NIR-Responsive Microbubble Delivery Platforms for Controlled Drug Release in Cancer Therapy
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation and Characterization
2.3. Preparation of Microbubbles (Blank MBs)
2.4. Preparation of IR-780-Loaded Microbubbles (IR-780@MB)
2.5. Preparation of PTX-Loaded Microbubbles (PTX@MB)
2.6. Preparation of IR-780 and PTX Co-Loaded Microbubbles (NPMBs)
2.7. Thermal Elevation Study
2.8. Thermal Stability Study
2.9. Drug Release Study
2.10. In Vitro Cell Viability Assay (MTT Assay)
2.11. Live/Dead Cell Staining
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MB | Micro bubble |
NPMB | NIR-responsive phase-transition microbubble |
NIR | Near infrared |
PTX | Paclitaxel |
CLSM | Confocal laser scanning microscopy |
PFC | 2H,3H-perfluoropentane |
MCT | Medium-chain triglyceride |
FDA | Fluorescein diacetate |
PI | Propidium iodide |
References
- Cariolou, M.; Abar, L.; Aune, D.; Balducci, K.; Becerra-Tomas, N.; Greenwood, D.C.; Markozannes, G.; Nanu, N.; Vieira, R.; Giovannucci, E.L.; et al. Postdiagnosis recreational physical activity and breast cancer prognosis: Global Cancer Update Programme (CUP Global) systematic literature review and meta-analysis. Int. J. Cancer 2023, 152, 600–615. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Gao, P.; Wang, J.; Fang, Y.; Hwang, K.C. Advances of medical nanorobots for future cancer treatments. J. Hematol. Oncol. 2023, 16, 74. [Google Scholar] [CrossRef] [PubMed]
- Nikolaos, T. Obesity and Lung Cancer (Investigating the Relationship). EPRA Int. J. Multidiscip. Res. 2023, 9, 175–177. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Omidian, H.; Gill, E.J.; Cubeddu, L.X. Lipid Nanoparticles in Lung Cancer Therapy. Pharmaceutics 2024, 16, 644. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, T.; Chen, Q.; Li, Y.; Xiao, Z.; Xiang, Y.; Wang, B.; Qiu, Y.; Tu, S.; Jiang, Y.; et al. Nanomedicine Strategies for Heating “Cold” Ovarian Cancer (OC): Next Evolution in Immunotherapy of OC. Adv. Sci. 2022, 9, e2202797. [Google Scholar] [CrossRef]
- Ding, C.; Tong, L.; Feng, J.; Fu, J. Recent Advances in Stimuli-Responsive Release Function Drug Delivery Systems for Tumor Treatment. Molecules 2016, 21, 1715. [Google Scholar] [CrossRef]
- Karimi, M.; Ghasemi, A.; Sahandi Zangabad, P.; Rahighi, R.; Moosavi Basri, S.M.; Mirshekari, H.; Amiri, M.; Shafaei Pishabad, Z.; Aslani, A.; Bozorgomid, M.; et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 2016, 45, 1457–1501. [Google Scholar] [CrossRef]
- Pham, S.H.; Choi, Y.; Choi, J. Stimuli-Responsive Nanomaterials for Application in Antitumor Therapy and Drug Delivery. Pharmaceutics 2020, 12, 630. [Google Scholar] [CrossRef]
- Thomas, A.P.; Lee, A.J.; Palanikumar, L.; Jana, B.; Kim, K.; Kim, S.; Ok, H.; Seol, J.; Kim, D.; Kang, B.H.; et al. Mitochondrial heat shock protein-guided photodynamic therapy. Chem. Commun. 2019, 55, 12631–12634. [Google Scholar] [CrossRef] [PubMed]
- Adepu, S.; Ramakrishna, S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021, 26, 5905. [Google Scholar] [CrossRef]
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem. Rev. 2016, 116, 2602–2663. [Google Scholar] [CrossRef]
