus mutans PTCC 1683 and Streptococcus salivarius PTCC 1448. J. Oral Biol. Craniofac. Res. 2015, 5, 7–10. [Google Scholar] [CrossRef] [PubMed]
- AL-Mahdi, Z.K.; Witwit, L.J.; Ubaid, I.A. Activity of Cloves, Cinnamon and Thyme Essential Oils Against Some Oral Bacteria. Al-Kitab J. Pure Sci. 2021, 5, 14–24. [Google Scholar] [CrossRef]
- Qureshi, A.; Bhakay, J. A Review of Changing Product Design in Cosmetic Industry, a Step towards Water Conservation. J. Manag. Res. 2020, 12, 21–27. [Google Scholar]
- Thakur, K.; Chopde, M. A Review Article: Herbal Tooth Tablets Formulation. World J. Pharm. Res. 2022, 11, 648–654. [Google Scholar] [CrossRef]
- Suppipat, S.; Hu, A.H.; Trinh, L.T.K.; Kuo, C.-H.; Huang, L.H. A Comparative Life Cycle Assessment of Toothpaste Cream versus Toothpaste Tablets. Sustain. Prod. Consum. 2022, 29, 357–369. [Google Scholar] [CrossRef]
- Martinez, A.; Im, J.; Bezman, E.; Lee, E.; DeAnda, D.; Ree, R.; Oyoyo, U.; Kwon, S.R. A Comparison of Toothpaste Tablets and a Sodium Fluoride Dentifrice for the Control of Supragingival Plaque and Gingivitis: A 2-Week Randomized Controlled Trial. Am. J. Dent. 2023, 36, 172–176. [Google Scholar] [PubMed]
- Sandhu, J.; Calderon, B.; Park, B.; Patel, J.; Garcia-Godoy, F.; Oyoyo, U.; Kwon, S.R. Zero Waste: Consumers’ Perception of the Use of Eco-Friendly Toothpaste Tablets—A Quasi-Experimental Study. J. Contemp. Dent. Pract. 2025, 26, 333–338. [Google Scholar] [CrossRef]
- Nattawat, N.; Wetwitayaklung, P.; Sriwong, B.T. Formulation of Chewable Tooth-Tablets Containing Mangosteen Rind Extract and Market Feasibility Study in Capital District of Nakhon Pathom Province. Key Eng. Mater. 2021, 901, 28–34. [Google Scholar] [CrossRef]
- Ko, J.; Tsao, A.; Kim, R.; Perry, C.; Oyoyo, U.; Kwon, S.R. Effect of Various Toothpaste Tablets on Gloss and Surface Roughness of Resin-Based Composite Materials. Oper. Dent. 2024, 49, 282–289. [Google Scholar] [CrossRef]
- Padmanabh, S.K.D.; Makhiya, M.; Mulchandani, V.; Jhamb, V.; Trivedi, M.; Upendrabhai, M.J. A Comparative Clinical Evaluation of Plaque Removal Efficacy of a Chewable Toothpaste Tablet with Conventional Toothpaste in Children—A Randomized Clinical Trial. Saudi J. Oral Sci. 2022, 9, 185–189. [Google Scholar] [CrossRef]
- Schwoegl, E.; Lallier, T.E. The Effect of Toothpaste Tablets on the Viability and Proliferation of Gingival Fibroblasts. Ph.D. Thesis, LSU Health New Orleans, New Orleans, LA, USA, 2024. [Google Scholar]
- Kasperek, R.; Polski, A.; Zimmer, Ł.; Poleszak, E. Release Kinetics of Papaverine Hydrochloride from Tablets with Different Excipients. Sci. Pharm. 2014, 82, 683. [Google Scholar] [CrossRef]
- Berberich, J.; Dee, K.H.; Hayauchi, Y.; Pörtner, C. A New Method to Determine Discoloration Kinetics of Uncoated White Tablets Occurring during Stability Testing—An Application of Instrumental Color Measurement. Int. J. Pharm. 2002, 234, 55–66. [Google Scholar] [CrossRef]
