Dispersion-Stable Carboxymethyl Cellulose/Single-Walled Carbon Nanotube Composite for Water-Processed Organic Thermoelectrics
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Liu, L.; Zhang, F.; Di, C.A.; Zhu, D. Advances in Organic Thermoelectric Materials and Devices for Smart Applications. SmartMat 2021, 2, 426–445. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, Y.; Xu, W.; Zhu, D. Organic Thermoelectric Materials: Emerging Green Energy Materials Converting Heat to Electricity Directly and Efficiently. Adv. Mater. 2014, 26, 6829–6851. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Gu, X.; Dang, F.; Itoh, T.; Wang, Y.; Sasaki, H.; Kondo, M.; Koga, K.; Yabuki, K.; Snyder, G.J.; et al. Flexible N-Type Thermoelectric Materials by Organic Intercalation of Layered Transition Metal Dichalcogenide TiS2. Nat. Mater. 2015, 14, 622–627. [Google Scholar] [CrossRef]
- Yusupov, K.; Stumpf, S.; You, S.; Bogach, A.; Martinez, P.M.; Zakhidov, A.; Schubert, U.S.; Khovaylo, V.; Vomiero, A. Flexible Thermoelectric Polymer Composites Based on a Carbon Nanotubes Forest. Adv. Funct. Mater. 2018, 28, 1801246–1801256. [Google Scholar] [CrossRef]
- Xiao, R.; Zhou, X.; Zhang, C.; Liu, X.; Han, S.; Che, C. Organic Thermoelectric Materials for Wearable Electronic Devices. Sensors 2024, 24, 4600–4635. [Google Scholar] [CrossRef]
- Diao, Y.; Shaw, L.; Bao, Z.; Mannsfeld, S.C.B. Morphology Control Strategies for Solution-Processed Organic Semiconductor Thin Films. Energy Environ. Sci. 2014, 7, 2145–2159. [Google Scholar] [CrossRef]
- Mengistie, D.A.; Chen, C.H.; Boopathi, K.M.; Pranoto, F.W.; Li, L.J.; Chu, C.W. Enhanced Thermoelectric Performance of PEDOT:PSS Flexible Bulky Papers by Treatment with Secondary Dopants. ACS Appl. Mater. Interfaces 2015, 7, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyaya, R.; Nativ-Roth, E.; Regev, O.; Yerushalmi-Rozen, R. Stabilization of Individual Carbon Nanotubes in Aqueous Solutions. Nano Lett. 2002, 2, 25–28. [Google Scholar] [CrossRef]
- Liu, Z.; Sato, N.; Gao, W.; Yubuta, K.; Kawamoto, N.; Mitome, M.; Kurashima, K.; Owada, Y.; Nagase, K.; Lee, C.H.; et al. Demonstration of Ultrahigh Thermoelectric Efficiency of ∼7.3% in Mg3Sb2/MgAgSb Module for Low-Temperature Energy Harvesting. Joule 2021, 5, 1196–1208. [Google Scholar] [CrossRef]
- Liu, W.D.; Yin, L.C.; Li, L.; Yang, Q.; Wang, D.Z.; Li, M.; Shi, X.L.; Liu, Q.; Bai, Y.; Gentle, I.; et al. Grain Boundary Re-Crystallization and Sub-Nano Regions Leading to High Plateau Figure of Merit for Bi2Te3 Nanoflakes. Energy Environ. Sci. 2023, 16, 5123–5135. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Q.; Chen, G. Carbon and Carbon Composites for Thermoelectric Applications. Carbon Energy 2020, 2, 408–436. [Google Scholar] [CrossRef]
- Li, H.; Ding, Z.; Zhou, Q.; Chen, J.; Liu, Z.; Du, C.; Liang, L.; Chen, G. Harness High-Temperature Thermal Energy via Elastic Thermoelectric Aerogels. Nanomicro Lett. 2024, 16, 151–165. [Google Scholar] [CrossRef]
