Enhancement of Photothermal Conversion by TiN Nanoparticles-Embedded Black Paint and Applications in Solar Drying of Red Chilli
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of TiN NPs
2.2. Materials Characterization
2.3. Preparation of Black-Painted Plates
2.4. Preparation of the Heat Box
2.5. Construction of the Greenhouse
2.6. Solar Drying of Red Chilli
2.7. Calculations of Moisture Content and Drying Rate
3. Results and Discussion
3.1. Morphology, Crystalline Structure and Light Absorption of TiN NPs
3.2. Light Absorption and Photothermal Conversion of TiN-NPs-Embedded Black Paint
3.3. Drying of Red Chilli by Sunlight
3.3.1. Open Sun Drying of Red Chilli
3.3.2. Drying of Red Chilli in a Greenhouse (GH)
3.3.3. Drying of Red Chilli in GH with Black-Painted Plates
3.3.4. Drying of Red Chilli in GH with TiN-NPs-Embedded Black Paint
3.3.5. Quality of Dried Chilli by Different DRYING Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goud, M.; Reddy, M.V.V.; Chandramohan, V.P.; Lingayat, A.; Raju, V.R.K.; Suresh, S. Experimental Investigation of Drying Kinetics of Green Chilli and Okra Using Indirect Solar Dryer with Evaluation of Dryer Performance. Int. J. Ambient Energy 2022, 43, 5284–5296. [Google Scholar] [CrossRef]
- Hoang, P.D.; Tung, T.; Nang, H.T.; Duy, N.D. Opportunities and Threats for Vietnamese Brand Chilli Sauce Products. Int. J. Sci. Res. Manag. 2024, 12, 1790–1802. [Google Scholar] [CrossRef]
- Getahun, E.; Gabbiye, N.; Delele, M.A.; Fanta, S.W.; Gebreslasie, M.; Vanierschot, M. Heliyon Effect of Maturity on the Moisture Sorption Isotherm of Chili Pepper (Mareko Fana Variety). Heliyon 2020, 6, e04608. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Bala, B.K. Drying of Hot Chilli Using Solar Tunnel Drier. Sol. Energy 2007, 81, 85–92. [Google Scholar] [CrossRef]
- Fudholi, A.; Sopian, K.; Yazdi, M.H.; Ruslan, M.H.; Gabbasa, M.; Kazem, H.A. Performance Analysis of Solar Drying System for Red Chili. Sol. Energy 2014, 99, 47–54. [Google Scholar] [CrossRef]
- El-Sebaii, A.A.; Shalaby, S.M. Solar Drying of Agricultural Products: A Review. Renew. Sustain. Energy Rev. 2012, 16, 37–43. [Google Scholar] [CrossRef]
- EL-Mesery, H.S.; EL-Seesy, A.I.; Hu, Z.; Li, Y. Recent Developments in Solar Drying Technology of Food and Agricultural Products: A Review. Renew. Sustain. Energy Rev. 2022, 157, 112070. [Google Scholar] [CrossRef]
- Patil, R.; Gawande, R. A Review on Solar Tunnel Greenhouse Drying System. Renew. Sustain. Energy Rev. 2016, 56, 196–214. [Google Scholar] [CrossRef]
- Devan, P.K.; Bibin, C.; Asburris Shabrin, I.; Gokulnath, R.; Karthick, D. Solar Drying of Fruits—A Comprehensive Review. Mater. Today Proc. 2020, 33, 253–260. [Google Scholar] [CrossRef]
- Singh, P.; Vyas, S.; Yadav, A. Experimental Comparison of Open Sun Drying and Solar Drying Based on Evacuated Tube Collector. Int. J. Sustain. Energy 2019, 38, 348–367. [Google Scholar] [CrossRef]
- Banout, J.; Ehl, P.; Havlik, J.; Lojka, B.; Polesny, Z.; Verner, V. Design and Performance Evaluation of a Double-Pass Solar Drier for Drying of Red Chilli (Capsicum annum L.). Sol. Energy 2011, 85, 506–515. [Google Scholar] [CrossRef]