- Akotakar, A.M.; Thenge, R.R.; Patil, A.V.; Ghonge, A.B.; Bhaltadak, M.B. Formulation and Comparative Standardization of Toothpaste. Int. J. Pharm. Sci. Res. 2018, 3, 12–15. [Google Scholar]
- Haruna, F.; Apeji, Y.E.; Oparaeche, C.; Oyi, A.R.; Gamlen, M. Compaction and Tableting Properties of Composite Particles of Microcrystalline Cellulose and Crospovidone Engineered for Direct Compression. Future J. Pharm. Sci. 2020, 6, 35. [Google Scholar] [CrossRef]
- Sinka, I.C.; Motazedian, F.; Cocks, A.C.F.; Pitt, K.G. The Effect of Processing Parameters on Pharmaceutical Tablet Properties. Powder Technol. 2009, 189, 276–284. [Google Scholar] [CrossRef]
- Lahdenpää, E.; Niskanen, M.; Yliruusi, J. Crushing Strength, Disintegration Time and Weight Variation of Tablets Compressed from Three Avicel® PH Grades and Their Mixtures. Eur. J. Pharm. Biopharm. 1997, 43, 315–322. [Google Scholar] [CrossRef]
- Yeh, C.-H.; Wang, Y.-L.; Vo, T.T.T.; Lee, Y.-C.; Lee, I.-T. Fluoride in Dental Caries Prevention and Treatment: Mechanisms, Clinical Evidence, and Public Health Perspectives. Healthcare 2025, 13, 2246. [Google Scholar] [CrossRef]
- Featherstone, J.D.B. The Science and Practice of Caries Prevention. J. Am. Dent. Assoc. 2000, 131, 887–899. [Google Scholar] [CrossRef] [PubMed]
- Alshahrani, S.S.A.; Alshahrani, M.M.; Albishi, M.M.; Bin Sueedan, A.M.; Al-Haddaf, F.M.; Alajal, H.A.; Abuquraihah, M.N.; Alamer, A.H.; Alwabari, A.M.; Al Hashim, F.A.A.; et al. Fluoride’s Role in Preventing Dental Caries. J. Int. Crisis Risk Commun. Res. 2024, 6, 2723–2734. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Recommendations for Using Fluoride to Prevent and Control Dental Caries in the United States. Morb. Mortal. Wkly. Rep. 2001, 50, 1–42. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/rr5014a1.htm (accessed on 28 September 2025).
- Roberts, R.J.; Rowe, R.C. The effect of punch velocity on the compaction of a variety of materials. J. Pharm. Pharmacol. 1985, 37, 377–384. [Google Scholar] [CrossRef]
- Patel, M.; Lynch, R.J.M. Oral Health Interventions for Preventing Dental Caries in Children and Adolescents. Br. Dent. J. 2015, 219, 289–296. [Google Scholar] [CrossRef]
- Marsh, P.D. Controlling the Oral Biofilm with Antimicrobials. J. Dent. 2010, 38 (Suppl. 1), S11–S15. [Google Scholar] [CrossRef]
- Rudnic, E.M.; Schwartz, J.D. Oral Solid Dosage Forms. In Modern Pharmaceutics; Banker, G.S., Rhodes, C.T., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 369–401. [Google Scholar]
- Mohylyuk, V.; Bandere, D. High-Speed Tableting of High Drug-Loaded Tablets Prepared from Fluid-Bed Granulated Isoniazid. Pharmaceutics 2023, 15, 1236. [Google Scholar] [CrossRef]
- Rodríguez-Pombo, L.; Awad, A.; Basit, A.W.; Alvarez-Lorenzo, C.; Goyanes, A. Innovations in Chewable Formulations: The Novelty and Applications of 3D Printing in Drug Product Design. Pharmaceutics 2022, 14, 1732. [Google Scholar] [CrossRef]
