Verification of Numerical Models of High Thin-Walled Cold-Formed Steel Purlins
Abstract
:1. Introduction
2. Experimental Program
3. Numerical Analysis Assumptions
4. Input Parameters for Numerical Models
5. Results of Parametric Numerical Study
5.1. Result for Model 1A and 1B
5.2. Result for Model 2A and 2B
5.3. Result for Model 3A and 3B
5.4. Result for Model 4A and 4B
5.5. Result for Model 5A and 5B
5.6. Result for Model 6A and 6B
5.7. Result for Model 7A and 7B
5.8. Result for Model 8A and 8B
5.9. Result for Model 9A and 9B
5.10. Result for Model 10A and 10B
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taranu, G.; Ungureanu, V.; Nagy, Z.; Alexa-Stratulat, M.S.; Toma, I.O.; Luca, S.G. Shake Table Test and Numerical Analyses of a Thin-Walled Cold-Formed Steel Structure: Part 1—Investigation of the Structural Skeleton without Claddings. Thin-Walled Struct. 2023, 182, 110258. [Google Scholar] [CrossRef]
- Sheta, A.; Ma, X.; Zhuge, Y.; El Gawady, M.; Mills, J.E.; Abd-Elaal, E. Axial Compressive Behaviour of Thin-Walled Composite Columns Comprise High-Strength Cold-Formed Steel and PE-ECC. Thin-Walled Struct. 2023, 184, 110471. [Google Scholar] [CrossRef]
- Billah, M.M.; Islam, R.; Bin, A. Cold Formed Steel Structure: An Overview. World Sci. News 2019, 118, 59–73. [Google Scholar]
- Schafer, B.W.; Peköz, T. Computational Modeling of Cold-Formed Steel: Characterizing Geometric Imperfections and Residual Stresses. J. Constr. Steel Res. 1998, 47, 193–210. [Google Scholar] [CrossRef]
- Tǎranu, G.; Bunea, G.; Olteanu-Donov, I.; Venghiac, V.M.; Ovidiu Toma, I. Stability Analysis of a Scaled-Down Cold-Formed Steel Structure. IOP Conf. Ser. Mater. Sci. Eng. 2019, 586, 012029. [Google Scholar] [CrossRef]
- Becque, J.; Rasmussen, K.J.R. Stability of Z-Section Purlins Used as Temporary Struts during Construction. J. Struct. Eng. 2013, 139, 04013009. [Google Scholar] [CrossRef]
- Shifferaw, Y.; Woldeyes, K.; Bitsuamlak, G. Stability and Strength Behavior of Thin-Walled Roof-Panel-Purlin System under Wind Loading. In Proceedings of the Annual Stability Conference Structural Stability Research Council, San Antonio, TX, USA, 21–24 March 2017. [Google Scholar]
- Yuting, Z.; Yingkai, L.; Shen, L.; Ruoqiang, F. Seismic Design of Cold-Formed Steel Beams Based on Flexural Capacity—Ductility—Energy Dissipation. Thin-Walled Struct. 2023, 192, 111171. [Google Scholar] [CrossRef]
- Bartczak, B.; Gierczysk-Zbrozek, D.; Gronostajski, Z.; Polak, S.; Tobota, A. The Use of Thin-Walled Sections for Energy Absorbing Components: A Review. Arch. Civ. Mech. Eng. 2010, 10, 5–19. [Google Scholar] [CrossRef]
- Sivapathasundaram, M.; Mahendran, M. Experimental Studies of Thin-Walled Steel Roof Battens Subject to Pull-through Failures. Eng. Struct. 2016, 113, 388–406. [Google Scholar] [CrossRef]
- Sambandam, M.; Nurni, V.N.; Jayaraj, S.P. Sustainable Production of Steel–Carbon Neutrality and Low Life Cycle Emission. J. Indian Inst. Sci. 2022, 102, 117–126. [Google Scholar] [CrossRef]
- Fadel, A.M.; El-Saadawy, M.M. Effect of Web Inclination on the Behavior of Cold Formed Steel Z-Purlins. J. Eng. Appl. Sci. 2005, 52, 905. [Google Scholar]
- Zhao, C.; Yang, J.; Wang, F.; Chan, A.H.C. Rotational Stiffness of Cold-Formed Steel Roof Purlin–Sheeting Connections. Eng. Struct. 2014, 59, 284–297. [Google Scholar] [CrossRef]
- EN 1993-1-3; Eurocode 3: Design of Steel Structures Part 1-3: General Rules—Supplementary Rules for Cold-Formed Members and Sheeting. The European Union: Brussels, Belgium, 2009.