- Fudholi, A.; Sopian, K.; Ruslan, M.H.; Alghoul, M.A.; Sulaiman, M.Y. Review of Solar Dryers for Agricultural and Marine Products. Renew. Sustain. Energy Rev. 2010, 14, 1–30. [Google Scholar] [CrossRef]
- Singh, P.; Shrivastava, V.; Kumar, A. Recent Developments in Greenhouse Solar Drying: A Review. Renew. Sustain. Energy Rev. 2018, 82, 3250–3262. [Google Scholar] [CrossRef]
- Prakash, O.; Kumar, A. Solar Greenhouse Drying: A Review. Renew. Sustain. Energy Rev. 2014, 29, 905–910. [Google Scholar] [CrossRef]
- Mhd Safri, N.A.; Zainuddin, Z.; Mohd Azmi, M.S.; Zulkifle, I.; Fudholi, A.; Ruslan, M.H.; Sopian, K. Current Status of Solar-Assisted Greenhouse Drying Systems for Drying Industry (Food Materials and Agricultural Crops). Trends Food Sci. Technol. 2021, 114, 633–657. [Google Scholar] [CrossRef]
- Castillo-Téllez, M.; Pilatowsky-Figueroa, I.; López-Vidaña, E.C.; Sarracino-Martínez, O.; Hernández-Galvez, G. Dehydration of the Red Chilli (Capsicum Annuum L., Costeño) Using an Indirect-Type Forced Convection Solar Dryer. Appl. Therm. Eng. 2017, 114, 1137–1144. [Google Scholar] [CrossRef]
- Ahmad, A.; Prakash, O.; Kumar, A.; Chatterjee, R.; Sharma, S.; Kumar, V.; Kulshreshtha, K.; Li, C.; Eldin, E.M.T. A Comprehensive State-of-the-Art Review on the Recent Developments in Greenhouse Drying. Energies 2022, 15, 9493. [Google Scholar] [CrossRef]
- Getahun, E.; Ebissa, D.T. Investigation of Optimal Drying Conditions of Red Chili Peppers in a Hot Air Cabinet Dryer. Case Stud. Therm. Eng. 2024, 59, 104586. [Google Scholar] [CrossRef]
- Pochont, N.R.; Mohammad, M.N.; Pradeep, B.T.; Kumar, P.V. A Comparative Study of Drying Kinetics and Quality of Indian Red Chilli in Solar Hybrid Greenhouse Drying and Open Sun Drying. Mater. Today Proc. 2020, 21, 286–290. [Google Scholar] [CrossRef]
- Simo-Tagne, M.; Ndukwu, M.C.; Zoulalian, A.; Bennamoun, L.; Kifani-Sahban, F.; Rogaume, Y. Numerical Analysis and Validation of a Natural Convection Mix-Mode Solar Dryer for Drying Red Chilli under Variable Conditions. Renew. Energy 2020, 151, 659–673. [Google Scholar] [CrossRef]
- A, A.; Sharangi, A.B.; Upadhyay, T.K.; Alshammari, N.; Saeed, M.; Al-Keridis, L.A. Physico-Chemical Properties of Red Pepper (Capsicum annuum L.) as Influenced by Different Drying Methods and Temperatures. Processes 2022, 10, 484. [Google Scholar] [CrossRef]
- Farid, M.U.; Kharraz, J.A.; An, A.K. Plasmonic Titanium Nitride Nano-Enabled Membranes with High Structural Stability for Efficient Photothermal Desalination. ACS Appl. Mater. Interfaces 2021, 13, 3805–3815. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, K.; Liu, L.; Wang, K.; Xiang, J.; Hou, D.; Wang, J. Titanium Nitride Nanoparticle Embedded Membrane for Photothermal Membrane Distillation. Chemosphere 2020, 256, 127053. [Google Scholar] [CrossRef] [PubMed]
- Ishii, S.; Sugavaneshwar, R.P.; Nagao, T. Titanium Nitride Nanoparticles as Plasmonic Solar Heat Transducers. J. Phys. Chem. C 2016, 120, 2343–2348. [Google Scholar] [CrossRef]