- Maslii, Y.; Kolisnyk, T.; Ruban, O.; Yevtifieieva, O.; Gureyeva, S.; Goy, A.; Bernatoniene, J. Impact of Compression Force on Mechanical, Textural, Release and Chewing Perception Properties of Compressible Medicated Chewing Gums. Pharmaceutics 2021, 13, 1808. [Google Scholar] [CrossRef]
- Hodžić, B. Influence of Formulation Factors, Process Parameters, and Selected Quality Attributes on Carvedilol Release from Roller-Compacted Hypromellose-Based Matrix Tablets. Pharmaceutics 2022, 14, 876. [Google Scholar]
- Mokrzycki, W.S.; Tatol, M. Colour Difference ΔE—A Survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Catani, M.V.; Rinaldi, F.; Tullio, V.; Gasperi, V.; Savini, I. Comparative Analysis of Phenolic Composition of Six Commercially Available Chamomile (Matricaria chamomilla L.) Extracts: Potential Biological Implications. Int. J. Mol. Sci. 2021, 22, 10601. [Google Scholar] [CrossRef]
- Poucher, W.A. A Dictionary of the Raw Materials of Perfumery. In Perfumes, Cosmetics and Soaps: Volume I The Raw Materials of Perfumery; Springer: Dordrecht, The Netherlands, 1974; pp. 1–116. [Google Scholar]
- El-Zawahry, M.M.; El Khatib, H.S.; Shokry, G.M.; Rashad, H.G. One-Pot Robust Dyeing of Cotton Fabrics with Multifunctional Chamomile Flower Dyes. Fibers Polym. 2022, 23, 2234–2249. [Google Scholar] [CrossRef]
- Mickoś, E.; Banyś, A.; Hartman-Petrycka, M.; Gortat-Stanisławska, Ż.; Wilczyński, S. Effect of Colour and Surface Properties of Solid Pharmaceutical Dosage Forms on Light Reflection in Solar Spectral Range. Pharm. Res. 2025, 42, 1429–1441. [Google Scholar] [CrossRef]
- Sakiroff, L.M.; Chennell, P.; Yessaad, M.; Pereira, B.; Bouattour, Y.; Sautou, V. Evaluation of Color Changes during Stability Studies Using Spectrophotometric Chromaticity Measurements versus Visual Examination. Sci. Rep. 2022, 12, 8959. [Google Scholar] [CrossRef]
- Gentili, R. Effect of Soil pH on the Growth, Reproductive Investment and Pollen Allergenicity of Ambrosia artemisiifolia L. Front. Plant Sci. 2018, 9, 1335. [Google Scholar]
- Cheng, C.Y.; Balsandorj, Z.; Hao, Z.; Pan, L. High-Precision Measurement of pH in the Full Toothpaste Using NMR Chemical Shift. J. Magn. Reson. 2020, 317, 106771. [Google Scholar] [CrossRef]
- Fernandes, N.L.S.; Silva, J.G.V.C.; de Sousa, E.B.G.; Costa, S.O.A.; Araújo, J.L.; Menezes, T.O.A.; de Souza, L.C.A.; da Costa, N.P.; Paiva, S.M.; de Almeida e Silva, J.S. Effectiveness of Fluoride-Containing Toothpastes Associated with Different Technologies to Remineralize Enamel after pH Cycling: An In Vitro Study. BMC Oral Health 2022, 22, 489. [Google Scholar] [CrossRef]
- Mehrjoo, M.; Haghgoo, R.; Ahmadvand, M. Effect of a Nano-Hydroxyapatite Toothpaste on Enamel Erosive Lesions of Third Molars Induced by Exposure to Orange Juice. Contemp. Clin. Dent. 2024, 15, 17–21. [Google Scholar] [CrossRef]
- Farooq, I.; Ali, S.; Farooqi, F.A.; AlHumaid, J.; Binhasan, M.; Shabib, S.; Vohra, F.; Abduljabbar, T. Enamel Remineralization Competence of a Novel Fluoride-Incorporated Bioactive Glass Toothpaste—A Surface Micro-Hardness, Profilometric, and Micro-Computed Tomographic Analysis. Tomography 2021, 7, 752–766. [Google Scholar] [CrossRef]