- Wang, X.; Liang, L.; Lv, H.; Zhang, Y.; Chen, G. Elastic Aerogel Thermoelectric Generator with Vertical Temperature-Difference Architecture and Compression-Induced Power Enhancement. Nano Energy 2021, 90, 106577–106585. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Long, Q.; Chen, G. A Strategy towards Fabrication of Thermoplastic-Based Composites with Outstanding Mechanical and Thermoelectric Performances. J. Colloid Interface Sci. 2024, 674, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, K.; Hao, X.; Pan, J.; Zhuang, T.; Dai, X.; Wang, J.; Chen, B.; Chong, D. Capillary Compression Induced Outstanding N-Type Thermoelectric Power Factor in CNT Films towards Intelligent Temperature Controller. Nat. Commun. 2024, 15, 5617–5627. [Google Scholar] [CrossRef]
- Liu, Y.M.; Shi, X.L.; Wu, T.; Wu, H.; Mao, Y.; Cao, T.; Wang, D.Z.; Liu, W.D.; Li, M.; Liu, Q.; et al. Boosting Thermoelectric Performance of Single-Walled Carbon Nanotubes-Based Films through Rational Triple Treatments. Nat. Commun. 2024, 15, 3426–3437. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Liu, B. Carbon Nanotube-Based Organic Thermoelectric Materials for Energy Harvesting. Polymers 2018, 10, 1196–1217. [Google Scholar] [CrossRef]
- Nishinaka, M.; Wei, Q.; Koshiba, Y.; Horike, S. N-Type Carbon Nanotubes Doped by Cross-Linked Organic Superbase for Stable Thermoelectric Materials. Energy Mater. Adv. 2024, 5, 0123. [Google Scholar] [CrossRef]
- Munkhbayar, B.; Nine, M.J.; Jeoun, J.; Bat-Erdene, M.; Chung, H.; Jeong, H. Influence of Dry and Wet Ball Milling on Dispersion Characteristics of the Multi-Walled Carbon Nanotubes in Aqueous Solution with and without Surfactant. Powder Technol. 2013, 234, 132–140. [Google Scholar] [CrossRef]
- Gao, Z.; Han, Q.; Liu, J.; Zhao, K.; Yu, Y.; Feng, Y.; Han, S. Dispersion of Carbon Nanotubes Improved by Ball Milling to Prepare Functional Epoxy Nanocomposites. Coatings 2023, 13, 649–660. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Terentjev, E.M. Dispersion of Carbon Nanotubes: Mixing, Sonication, Stabilization, and Composite Properties. Polymers 2012, 4, 275–295. [Google Scholar] [CrossRef]
- Niyogi, S.; Hamon, M.A.; Perea, D.E.; Kang, C.B.; Zhao, B.; Pal, S.K.; Wyant, A.E.; Itkis, M.E.; Haddon, R.C. Ultrasonic Dispersions of Single-Walled Carbon Nanotubes. J. Phys. Chem. B 2003, 107, 8799–8804. [Google Scholar] [CrossRef]
- Gao, C.; Guo, M.; Liu, Y.; Zhang, D.; Gao, F.; Sun, L.; Li, J.; Chen, X.; Terrones, M.; Wang, Y. Surface Modification Methods and Mechanisms in Carbon Nanotubes Dispersion. Carbon 2023, 212, 118133–118147. [Google Scholar] [CrossRef]
- Dyke, C.A.; Tour, J.M. Covalent Functionalization of Single-Walled Carbon Nanotubes for Materials Applications. J. Phys. Chem. A 2004, 108, 11151–11159. [Google Scholar] [CrossRef]
- Vaisman, L.; Wagner, H.D.; Marom, G. The Role of Surfactants in Dispersion of Carbon Nanotubes. Adv. Colloid Interface Sci. 2006, 128–130, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Loghin, F.C.; Bobinger, M.; Rivadeneyra, A.; Becherer, M.; Lugli, P. Flexible Carbon Nanotube Sensors with Screen Printed and Interdigitated Electrodes. In Proceedings of the 2019 IEEE 19th International Conference on Nanotechnology, Macao, China, 22–26 July 2019; IEEE: New York, NY, USA, 2019; pp. 1–4. [Google Scholar]