- Odiba, A.; Ukegbu, C.; Anunobi, O.; Chukwunonyelum, I.; Esemonu, J. Making drugs safer: Improving drug delivery and reducing the side effect of drugs on the human biochemical system. Nanotechnol. Rev. 2016, 5, 183–194. [Google Scholar] [CrossRef]
- Jin, J.; Yang, L.; Chen, F.; Gu, N. Drug delivery system based on nanobubbles. Interdiscip. Mater. 2022, 1, 471–494. [Google Scholar] [CrossRef]
- Italiya, K.S.; Mullins-Dansereau, V.; Geoffroy, K.; Gilchrist, V.H.; Alain, T.; Bourgeois-Daigneault, M.C.; Yu, F. Ultrasound and Microbubble Mediated Delivery of Virus-Sensitizing Drugs Improves In Vitro Oncolytic Virotherapy Against Breast Cancer Cells. Ultrasound Med. Biol. 2025, 51, 1124–1133. [Google Scholar] [CrossRef] [PubMed]
- Roovers, S.; Segers, T.; Lajoinie, G.; Deprez, J.; Versluis, M.; De Smedt, S.C.; Lentacker, I. The Role of Ultrasound-Driven Microbubble Dynamics in Drug Delivery: From Microbubble Fundamentals to Clinical Translation. Langmuir 2019, 35, 10173–10191. [Google Scholar] [CrossRef] [PubMed]
- Fialho, M.C.P.; de Oliveira, M.A.; Machado, M.G.C.; Lacerda, C.M.; Mosqueira, V.C.F. IR780-Based Nanotheranostics and In Vivo Effects: A Review. J. Nanotheranostics 2025, 6, 8. [Google Scholar] [CrossRef]
- Yan, F.; Li, L.; Deng, Z.; Jin, Q.; Chen, J.; Yang, W.; Yeh, C.K.; Wu, J.; Shandas, R.; Liu, X.; et al. Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers. J. Control. Release 2013, 166, 246–255. [Google Scholar] [CrossRef]
- Liu, W.; Wang, R.; Li, W.; Zhang, B.; Xing, E.; Zhou, Y.; Sun, P.; Chen, J.; Tang, J.; Liu, J. Modulation of Fano-like resonance in spherical microbubble cavity for high sensitivity pressure sensing. Appl. Phys. Express 2022, 15, 046504. [Google Scholar] [CrossRef]
- Muroyama, K.; Imai, K.; Oka, Y.; Hayashi, J.I. Mass transfer properties in a bubble column associated with micro-bubble dispersions. Chem. Eng. Sci. 2013, 100, 464–473. [Google Scholar] [CrossRef]
- Cattaneo, M.; Guerriero, G.; Shakya, G.; Krattiger, L.A.; Paganella, L.G.; Narciso, M.L.; Supponen, O. Cyclic jetting enables microbubble-mediated drug delivery. Nat. Phys. 2025, 21, 590–598. [Google Scholar] [CrossRef]
- Zevnik, J.; Dular, M. Cavitation bubble interaction with a rigid spherical particle on a microscale. Ultrason. Sonochem. 2020, 69, 105252. [Google Scholar] [CrossRef]
- Chowdhury, S.M.; Abou-Elkacem, L.; Lee, T.; Dahl, J.; Lutz, A.M. Ultrasound and microbubble mediated therapeutic delivery: Underlying mechanisms and future outlook. J. Control. Release 2020, 326, 75–90. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Chen, X.; Yu, F.; Qin, B.; Wang, H.; Lavery, L.; Villanueva, F.S. Enhanced Antitumor Efficacy and Reduced Cardiotoxicity of Ultrasound-Mediated Doxorubicin Delivery by Microbubble-Liposome Complexes. Ultrasound Med. Biol. 2025; in press. [Google Scholar] [CrossRef]
- Ye, D.; Wang, G.; Liu, X.; Chen, Y.; Chen, J.; Yin, H.; Fu, Y.; Gao, F.; Tang, L.; Huang, P. Cascade Ultrasonic Cavitation Enables Microbubble–Nanoparticle Hybrid to Broadly Accumulate and Penetrate into Pancreatic Ductal Adenocarcinoma. Small Struct. 2025, 2500077. [Google Scholar] [CrossRef]