- Guler, U.; Ndukaife, J.C.; Naik, G.V.; Nnanna, A.G.A.; Kildishev, A.V.; Shalaev, V.M.; Boltasseva, A. Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles. Nano Lett. 2013, 13, 6078–6083. [Google Scholar] [CrossRef]
- Guler, U.; Suslov, S.; Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications. Nanophotonics 2015, 4, 269–276. [Google Scholar] [CrossRef]
- Guler, U.; Shalaev, V.M.; Boltasseva, A. Nanoparticle Plasmonics: Going Practical with Transition Metal Nitrides. Mater. Today 2015, 18, 227–237. [Google Scholar] [CrossRef]
- Mascaretti, L.; Schirato, A.; Zbořil, R.; Kment, Š.; Schmuki, P.; Alabastri, A.; Naldoni, A. Solar Steam Generation on Scalable Ultrathin Thermoplasmonic TiN Nanocavity Arrays. Nano Energy 2021, 83, 105828. [Google Scholar] [CrossRef]
- Kaur, M.; Ishii, S.; Shinde, S.L.; Nagao, T. All-Ceramic Microfibrous Solar Steam Generator: TiN Plasmonic Nanoparticle-Loaded Transparent Microfibers. ACS Sustain. Chem. Eng. 2017, 5, 8523–8528. [Google Scholar] [CrossRef]
- Ren, P.; Yang, X. Synthesis and Photo-Thermal Conversion Properties of Hierarchical Titanium Nitride Nanotube Mesh for Solar Water Evaporation. Sol. RRL 2018, 2, 1700233. [Google Scholar] [CrossRef]
- Jiang, D.; Fan, Z.; Dong, M.; Shang, Y.; Liu, X.; Chen, G.; Li, S. Titanium Nitride Selective Absorber Enhanced Solar Thermoelectric Generator (SA-STEG). Appl. Therm. Eng. 2018, 141, 828–834. [Google Scholar] [CrossRef]
- Lalisse, A.; Tessier, G.; Plain, J.; Baffou, G. Plasmonic Efficiencies of Nanoparticles Made of Metal Nitrides (TiN, ZrN) Compared with Gold. Sci. Rep. 2016, 6, 38647. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Guler, U.; Kinsey, N.; Naik, G.V.; Boltasseva, A.; Guan, J.; Shalaev, V.M.; Kildishev, A.V. Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber. Adv. Mater. 2014, 26, 7959–7965. [Google Scholar] [CrossRef] [PubMed]
- Thi Le, T.-L.; Nguyen, L.T.; Nguyen, H.-H.; Nghia, N.V.; Vuong, N.M.; Hieu, H.N.; Thang, N.V.; Le, V.T.; Nguyen, V.H.; Lin, P.-C.; et al. Titanium Nitride Nanodonuts Synthesized from Natural Ilmenite Ore as a Novel and Efficient Thermoplasmonic Material. Nanomaterials 2021, 11, 76. [Google Scholar] [CrossRef]
- Dinh, K.-H.T.; Bui, P.H.; Dang, N.-L.B.; Le, T.-L.T.; Hieu, H.N.; Nguyen, V.H.; Nguyen, N.L.; Le Thi Ngoc, L.; Van Bui, H. Fabrication of N-Doped TiO2 and TiN Nanorods by NH3 Treatment: Evolution of Morphology, Structures, Composition and Optical Properties. Ceram. Int. 2024, 50, 10241–10251. [Google Scholar] [CrossRef]
- Getahun, E.; Delele, M.A.; Gabbiye, N.; Fanta, S.W.; Vanierschot, M. Studying the Drying Characteristics and Quality Attributes of Chili Pepper at Different Maturity Stages: Experimental and Mechanistic Model. Case Stud. Therm. Eng. 2021, 26, 101052. [Google Scholar] [CrossRef]
- Fudholi, A.; Othman, M.Y.; Ruslan, M.H.; Sopian, K. Drying of Malaysian Capsicum annuum L. (Red Chili) Dried by Open and Solar Drying. Int. J. Photoenergy 2013, 2013, 167895. [Google Scholar] [CrossRef]