- Setiawan, S.; Haroen, E.R.; Hadidjah, D. The Difference in Saliva pH before and after Brushing with Fluoride Containing Toothpaste and without Toothpaste. Padjadjaran J. Dent. 2008, 20, 3. [Google Scholar] [CrossRef]
- Dai, Y.-L.; Li, Y.; Wang, Q.; Niu, F.-J.; Li, K.-W.; Wang, Y.-Y.; Wang, J.; Zhou, C.-Z.; Gao, L.-N. Chamomile: A Review of Its Traditional Uses, Chemical Constituents, Pharmacological Activities and Quality Control Studies. Molecules 2023, 28, 133. [Google Scholar] [CrossRef]
- Cortés-Rojas, D.F.; de Souza, C.R.F.; Oliveira, W.P. Clove (Syzygium aromaticum): A Precious Spice. Asian Pac. J. Trop. Biomed. 2014, 4, 90–96. [Google Scholar] [CrossRef]
- Cai, L.; Wu, C.D. Compounds from Syzygium aromaticum Possessing Growth Inhibitory Activity against Oral Pathogens. J. Nat. Prod. 1996, 59, 987–990. [Google Scholar] [CrossRef]
- Gupta, A.K.; Banerjee, P.K.; Mishra, A. Effect of Frothers on Foamability, Foam Stability, and Bubble Size. Coal Prep. 2007, 27, 107–125. [Google Scholar] [CrossRef]
- Fichtner, F.; Schubert, M.A. Compaction Behavior and Tablet Properties of Powder Blends for Direct Compression. Int. J. Pharm. 2019, 565, 325–333. [Google Scholar]
- Hadjiiski, A. Effect of Oily Additives on Foamability and Foam Stability. 2. Entry Barriers. Langmuir 2001, 17, 7011–7021. [Google Scholar] [CrossRef]
- Ahamad, J. Characterization of Essential Oil Composition of Syzygium aromaticum Linn. (Clove) by GC-MS and Evaluation of Its Antioxidant Activity. J. Angiother. 2023, 7, 1–5. [Google Scholar] [CrossRef]
- Bezerra, K.G.O.; Silva, I.G.S.; Almeida, F.C.G.; Rufino, R.D.; Sarubbo, L.A. Plant-Derived Biosurfactants: Extraction, Characteristics and Properties for Application in Cosmetics. Biocatal. Agric. Biotechnol. 2021, 34, 102036. [Google Scholar] [CrossRef]
- Parkash, V.; Maan, S.; Yadav, S.K.; Jogpal, V. Fast Disintegrating Tablets: Opportunity in Drug Delivery System. J. Adv. Pharm. Technol. Res. 2011, 2, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, Ł.; Kasperek, R.; Poleszak, E. Application of β-Cyclodextrin in the Formulation of ODT Tablets Containing Ibuprofen. Polym. Med. 2014, 44, 231–235. [Google Scholar] [CrossRef]
- Gozdur, M. Porównanie Parametrów Fizykochemicznych oraz Aktywności Antyoksydacyjnej Metodą EPR Tabletek z Suchym Wyciągiem z Nasion Winogron (Vitis vinifera L.) oraz Tabletek z Suchym Wyciągiem z Kory Sosny Nadmorskiej (Pinus pinaster Sol.). Farm. Pol. 2010, 66, 3–8. [Google Scholar]
- Marczyński, Z.; Bodek, K.H. The Effect of Chitosan on the Stability and Morphological Parameters of Tablets with Epilobium parviflorum Schreb. Extract. Polym. Med. 2007, 37, 3–11. [Google Scholar]
- Zero, D.T. Dental Caries Process. Dent. Clin. N. Am. 1999, 43, 635–664. [Google Scholar] [CrossRef] [PubMed]
