Comparative Analysis of Electrophoretic Deposition and Dip Coating for Enhancing Electrical Properties of Electrospun PVDF Mats Through Carbon Nanotube Deposition
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrospinning
2.3. Electrophoretic Deposition
2.4. Dip Coating
2.5. Scanning Electron Microscopy and Mass Measurement
2.6. Electrical Resistance Measurements
2.7. Sensor Response Analysis
3. Results and Discussion
3.1. Morphology Characterization
3.2. Electrical Conductivity Results
3.3. Sensor Sensitivity Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sukumaran, S.; Szewczyk, P.K.; Knapczyk-Korczak, J.; Stachewicz, U. Optimizing Piezoelectric Coefficient in PVDF Fibers: Key Strategies for Energy Harvesting and Smart Textiles. Adv. Electron. Mater. 2023, 9, 2300404. [Google Scholar] [CrossRef]
- Knapczyk-Korczak, J.; Szewczyk, P.K.; Berniak, K.; Marzec, M.M.; Frąc, M.; Pichór, W.; Stachewicz, U. Flexible and Thermally Insulating Porous Materials Utilizing Hollow Double-Shell Polymer Fibers. Adv. Sci. 2024, 11, 2404154. [Google Scholar] [CrossRef]
- Aguilar, M.R.; San Román, J. Smart Polymers and Their Applications; Woodhead Publishing: Cambridge, UK, 2019; pp. 1–687. [Google Scholar] [CrossRef]
- Szewczyk, P.K.; Ura, D.P.; Metwally, S.; Knapczyk-Korczak, J.; Gajek, M.; Marzec, M.M.; Bernasik, A.; Stachewicz, U. Roughness and Fiber Fraction Dominated Wetting of Electrospun Fiber-Based Porous Meshes. Polymers 2019, 11, 34. [Google Scholar] [CrossRef]
- Krysiak, Z.J.; Kaniuk, Ł.; Metwally, S.; Szewczyk, P.K.; Sroczyk, E.A.; Peer, P.; Lisiecka-Graca, P.; Bailey, R.J.; Bilotti, E.; Stachewicz, U. Nano- and Microfiber PVB Patches as Natural Oil Carriers for Atopic Skin Treatment. ACS Appl. Bio Mater. 2020, 3, 7666–7676. [Google Scholar] [CrossRef]
- Wang, C.; Su, Y.; Xie, J. Advances in Electrospun Nanofibers: Versatile Materials and Diverse Biomedical Applications. Acc. Mater. Res. 2024, 5, 987–999. [Google Scholar] [CrossRef]
- Medeiros, G.B.; Lima, F.d.A.; de Almeida, D.S.; Guerra, V.G.; Aguiar, M.L. Modification and Functionalization of Fibers Formed by Electrospinning: A Review. Membranes 2022, 12, 861. [Google Scholar] [CrossRef]
- Conley, K.; Karttunen, A.J. Bridging the Junction: Electrical Conductivity of Carbon Nanotube Networks. J. Phys. Chem. C 2022, 126, 17266–17274. [Google Scholar] [CrossRef]
- Costa, P.; Silva, J.; Lanceros Mendez, S. Strong Increase of the Dielectric Response of Carbon Nanotube/Poly(Vinylidene Fluoride) Composites Induced by Carbon Nanotube Type and Pre-Treatment. Compos. B Eng. 2016, 93, 310–316. [Google Scholar] [CrossRef]
- Sukumaran, S.; Szewczyk, P.K.; Bajda, T.; Stachewicz, U. Hybrid Piezo-, Pyro-, and Triboelectric Nanogenerator Based on PVDF and RGO Composite Fibers for a Multifunctional Approach to Energy Harvesting Applications. Mater. Des. 2025, 254, 114105. [Google Scholar] [CrossRef]
- Brzhezinskaya, M.; Zhivulin, V.E. Controlled modification of polyvinylidene fluoride as a way for carbyne synthesis. Polym. Degrad. Stab. 2022, 203, 110054. [Google Scholar] [CrossRef]
- Brzhezinskaya, M.M.; Morilova, V.M.; Baitinger, E.M.; Evsyukov, S.E.; Pesin, L.A. Study of poly(vinylidene fluoride) radiative modification using core level spectroscopy. Polym. Degrad. Stab. 2014, 99, 176–179. [Google Scholar] [CrossRef]
- Yu, H.; Huang, T.; Lu, M.; Mao, M.; Zhang, Q.; Wang, H. Enhanced Power Output of an Electrospun PVDF/MWCNTs-Based Nanogenerator by Tuning Its Conductivity. Nanotechnology 2013, 24, 405401. [Google Scholar] [CrossRef]