- Izadifar, Z.; Babyn, P.; Chapman, D. Ultrasound Cavitation/Microbubble Detection and Medical Applications. J. Med. Biol. Eng. 2018, 39, 259–276. [Google Scholar] [CrossRef]
- Ohannesian, N.; Li, J.; Misbah, I.; Zhao, F.; Shih, W.C. Directed Concentrating of Micro-/Nanoparticles via Near-Infrared Laser Generated Plasmonic Microbubbles. ACS Omega 2020, 5, 32481–32489. [Google Scholar] [CrossRef]
- Wang, L.; Hu, Y.; Peng, Q.; Zhou, J.; Zhou, Q.; An, S.; Niu, C. Indocyanine-green-loaded microbubbles for localization of sentinel lymph node using near-infrared fluorescence/ultrasound imaging: A feasibility study. RSC Adv. 2016, 6, 50513–50520. [Google Scholar] [CrossRef]
- Aliabouzar, M. Building Blood Vessels and Beyond Using Bubbles. Acoust. Today 2022, 18, 14–23. [Google Scholar] [CrossRef]
- Ashokkumar, M. The characterization of acoustic cavitation bubbles—An overview. Ultrason. Sonochem. 2011, 18, 864–872. [Google Scholar] [CrossRef]
- Hosseinkhah, N.; Chen, H.; Matula, T.J.; Burns, P.N.; Hynynen, K. Mechanisms of microbubble-vessel interactions and induced stresses: A numerical study. J. Acoust. Soc. Am. 2013, 134, 1875–1885. [Google Scholar] [CrossRef]
- Khodabakhshi, Z.; Hosseinkhah, N.; Ghadiri, H. Pulsating Microbubble in a Micro-vessel and Mechanical Effect on Vessel Wall: A Simulation Study. J. Biomed. Phys. Eng. 2021, 11, 629–640. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, J. Experimental study on damage mechanism of blood vessel by cavitation bubbles. Ultrason. Sonochem. 2023, 99, 106562. [Google Scholar] [CrossRef] [PubMed]
- Wiedemair, W.; Tukovic, Z.; Jasak, H.; Poulikakos, D.; Kurtcuoglu, V. On ultrasound-induced microbubble oscillation in a capillary blood vessel and its implications for the blood-brain barrier. Phys. Med. Biol. 2012, 57, 1019–1045. [Google Scholar] [CrossRef]
- Geers, B.; Dewitte, H.; De Smedt, S.C.; Lentacker, I. Crucial factors and emerging concepts in ultrasound-triggered drug delivery. J. Control. Release 2012, 164, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Unger, E.; Porter, T.; Lindner, J.; Grayburn, P. Cardiovascular drug delivery with ultrasound and microbubbles. Adv. Drug Deliv. Rev. 2014, 72, 110–126. [Google Scholar] [CrossRef]
- Wischhusen, J.; Padilla, F. Ultrasound-Targeted Microbubble Destruction (UTMD) for Localized Drug Delivery into Tumor Tissue. IRBM 2019, 40, 10–15. [Google Scholar] [CrossRef]
- Bansal, K.; Jha, C.K.; Bhatia, D.; Shekhar, H. Ultrasound-Enabled Therapeutic Delivery and Regenerative Medicine: Physical and Biological Perspectives. ACS Biomater. Sci. Eng. 2021, 7, 4371–4387. [Google Scholar] [CrossRef] [PubMed]
- Chandan, R.; Mehta, S.; Banerjee, R. Ultrasound-Responsive Carriers for Therapeutic Applications. ACS Biomater. Sci. Eng. 2020, 6, 4731–4747. [Google Scholar] [CrossRef]
- Entzian, K.; Aigner, A. Drug Delivery by Ultrasound-Responsive Nanocarriers for Cancer Treatment. Pharmaceutics 2021, 13, 1135. [Google Scholar] [CrossRef]
- He, J.; Liu, Z.; Zhu, X.; Xia, H.; Gao, H.; Lu, J. Ultrasonic Microbubble Cavitation Enhanced Tissue Permeability and Drug Diffusion in Solid Tumor Therapy. Pharmaceutics 2022, 14, 1642. [Google Scholar] [CrossRef] [PubMed]