- Bathe, K.-J. Finite Element Method. In Wiley Encyclopedia of Computer Science and Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Schafer, B. Direct Strength Method (DSM) Design Guide. Design Guide CF06-1; American Iron and Steel Institute: Washington, DC, USA, 2006. [Google Scholar]
- Schafer, B.W. Progress on the Direct Strength Method. In Proceedings of the International Specialty Conference on Cold-Formed Steel Structures: Recent Research and Developments in Cold-Formed Steel Design and Construction, Orlando, FL, USA, 17–18 October 2002. [Google Scholar]
- Gutierrez, R.; Loureiro, A.; Lopez, M.; Moreno, A. Analysis of Cold-Formed Purlins with Slotted Sleeve Connections. Thin-Walled Struct. 2011, 49, 833–841. [Google Scholar] [CrossRef]
- Gutierrez, R.; Loureiro, A.; Reinosa, J.M.; Lopez, M. Numerical Study of Purlin Joints with Sleeve Connections. Thin-Walled Struct. 2015, 94, 214–224. [Google Scholar] [CrossRef]
- Silva, J.M.M.; Malite, M. Longitudinally Stiffened Web Purlins under Shear and Bending Moment. Thin-Walled Struct. 2020, 148, 106616. [Google Scholar] [CrossRef]
- Pařenica, P.; Rosmanit, M.; Flodr, J. Numerical Modelling of Thin-Walled Purlins Connection to the Supporting Structure. Procedia Eng. 2017, 190, 186–192. [Google Scholar] [CrossRef]
- Obeydi, M.; Daei, M.; Zeynalian, M.; Abbasi, M. Numerical Modeling on Thin-Walled Cold-Formed Steel Clip Angles Subjected to Pull-out Failures. Thin-Walled Struct. 2021, 164, 107716. [Google Scholar] [CrossRef]
- Thacker, B.H.; Doebling, S.W.; Hemez, F.M.; Anderson, M.C.; Pepin, J.E.; Rodriguez, E.A. Concepts of Model Verification and Validation; Los Alamos National Lab.: Los Alamos, NM, USA, 2004. [Google Scholar]
- Pařenica, P.; Mynarčík, P.; Lehner, P. Experimental Study of High Thin-Walled Cold-Rolled Z Cross-Sections Purlins. J. Constr. Steel Res. 2023, 208, 108017. [Google Scholar] [CrossRef]
- Parenica, P.; Rosmanit, M.; Flodr, J.; Sucharda, O. Tests of the Local Resistance of Thin-Walled z-Purlins Clip Connection to the Supporting Structure. ARPN J. Eng. Appl. Sci. 2017, 12, 1540–1546. [Google Scholar]
- Pařenica, P.; Lehner, P.; Brožovský, J.; Krejsa, M. Numerical Models of the Connection of Thin-Walled z-Profile Roof Purlins. Materials 2021, 14, 6573. [Google Scholar] [CrossRef]
- ANSYS. ANSYS Meshing User’s Guide. Available online: https://customercenter.ansys.com (accessed on 29 October 2020).
- BS EN 1993-1-5; Eurocode 3—Design of Steel Structures—Part 1-5: Plated Structural Elements. The European Union: Brussels, Belgium, 2015.