- Ma, P.C.; Siddiqui, N.A.; Marom, G.; Kim, J.K. Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, Z.; Guo, Z.; Lou, J.; Han, W.; Rao, J.; Peng, F. Cellulose-Based Thermoelectric Composites: A Review on Mechanism, Strategies and Applications. Int. J. Biol. Macromol. 2024, 275, 132908–132930. [Google Scholar] [CrossRef] [PubMed]
- Alsulami, Q.A.; Rajeh, A. Synthesis of the SWCNTs/TiO2 Nanostructure and Its Effect Study on the Thermal, Optical, and Conductivity Properties of the CMC/PEO Blend. Results Phys. 2021, 28, 104675–104687. [Google Scholar] [CrossRef]
- Khan, A.A.P.; Khan, A.; Alam, M.M.; Oves, M.; Raizada, P.; Singh, P.; Alotaibi, M.; Ansari, M.O.; Asiri, A.M.; Rahman, M.M. A Hybrid Composite of Polypyrole/Carboxymethyl Cellulose/MWCNT Fiber with Antimicrobial Properties and Sb3+ Determination on a Glassy Carbon Electrode. J. Nat. Fibers 2023, 20, 2214383–2214397. [Google Scholar] [CrossRef]
- Miyashiro, D.; Hamano, R.; Umemura, K. A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes. Nanomaterials 2020, 10, 186–208. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, R.; Song, Y.; Zhao, Q.; Qu, M.; Tang, P.; Bin, Y.; Li, S.; Zhao, W.; Wang, H. Cellulose/Nanocarbon Composite Based Multifunctional Aerogels for Thermal Management. Mater. Today Commun. 2024, 38, 107701–107710. [Google Scholar] [CrossRef]
- Dörling, B.; Sandoval, S.; Kankla, P.; Fuertes, A.; Tobias, G.; Campoy-Quiles, M. Exploring Different Doping Mechanisms in Thermoelectric Polymer/Carbon Nanotube Composites. Synth. Met. 2017, 225, 70–75. [Google Scholar] [CrossRef]
- Suckeveriene, R.Y.; Zelikman, E.; Mechrez, G.; Tzur, A.; Frisman, I.; Cohen, Y.; Narkis, M. Synthesis of Hybrid Polyaniline/Carbon Nanotube Nanocomposites by Dynamic Interfacial Inverse Emulsion Polymerization under Sonication. J. Appl. Polym. Sci. 2011, 120, 676–682. [Google Scholar] [CrossRef]
- Takahashi, T.; Tsunoda, K.; Yajima, H.; Ishii, T. Dispersion and Purification of Single-Wall Carbon Nanotubes Using Carboxymethylcellulose. Jpn. J. Appl. Phys. 2004, 43, 3636–3639. [Google Scholar] [CrossRef]
- Zhang, D.W.; Chia, L.; Huang, Y. Effect of Carboxymethyl Cellulose (CMC) Functionalization on Dispersion, Mechanical, and Corrosion Properties of CNT/Epoxy Nanocomposites. Chin. J. Polym. Sci. 2023, 41, 1277–1286. [Google Scholar] [CrossRef]
- Kee, S.; Haque, M.A.; Lee, Y.; Nguyen, T.L.; Rosas Villalva, D.; Troughton, J.; Emwas, A.H.; Alshareef, H.N.; Woo, H.Y.; Baran, D. A Highly Conductive Conjugated Polyelectrolyte for Flexible Organic Thermoelectrics. ACS Appl. Energy Mater. 2020, 3, 8667–8675. [Google Scholar] [CrossRef]
- Tan, D.; Zhao, J.; Gao, C.; Wang, H.; Chen, G.; Shi, D. Carbon Nanoparticle Hybrid Aerogels: 3D Double-Interconnected Network Porous Microstructure, Thermoelectric, and Solvent-Removal Functions. ACS Appl. Mater. Interfaces 2017, 9, 21820–21828. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Kang, Y.H.; Lee, J.Y.; Jang, K.S.; Cho, S.Y. Improving the Thermoelectric Power Factor of CNT/PEDOT:PSS Nanocomposite Films by Ethylene Glycol Treatment. RSC Adv. 2016, 6, 53339–53344. [Google Scholar] [CrossRef]