- de Jong, N.; Bouakaz, A.; Frinking, P. Basic acoustic properties of microbubbles. Echocardiography 2002, 19, 229–240. [Google Scholar] [CrossRef]
- Liu, T.; Mao, Y.; Dou, H.; Zhang, W.; Yang, J.; Wu, P.; Li, D.; Mu, X. Emerging Wearable Acoustic Sensing Technologies. Adv. Sci. 2025, 12, e2408653. [Google Scholar] [CrossRef]
- Patey, S.J.; Corcoran, J.P. Physics of ultrasound. Anaesth. Intensive Care Med. 2021, 22, 58–63. [Google Scholar] [CrossRef]
- Sassaroli, E.; Hynynen, K. Resonance frequency of microbubbles in small blood vessels: A numerical study. Phys. Med. Biol. 2005, 50, 5293–5305. [Google Scholar] [CrossRef] [PubMed]
- Shakya, G.; Cattaneo, M.; Guerriero, G.; Prasanna, A.; Fiorini, S.; Supponen, O. Ultrasound-responsive microbubbles and nanodroplets: A pathway to targeted drug delivery. Adv. Drug Deliv. Rev. 2024, 206, 115178. [Google Scholar] [CrossRef]
- Duck, F.A. Medical and non-medical protection standards for ultrasound and infrasound. Prog. Biophys. Mol. Biol. 2007, 93, 176–191. [Google Scholar] [CrossRef] [PubMed]
- Izadifar, Z.; Izadifar, Z.; Chapman, D.; Babyn, P. An Introduction to High Intensity Focused Ultrasound: Systematic Review on Principles, Devices, and Clinical Applications. J. Clin. Med. 2020, 9, 460. [Google Scholar] [CrossRef]
- Miller, D.L.; Smith, N.B.; Bailey, M.R.; Czarnota, G.J.; Hynynen, K.; Makin, I.R.; Bioeffects Committee of the American Institute of Ultrasound in Medicine. Overview of therapeutic ultrasound applications and safety considerations. J. Ultrasound Med. 2012, 31, 623–634. [Google Scholar] [CrossRef]
- Kim, K.; Jo, M.C.; Jeong, S.; Palanikumar, L.; Rotello, V.M.; Ryu, J.H.; Park, M.H. Externally controlled drug release using a gold nanorod contained composite membrane. Nanoscale 2016, 8, 11949–11955. [Google Scholar] [CrossRef]
- Niu, G.; Zhang, R.; Gu, Y.; Wang, J.; Ma, C.; Kwok, R.T.K.; Lam, J.W.Y.; Sung, H.H.; Williams, I.D.; Wong, K.S.; et al. Highly photostable two-photon NIR AIEgens with tunable organelle specificity and deep tissue penetration. Biomaterials 2019, 208, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Shukla, N.; Singh, B.; Kim, H.J.; Park, M.H.; Kim, K. Combinational Chemotherapy and Photothermal Therapy Using a Gold Nanorod Platform for Cancer Treatment. Part. Part. Syst. Charact. 2020, 37, 2000099. [Google Scholar] [CrossRef]
- Yang, S.; Palanikumar, L.; Jeong, S.; Kim, K.; Lee, J.; Jeoung, E.; Kim, C.; Ryu, J.H.; Park, M.H. Synergistic Effect of Photothermal Therapy and Chemotherapy Using Camptothecin-Conjugated Gold Nanorods. Part. Part. Syst. Charact. 2017, 35, 1700307. [Google Scholar] [CrossRef]
- Yu, N.; Huang, L.; Zhou, Y.; Xue, T.; Chen, Z.; Han, G. Near-Infrared-Light Activatable Nanoparticles for Deep-Tissue-Penetrating Wireless Optogenetics. Adv. Healthc. Mater. 2019, 8, e1801132. [Google Scholar] [CrossRef]
- Bao, J.; Liu, R.; Yu, Z.; Cheng, Z.; Chang, B. Activatable Janus Nanoparticles for Precise NIR-II Bioimaging and Synergistic Cancer Therapy. Adv. Funct. Mater. 2024, 34, 2316646. [Google Scholar] [CrossRef]
- Guo, B.; Sheng, Z.; Hu, D.; Liu, C.; Zheng, H.; Liu, B. Through Scalp and Skull NIR-II Photothermal Therapy of Deep Orthotopic Brain Tumors with Precise Photoacoustic Imaging Guidance. Adv. Mater. 2018, 30, e1802591. [Google Scholar] [CrossRef] [PubMed]