- Sälzer, S.; Slot, D.E.; van der Weijden, F.A.; Dörfer, C.E. Efficacy of Inter-Dental Mechanical Plaque Control in Managing Gingivitis—A Meta-Review. J. Clin. Periodontol. 2015, 42 (Suppl. 16), S92–S105. [Google Scholar] [CrossRef] [PubMed]


| Formulation/Ingredients | Ingredient Amount [g] | Type of Tablets | ||||
|---|---|---|---|---|---|---|
| CP | NF | NS | CH | CL | ||
| Xylitol | 15 | + | + | + | + | + |
| Calcium carbonate | 10 | + | + | + | + | + |
| White clay | 5 | + | + | + | + | + |
| Microcrystalline cellulose | 5 | + | + | + | + | + |
| Sodium bicarbonate | 5 | + | + | + | + | + |
| Magnesium stearate | 4 | + | + | + | + | + |
| SCI (Sodium Cocoyl Isethionate) | 4 | + | + | − | + | + |
| Sodium fluoride | 1 | + | − | + | + | + |
| Lemon oil | 0.5 | + | + | + | + | + |
| Peppermint oil | 0.5 | + | + | + | + | + |
| Dried chamomile | 1 | − | − | − | + | − |
| Dried cloves | 1 | − | − | − | − | + |
| Probe | Weight Uniformity 1 (mg) | Tablet Thickness 1 (mm) | Friability 2 (%) | Breaking Force 1 (N) |
|---|---|---|---|---|
| CP | 244.6 ± 3.2 a | 2.96 ± 0.01 b | 1.88 ± 0.08 d | 55.24 ± 0.42 a |
| NF | 244.8 ± 3.3 a | 2.95 ± 0.02 b | 1.46 ± 0.01 e | 48.46 ± 1.26 b |
| NS | 229.8 ± 1.8 c | 3.01 ± 0.01 a | 5.30 ± 0.11 a | 25.74 ± 1.18 e |
| CH | 235.8 ± 2.5 b | 2.99 ± 0.03 ab | 2.54 ± 0.12 c | 45.78 ± 1.83 c |
| CL | 234.0 ± 2.3 bc | 2.96 ± 0.01 b | 3.39 ± 0.22 b | 38.02 ± 1.25 d |
| Probe | L* | a* | b* | ΔE |
|---|---|---|---|---|
| CP | 88.84 ± 0.84 a | 0.25 ± 0.06 b | 4.72 ± 0.02 d | - |
| NF | 87.05 ± 0.56 b | 0.26 ± 0.05 b | 4.97 ± 0.06 c | 1.80 |
| NS | 88.80 ± 0.41 a | 0.27 ± 0.03 b | 5.19 ± 0.14 bc | 0.47 |
| CH | 83.47 ± 0.93 c | 0.13 ± 0.02 c | 7.52 ± 0.19 a | 6.06 |
| CL | 83.67 ± 1.15 c | 0.96 ± 0.08 a | 5.38 ± 0.11 b | 5.26 |
| Probe | pH (-) | FA (cm3) | FS (cm3) | Disintegration Time (min:s) |
|---|---|---|---|---|
| CP | 7.87 ± 0.02 b | 15.67 ± 0.58 bc | 0.93 ± 0.12 ab | 7:23 ± 0:15 a |
| NF | 7.77 ± 0.04 cd | 13.67 ± 0.58 c | 0.930 ± 0.12 ab | 6:08 ± 0:21 b |
| NS | 8.19 ± 0.04 a | 0.83 ± 0.29 d | 0.40 ± 0.17 b | 4:04 ± 0:11 d |
| CH | 7.83 ± 0.03 bc | 17.57 ± 1.25 b | 1.16 ± 0.29 a | 4:44 ± 0:06 c |
| CL | 7.71 ± 0.03 d | 22.07 ± 1.40 a | 1.13 ± 0.40 a | 5:12 ± 0:13 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blicharz-Kania, A.; Kot, J.; Andrejko, D. Physical and Functional Properties of Toothpaste Tablets. Materials 2025, 18, 4804. https://doi.org/10.3390/ma18204804
Blicharz-Kania A, Kot J, Andrejko D. Physical and Functional Properties of Toothpaste Tablets. Materials. 2025; 18(20):4804. https://doi.org/10.3390/ma18204804
Chicago/Turabian StyleBlicharz-Kania, Agata, Justyna Kot, and Dariusz Andrejko. 2025. "Physical and Functional Properties of Toothpaste Tablets" Materials 18, no. 20: 4804. https://doi.org/10.3390/ma18204804
APA StyleBlicharz-Kania, A., Kot, J., & Andrejko, D. (2025). Physical and Functional Properties of Toothpaste Tablets. Materials, 18(20), 4804. https://doi.org/10.3390/ma18204804