- Guo, J.; Benz, D.; Doan Nguyen, T.-T.; Nguyen, P.-H.; Thi Le, T.-L.; Nguyen, H.-H.; La Zara, D.; Liang, B.; (Bert) Hintzen, H.T.; van Ommen, J.R.; et al. Tuning the Photocatalytic Activity of TiO2 Nanoparticles by Ultrathin SiO2 Films Grown by Low-Temperature Atmospheric Pressure Atomic Layer Deposition. Appl. Surf. Sci. 2020, 530, 147244. [Google Scholar] [CrossRef]
- Pinar, H.; Çetin, N.; Ciftci, B.; Karaman, K.; Kaplan, M. Biochemical Composition, Drying Kinetics and Chromatic Parameters of Red Pepper as Affected by Cultivars and Drying Methods. J. Food Compos. Anal. 2021, 102, 103976. [Google Scholar] [CrossRef]
- Deng, L.-Z.; Yang, X.-H.; Mujumdar, A.S.; Zhao, J.-H.; Wang, D.; Zhang, Q.; Wang, J.; Gao, Z.-J.; Xiao, H.-W. Red Pepper (Capsicum annuum L.) Drying: Effects of Different Drying Methods on Drying Kinetics, Physicochemical Properties, Antioxidant Capacity, and Microstructure. Dry. Technol. 2018, 36, 893–907. [Google Scholar] [CrossRef]
- Saengrayap, R.; Tansakul, A.; Mittal, G.S. Effect of Far-Infrared Radiation Assisted Microwave-Vacuum Drying on Drying Characteristics and Quality of Red Chilli. J. Food Sci. Technol. 2015, 52, 2610–2621. [Google Scholar] [CrossRef] [PubMed]
- Kaymak-Ertekin, F. Drying and Rehydrating Kinetics of Green and Red Peppers. J. Food Sci. 2002, 67, 168–175. [Google Scholar] [CrossRef]
- Krokida, M.K.; Maroulis, Z.B. Structural Properties of Dehydrated Products during Rehydration. Int. J. Food Sci. Technol. 2001, 36, 529–538. [Google Scholar] [CrossRef]
- Pangavhane, D.R.; Sawhney, R.L.; Sarsavadia, P.N. Design, Development and Performance Testing of a New Natural Convection Solar Dryer. Energy 2002, 27, 579–590. [Google Scholar] [CrossRef]
- El-Beltagy, A.; Gamea, G.R.; Essa, A.H.A. Solar Drying Characteristics of Strawberry. J. Food Eng. 2007, 78, 456–464. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trang, V.T.T.; Hang, H.T.; Nhi, P.Q.; Trung, N.T.; Dang, N.-L.B.; Le, T.-L.T.; Nhung, L.T.C.; Nghia, N.V.; Can, D.V.; Bui, H.V.; et al. Enhancement of Photothermal Conversion by TiN Nanoparticles-Embedded Black Paint and Applications in Solar Drying of Red Chilli. Materials 2024, 17, 4393. https://doi.org/10.3390/ma17174393
Trang VTT, Hang HT, Nhi PQ, Trung NT, Dang N-LB, Le T-LT, Nhung LTC, Nghia NV, Can DV, Bui HV, et al. Enhancement of Photothermal Conversion by TiN Nanoparticles-Embedded Black Paint and Applications in Solar Drying of Red Chilli. Materials. 2024; 17(17):4393. https://doi.org/10.3390/ma17174393
Chicago/Turabian StyleTrang, Van Thi Thuy, Hoang Thi Hang, Pham Quynh Nhi, Nguyen Thanh Trung, Nhat-Le Bui Dang, Thanh-Lieu Thi Le, Le Thi Cam Nhung, Nguyen Van Nghia, Do Van Can, Hao Van Bui, and et al. 2024. "Enhancement of Photothermal Conversion by TiN Nanoparticles-Embedded Black Paint and Applications in Solar Drying of Red Chilli" Materials 17, no. 17: 4393. https://doi.org/10.3390/ma17174393
APA StyleTrang, V. T. T., Hang, H. T., Nhi, P. Q., Trung, N. T., Dang, N.-L. B., Le, T.-L. T., Nhung, L. T. C., Nghia, N. V., Can, D. V., Bui, H. V., & Ngoc, L. L. T. (2024). Enhancement of Photothermal Conversion by TiN Nanoparticles-Embedded Black Paint and Applications in Solar Drying of Red Chilli. Materials, 17(17), 4393. https://doi.org/10.3390/ma17174393