- Ju, E.; Dong, K.; Liu, Z.; Pu, F.; Ren, J.; Qu, X. Tumor Microenvironment Activated Photothermal Strategy for Precisely Controlled Ablation of Solid Tumors upon NIR Irradiation. Adv. Funct. Mater. 2015, 25, 1574–1580. [Google Scholar] [CrossRef]
- Sun, Z.; Li, T.; Wu, F.; Yao, T.; Yang, H.; Yang, X.; Yin, H.; Gao, Y.; Zhang, Y.; Li, C.; et al. Precise Synergistic Photothermal Therapy Guided by Accurate Temperature-Dependent NIR-II Fluorescence Imaging. Adv. Funct. Mater. 2023, 34, 2311622. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, A.; Zhou, J.; Wang, Y.; Li, J. Near-Infrared Photoresponsive Nanotransducers for Precise Regulation of Gene Expression. Bioconjug Chem. 2023, 34, 595–610. [Google Scholar] [CrossRef]
- Bhattarai, P.; Dai, Z. Cyanine based Nanoprobes for Cancer Theranostics. Adv. Healthc. Mater. 2017, 6, 1700262. [Google Scholar] [CrossRef]
- Lu, Y.J.; S, A.T.; Chuang, C.C.; Chen, J.P. Liposomal IR-780 as a Highly Stable Nanotheranostic Agent for Improved Photothermal/Photodynamic Therapy of Brain Tumors by Convection-Enhanced Delivery. Cancers 2021, 13, 3690. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Fan, Z.; Qiao, Y.; Chen, Y.; Wang, S.; Yue, X.; Shen, T.; Liu, W.; Yang, J.; Gao, H.; et al. AIEgens Conjugation Improves the Photothermal Efficacy and Near-Infrared Imaging of Heptamethine Cyanine IR-780. ACS Appl. Mater. Interfaces 2020, 12, 16114–16124. [Google Scholar] [CrossRef] [PubMed]
- Kaveh Zenjanab, M.; Alimohammadvand, S.; Doustmihan, A.; Kianian, S.; Sadeghzadeh Oskouei, B.; Mazloomi, M.; Akbari, M.; Jahanban-Esfahlan, R. Paclitaxel for breast cancer therapy: A review on effective drug combination modalities and nano drug delivery platforms. J. Drug Deliv. Sci. Technol. 2024, 95, 105567. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Patra, J.K.; Singh, Y.D.; Panda, M.K.; Das, G.; Adetunji, C.O.; Michael, O.S.; Sytar, O.; Polito, L.; et al. Paclitaxel: Application in Modern Oncology and Nanomedicine-Based Cancer Therapy. Oxid. Med. Cell Longev. 2021, 2021, 3687700. [Google Scholar] [CrossRef]
- Yang, Y.H.; Mao, J.W.; Tan, X.L. Research progress on the source, production, and anti-cancer mechanisms of paclitaxel. Chin. J. Nat. Med. 2020, 18, 890–897. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Yoon, B.; Lee, J.; Kim, G.; Park, M.-H. NIR-Responsive Microbubble Delivery Platforms for Controlled Drug Release in Cancer Therapy. Materials 2025, 18, 2725. https://doi.org/10.3390/ma18122725
Kim K, Yoon B, Lee J, Kim G, Park M-H. NIR-Responsive Microbubble Delivery Platforms for Controlled Drug Release in Cancer Therapy. Materials. 2025; 18(12):2725. https://doi.org/10.3390/ma18122725
Chicago/Turabian StyleKim, Kibeom, Been Yoon, Jungmin Lee, Gyuri Kim, and Myoung-Hwan Park. 2025. "NIR-Responsive Microbubble Delivery Platforms for Controlled Drug Release in Cancer Therapy" Materials 18, no. 12: 2725. https://doi.org/10.3390/ma18122725
APA StyleKim, K., Yoon, B., Lee, J., Kim, G., & Park, M.-H. (2025). NIR-Responsive Microbubble Delivery Platforms for Controlled Drug Release in Cancer Therapy. Materials, 18(12), 2725. https://doi.org/10.3390/ma18122725