- Nasiri, M.A.; Tong, S.Y.; Cho, C.; Gómez, C.M.; Cantarero, A.; Culebras, M. Synthesis of PEDOT/CNTs Thermoelectric Thin Films with a High Power Factor. Materials 2024, 17, 1121–1135. [Google Scholar] [CrossRef]
- Almasoudi, M.; Salah, N.; Alshahrie, A.; Saeed, A.; Aljaghtham, M.; Zoromba, M.S.; Abdel-Aziz, M.H.; Koumoto, K. High Thermoelectric Power Generation by SWCNT/PPy Core Shell Nanocomposites. Nanomaterials 2022, 12, 2582–2596. [Google Scholar] [CrossRef]
- Linseis, V.; Hassan, Z.M.; Reith, H.; Garcia, J.; Nielsch, K.; Baumgart, H.; Redel, E.; Woias, P. Complete Thermoelectric Characterization of PEDOT: PSS Thin Films with a Novel ZT Test Chip Platform. Phys. Status Solidi (A) Appl. Mater. Sci. 2018, 215, 1700930–1700934. [Google Scholar] [CrossRef]
- Hone, J.; Whitney, M.; Zettl, A. Thermal Conductivity of Single-Walled Carbon Nanotubes. Synth. Met. 1999, 103, 2498–2499. [Google Scholar] [CrossRef]
- Pop, E.; Mann, D.; Wang, Q.; Goodson, K.; Dai, H. Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature. Nano Lett. 2006, 6, 96–100. [Google Scholar] [CrossRef]
- Sahoo, S.; Chitturi, V.R.; Agarwal, R.; Jiang, J.W.; Katiyar, R.S. Thermal Conductivity of Freestanding Single Wall Carbon Nanotube Sheet by Raman Spectroscopy. ACS Appl. Mater. Interfaces 2014, 6, 19958–19965. [Google Scholar] [CrossRef]
- Wang, H.; Yu, C. Organic Thermoelectrics: Materials Preparation, Performance Optimization, and Device Integration. Joule 2019, 3, 53–80. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex Thermoelectric Materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Tao, X.M.; Lin, S.; Lee, C.; Shi, D.; Lam, K.H.; Huang, B.; Wang, Q.; Zhao, Y. Defect-Engineered Reduced Graphene Oxide Sheets with High Electric Conductivity and Controlled Thermal Conductivity for Soft and Flexible Wearable Thermoelectric Generators. Nano Energy 2018, 54, 163–174. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, J.; Yeom, H.; Chae, S.; Kee, S. Dispersion-Stable Carboxymethyl Cellulose/Single-Walled Carbon Nanotube Composite for Water-Processed Organic Thermoelectrics. Materials 2025, 18, 337. https://doi.org/10.3390/ma18020337
Jang J, Yeom H, Chae S, Kee S. Dispersion-Stable Carboxymethyl Cellulose/Single-Walled Carbon Nanotube Composite for Water-Processed Organic Thermoelectrics. Materials. 2025; 18(2):337. https://doi.org/10.3390/ma18020337
Chicago/Turabian StyleJang, Jaehee, Hyejeong Yeom, Sujong Chae, and Seyoung Kee. 2025. "Dispersion-Stable Carboxymethyl Cellulose/Single-Walled Carbon Nanotube Composite for Water-Processed Organic Thermoelectrics" Materials 18, no. 2: 337. https://doi.org/10.3390/ma18020337
APA StyleJang, J., Yeom, H., Chae, S., & Kee, S. (2025). Dispersion-Stable Carboxymethyl Cellulose/Single-Walled Carbon Nanotube Composite for Water-Processed Organic Thermoelectrics. Materials, 18(2), 337. https://doi.org/10.3390/ma18020337