- Alotaibi, A.F.; Wani, W.A.; Almohammadi, G.; Rodriguez, B.J.; Rice, J.H. Nanoimprinted PVDF-MWCNT Composites with Silver Coating as a Label-Free Plasmonic Platform for Ultrasensitive Detection. ACS Appl. Nano Mater. 2025, 8, 7440–7448. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.S.A.; Mubarak, N.M.; Khalid, M.; Khan, M.M.; Tan, Y.H.; Walvekar, R.; Abdullah, E.C.; Karri, R.R.; Rahman, M.E. Comprehensive Review on Carbon Nanotubes Embedded in Different Metal and Polymer Matrix: Fabrications and Applications. Crit. Rev. Solid State Mater. Sci. 2022, 47, 837–864. [Google Scholar] [CrossRef]
- Ojstršek, A.; Jug, L.; Plohl, O. A Review of Electro Conductive Textiles Utilizing the Dip-Coating Technique: Their Functionality, Durability and Sustainability. Polymers 2022, 14, 4713. [Google Scholar] [CrossRef]
- Boccaccini, A.R.; Dickerson, J.H. Electrophoretic Deposition: Fundamentals and Applications. J. Phys. Chem. B 2013, 117, 1501. [Google Scholar] [CrossRef]
- Evertz, A.; Schrein, D.; Olsen, E.; Hoffmann, G.-A.; Overmeyer, L. Dip Coating of Thin Polymer Optical Fibers. Opt. Fiber Technol. 2021, 66, 102638. [Google Scholar] [CrossRef]
- Rehman, M.A.U.; Chen, Q.; Braem, A.; Shaffer, M.S.P.; Boccaccini, A.R. Electrophoretic Deposition of Carbon Nanotubes: Recent Progress and Remaining Challenges. Int. Mater. Rev. 2021, 66, 533–562. [Google Scholar] [CrossRef]
- Namvari, M.; Chakrabarti, B.K. Electrophoretic Deposition of MXenes and Their Composites: Toward a Scalable Approach. Adv. Colloid Interface Sci. 2024, 331, 103208. [Google Scholar] [CrossRef]
- Tong, J.; Yang, D.; Liu, X.; Lu, S.; Wang, J.; Zheng, B.; Zhao, Z.; Song, Y. Ultrathin, Flexible CNTs@MXene Film Fabricated with Electrophoretic Deposition Method for High-Performance Electromagnetic Interference Shielding. J. Mater. Res. 2023, 38, 3791–3800. [Google Scholar] [CrossRef]
- Khodakarami, S.; Zhao, H.; Rabbi, K.F.; Miljkovic, N. Scalable Corrosion-Resistant Coatings for Thermal Applications. ACS Appl. Mater. Interfaces 2021, 13, 4519–4534. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wang, X.; Liang, J.; Zhang, Z.; Chen, W. A Novel Electrospinning Polyacrylonitrile Separator with Dip-Coating of Zeolite and Phenoxy Resin for Li-Ion Batteries. Membranes 2021, 11, 267. [Google Scholar] [CrossRef]
- Yin, Z.; Ding, A.; Zhang, H.; Zhang, W. The Relevant Approaches for Aligning Carbon Nanotubes. Micromachines 2022, 13, 1863. [Google Scholar] [CrossRef]
- Zaarour, B.; Zhu, L.; Huang, C.; Jin, X. Fabrication of a Polyvinylidene Fluoride Cactus-like Nanofiber through One-Step Electrospinning. RSC Adv. 2018, 8, 42353–42360. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, P.K.; Ura, D.P.; Stachewicz, U. Humidity Controlled Mechanical Properties of Electrospun Polyvinylidene Fluoride (Pvdf) Fibers. Fibers 2020, 8, 65. [Google Scholar] [CrossRef]
- Szewczyk, P.K.; Metwally, S.; Karbowniczek, J.E.; Marzec, M.M.; Stodolak-Zych, E.; Gruszczyński, A.; Bernasik, A.; Stachewicz, U. Surface-Potential-Controlled Cell Proliferation and Collagen Mineralization on Electrospun Polyvinylidene Fluoride (PVDF) Fiber Scaffolds for Bone Regeneration. ACS Biomater. Sci. Eng. 2019, 5, 582–593. [Google Scholar] [CrossRef]
- Ji, C.; Guo, J.; Hu, J.; Wang, B.; Sun, Y. Enhanced Interfacial Adhesion of CF/PEEK-Titanium Hybrid Laminates via Introducing Micro-Nano Layers with Multi-Walled Carbon Nanotube Networks. Compos. Sci. Technol. 2022, 223, 109418. [Google Scholar] [CrossRef]
- Boccaccini, A.R.; Cho, J.; Roether, J.A.; Thomas, B.J.C.; Jane Minay, E.; Shaffer, M.S.P. Electrophoretic Deposition of Carbon Nanotubes. Carbon 2006, 44, 3149–3160. [Google Scholar] [CrossRef]
- Ata, M.S.; Poon, R.; Syed, A.M.; Milne, J.; Zhitomirsky, I. New Developments in Non-Covalent Surface Modification, Dispersion and Electrophoretic Deposition of Carbon Nanotubes. Carbon 2018, 130, 584–598. [Google Scholar] [CrossRef]