- Pham, C.H.; Davis, A.F.; Emmett, B.R. Numerical Investigation of Cold-Formed Lapped Z Purlins under Combined Bending and Shear. J. Constr. Steel Res. 2014, 95, 116–125. [Google Scholar] [CrossRef]
- Couto, C.; Vila Real, P. Numerical Investigation on the Influence of Imperfections in the Local Buckling of Thin-Walled I-Shaped Sections. Thin-Walled Struct. 2019, 135, 89–108. [Google Scholar] [CrossRef]
Young’s Modulus E [MPa] | Poisson’s Ratio ν [-] | Yield Strength fy [MPa] |
---|---|---|
200,000 | 0.3 | 440 |
Model Number | Span of Supports | Z Cross-Section Heights | Support Connection | Thickness of Material | Support Width | Graph Labelling |
---|---|---|---|---|---|---|
1A | 3.0 m | 300 mm | with clip | 1.89 | 200 mm | Z300_1.89_200_3.0_A |
1B | 3.0 m | 300 mm | without clip | 1.89 | 200 mm | Z300_1.89_200_3.0_B |
2A | 3.0 m | 300 mm | with clip | 1.89 | 300 mm | Z300_1.89_300_3.0_A |
2B | 3.0 m | 300 mm | without clip | 1.89 | 300 mm | Z300_1.89_300_3.0_B |
3A | 3.0 m | 300 mm | with clip | 2.85 | 200 mm | Z300_2.85_200_3.0_A |
3B | 3.0 m | 300 mm | without clip | 2.85 | 200 mm | Z300_2.85_200_3.0_B |
4A | 3.0 m | 350 mm | with clip | 1.89 | 200 mm | Z350_1.89_200_3.0_A |
4B | 3.0 m | 350 mm | without clip | 1.89 | 200 mm | Z350_1.89_200_3.0_B |
5A | 3.0 m | 350 mm | with clip | 1.89 | 300 mm | Z350_1.89_300_3.0_A |
5B | 3.0 m | 350 mm | without clip | 1.89 | 300 mm | Z350_1.89_200_3.0_B |
6A | 3.0 m | 350 mm | with clip | 2.85 | 200 mm | Z350_2.85_200_3.0_A |
6B | 3.0 m | 350 mm | without clip | 2.85 | 200 mm | Z350_2.85_200_3.0_B |
7A | 5.1 m | 300 mm | with clip | 1.89 | 200 mm | Z300_1.89_200_5.1_A |
7B | 5.1 m | 300 mm | without clip | 1.89 | 200 mm | Z300_1.89_200_5.1_B |
8A | 5.1 m | 300 mm | with clip | 1.89 | 300 mm | Z300_1.89_300_5.1_A |
8B | 5.1 m | 300 mm | without clip | 1.89 | 300 mm | Z300_1.89_300_5.1_B |
9A | 5.1 m | 350 mm | with clip | 1.89 | 200 mm | Z350_1.89_200_5.1_A |
9B | 5.1 m | 350 mm | without clip | 1.89 | 200 mm | Z350_1.89_200_5.1_B |
10A | 5.1 m | 350 mm | with clip | 1.89 | 300 mm | Z350_1.89_300_5.1_A |
10B | 5.1 m | 350 mm | without clip | 1.89 | 300 mm | Z350_1.89_300_5.1_B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pařenica, P.; Krejsa, M.; Brožovský, J.; Lehner, P. Verification of Numerical Models of High Thin-Walled Cold-Formed Steel Purlins. Materials 2024, 17, 4392. https://doi.org/10.3390/ma17174392
Pařenica P, Krejsa M, Brožovský J, Lehner P. Verification of Numerical Models of High Thin-Walled Cold-Formed Steel Purlins. Materials. 2024; 17(17):4392. https://doi.org/10.3390/ma17174392
Chicago/Turabian StylePařenica, Přemysl, Martin Krejsa, Jiří Brožovský, and Petr Lehner. 2024. "Verification of Numerical Models of High Thin-Walled Cold-Formed Steel Purlins" Materials 17, no. 17: 4392. https://doi.org/10.3390/ma17174392
APA StylePařenica, P., Krejsa, M., Brožovský, J., & Lehner, P. (2024). Verification of Numerical Models of High Thin-Walled Cold-Formed Steel Purlins. Materials, 17(17), 4392. https://doi.org/10.3390/ma17174392