- Huang, S.Y.; Wu, T.I.; Chou, C.M.; Hsiao, V.K.S. Tailoring Mechanical and Electrical Properties of Polydimethylsiloxane Nanocomposites with Graphene and Carbon Nanotubes for Wearable Electronics. Polym. Polym. Compos. 2023, 31, 09673911231188296. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, S.P. Enhancing Interfacial Adhesion in Carbon Fiber-Reinforced Composites through Polydopamine-Assisted Nanomaterial Coatings. Polym. Compos. 2025, 46, 6768–6784. [Google Scholar] [CrossRef]
- Uddin, A.S.M.I.; Lee, D.; Cho, C.; Kim, B. Impact of Multi-Walled CNT Incorporation on Dielectric Properties of PVDF-BaTiO3 Nanocomposites and Their Energy Harvesting Possibilities. Coatings 2022, 12, 77. [Google Scholar] [CrossRef]
- Almardini, A.A.W.H.; Yu, A.; Abbasi, S.; Ruan, D. Enhancing the Electrical Conductivity of 3D Printed Continuous Carbon Fibre Reinforced Composites via Surface Coating of MWCNT on Filaments. Compos. Commun. 2025, 57, 102486. [Google Scholar] [CrossRef]
- Kumar, G.S.; Patro, T.U. Tuning the piezoresistive strain-sensing behavior of poly(vinylidene fluoride)–CNT composites: The role of polymer-CNT interface and composite processing technique. J. Appl. Polym. Sci. 2022, 139, e51516. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, Z.; Jiang, D.; Wei, R.; Mai, X.; Pan, D.; Vupputuri, S.; Weng, L.; Naik, N.; Guo, Z. Ultra-sensitive flexible sandwich structural strain sensors based on a silver nanowire supported PDMS/PVDF electrospun membrane substrate. J. Mater. Chem. C 2021, 9, 2752. [Google Scholar] [CrossRef]
- Tofel, P.; Částková, K.; Říha, D.; Sobola, D.; Papež, N.; Kaštyl, J.; Ţălu, S.; Hadaš, S. Triboelectric Response of Electrospun Stratified PVDF and PA Structures. Nanomaterials 2022, 12, 349. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Mir, M.; Li, C.; Erqing, X.; Weihua, H. Improved output performance of triboelectric nanogenerators based on polydimethylsiloxane composites by the capacitive effect of embedded carbon nanotubes. Appl. Phys. Lett. 2020, 117, 143903. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, K.; Jiang, X.; Javed, M.S.; Han, W. Overcoming current leaks in CNT/PDMS triboelectric composites by wrapping CNTs with TiO2 insulation layer. Appl. Phys. Lett. 2022, 121, 113902. [Google Scholar] [CrossRef]
- Dul, S.; Pegoretti, A.; Fambri, L. Fused Filament Fabrication of Piezoresistive Carbon Nanotubes Nanocomposites for Strain Monitoring. Front. Mater. 2020, 7, 12. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopacz, M.; Szewczyk, P.K.; Długoń, E.; Stachewicz, U. Comparative Analysis of Electrophoretic Deposition and Dip Coating for Enhancing Electrical Properties of Electrospun PVDF Mats Through Carbon Nanotube Deposition. Materials 2025, 18, 3730. https://doi.org/10.3390/ma18163730
Kopacz M, Szewczyk PK, Długoń E, Stachewicz U. Comparative Analysis of Electrophoretic Deposition and Dip Coating for Enhancing Electrical Properties of Electrospun PVDF Mats Through Carbon Nanotube Deposition. Materials. 2025; 18(16):3730. https://doi.org/10.3390/ma18163730
Chicago/Turabian StyleKopacz, Michał, Piotr K. Szewczyk, Elżbieta Długoń, and Urszula Stachewicz. 2025. "Comparative Analysis of Electrophoretic Deposition and Dip Coating for Enhancing Electrical Properties of Electrospun PVDF Mats Through Carbon Nanotube Deposition" Materials 18, no. 16: 3730. https://doi.org/10.3390/ma18163730
APA StyleKopacz, M., Szewczyk, P. K., Długoń, E., & Stachewicz, U. (2025). Comparative Analysis of Electrophoretic Deposition and Dip Coating for Enhancing Electrical Properties of Electrospun PVDF Mats Through Carbon Nanotube Deposition. Materials, 18(16), 3730. https://doi.org/10.3390/ma18163730