Effects of Minor Zn Dopants in Sn-10Bi Solder on Interfacial Reaction and Shear Properties of Solder on Ni/Au Surface Finish
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect of Zn on Sn-Bi/Au/Ni Interfacial Reaction during Soldering
3.2. Effect of Zn on Sn-Bi/Au/Ni Interfacial Evolution during Isothermal Aging
3.3. Effect of Zn on the Shear Properties of Sn-Bi/Au/Ni Joints
4. Conclusions
- (1)
- During soldering, the interfacial IMC layer in Sn-10Bi/Au/Ni solder joints was determined to be Ni3Sn4. With a 0.2 or 0.5 Zn dopant, Zn atoms were enrolled in the interfacial reaction to form a Ni-Sn-Zn IMC at the interface. Calculations via first-principles theory confirmed that it was a more stable Ni3(Sn, Zn)4 IMC structure because the Sn atoms in the Ni3Sn4 crystal had been substituted by Zn atoms.
- (2)
- Adding a Zn dopant into Sn-10Bi solder effectively inhibited the growth of IMCs in solder joints on a Ni/Au surface finish during high-temperature aging.
- (3)
- Adding a Zn dopant into Sn-10Bi solder increased the shear strength of Sn-10Bi/Au/Ni solder joints. The joint strength reached its maximum at about 65 MPa for Sn-10Bi-0.5Zn solder joints after isothermal aging for 10 days, which is similar to the result reported for Sn-3.0Ag-0.5Cu solder.
- (4)
- The fracture mode was controlled by the Zn addition and the duration of aging, with the fracture mode changing from brittle in the as-soldered condition, to quasi-ductile after 10 days of aging, and again to brittle after a long period of aging, which reflected the competition between solder strength and IMC growth.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dele-Afolabi, T.T.; Ansari, M.N.M.; Hanim, M.A.A.; Oyekanmi, A.A.; Ojo-Kupoluyi, O.J.; Atiqah, A. Recent advances in Sn-based lead-free solder interconnects for microelectronics packaging: Materials and technologies. J. Mater. Res. Technol. 2023, 25, 4231–4263. [Google Scholar] [CrossRef]
- Depiver, J.A.; Mallik, S.; Amalu, E.H.; Creep, E.O. Fatigue and random vibration on the integrity of solder joints in BGA package. Microelectron. Reliab. 2024, 157, 115415. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Song, W.; Wang, X.; Zhang, H.; Sun, F. Interfacial reaction, microstructure and mechanical properties of Sn58Bi solder joints on graphene-coated Cu substrate. Results Phys. 2019, 13, 102256. [Google Scholar] [CrossRef]
- Osório, W.R.; Peixoto, L.C.; Garcia, L.R.; Mangelinck-Noël, N.; Garcia, A. Microstructure and mechanical properties of Sn–Bi, Sn–Ag and Sn–Zn lead-free solder alloys. J. Alloys Compd. 2013, 572, 97–106. [Google Scholar] [CrossRef]
- Wang, F.; Chen, H.; Huang, Y.; Liu, L.; Zhang, Z. Recent progress on the development of Sn–Bi based low-temperature Pb-free solders. J. Mater. Sci. Mater. Electron. 2019, 30, 3222–3243. [Google Scholar] [CrossRef]
- Ye, D.; Du, C.; Wu, M.; Lai, Z. Microstructure and mechanical properties of Sn–xBi solder alloy. J. Mater. Sci. Mater. Electron. 2015, 26, 3629–3637. [Google Scholar] [CrossRef]
- Shen, Y.-A. Bi Dispersion Hardening in Sn-Bi Alloys by Solid-State Aging. JOM 2023, 75, 4922–4930. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, Z.; Shen, C. Comparison study on microstructure and mechanical properties of Sn-10Bi and Sn-Ag-Cu solder alloys and joints. Microelectron. Reliab. 2017, 78, 72–79. [Google Scholar] [CrossRef]
- Wang, F.; Ding, Y.; Liu, L.; Huang, Y.; Wu, M. Wettability, interfacial behavior and joint properties of Sn-15Bi solder. J. Electron. Mater. 2019, 48, 6835–6848. [Google Scholar] [CrossRef]
- Kang, T.Y.; Xiu, Y.Y.; Hui, L.; Wang, J.J.; Tong, W.P.; Liu, C.Z. Effect of bismuth on intermetallic compound growth in lead free solder/Cu microelectronic interconnect. J. Mater. Sci. Technol. 2011, 27, 741–745. [Google Scholar] [CrossRef]
- Laurila, T.; Vuorinen, V.; Kivilahti, J.K. Interfacial reactions between lead-free solders and common base materials. Mater. Sci. Eng. R Rep. 2005, 49, 1–60. [Google Scholar] [CrossRef]
- Yazzie, K.E.; Xie, H.X.; Williams, J.J.; Chawla, N. On the relationship between solder-controlled and intermetallic compound (IMC)-controlled fracture in Sn-based solder joints. Scr. Mater. 2012, 66, 586–589. [Google Scholar] [CrossRef]
- Bertheau, J.; Hodaj, F.; Hotellier, N.; Charbonnier, J. Effect of intermetallic compound thickness on shear strength of 25 μm diameter Cu-pillars. Intermetallics 2014, 51, 37–47. [Google Scholar] [CrossRef]
- Wu, W.; Yang, H.; Li, Y.; Fan, Z.; Li, J. Effect of IMC Thickness on the Mechanical Properties of Microbumps. IEEE Trans. Compon. Packag. Manuf. Technol. 2023, 13, 265–273. [Google Scholar] [CrossRef]
- Zhu, W.; Shi, L.; Jiang, L.; He, H. Effect of intermetallic compound thickness on mechanical fatigue properties of copper pillar micro-bumps. Microelectron. Reliab. 2020, 111, 113723. [Google Scholar] [CrossRef]
- Wang, F.; Huang, Y.; Zhang, Z.; Yan, C. Interfacial reaction and mechanical properties of Sn-Bi solder joints. Materials 2017, 10, 920. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.; Wang, X.; Cai, S.; Peng, J.; Liu, C.; Kallel, M.; El-Bahy, Z.M.; Wang, S.; Liu, B.; et al. Microstructures and shear properties of antimony- and indium-strengthened Sn5Bi/Cu joints. Adv. Compos. Hybrid Mater. 2024, 7, 78. [Google Scholar] [CrossRef]
- Han, P.; Lu, Z.; Zhang, X. Sn-0.7Cu-10Bi solder modification strategy by Cr addition. Metals 2022, 12, 1768. [Google Scholar] [CrossRef]
- Lin, W.; Li, X.; Tu, B.; Zhang, C.; Li, Y. Wetting kinetics, spreading phenomena and interfacial reaction of Sn-15Bi-xZn solders on Cu substrate at different temperatures. Solder. Surf. Mt. Technol. 2023, 35, 218–230. [Google Scholar] [CrossRef]
- Xu, S.; Li, Y.; Jing, X.; Paik, K.-W.; He, P.; Zhang, S. The grain refinements effect of Zn alloying on low-temperature Sn-Bi-In lead-free solder. J. Mater. Res. Technol. 2024, 29, 2272–2278. [Google Scholar] [CrossRef]
- Hirata, Y.; Yang, C.-H.; Lin, S.-K.; Nishikawa, H. Improvement in mechanical properties of Sn-Bi alloys with addition of Zn and In. Mater. Sci. Eng. A 2021, 813, 141131. [Google Scholar] [CrossRef]
- Zhou, S.; Yang, C.-H.; Shen, Y.-A.; Lin, S.-K.; Nishikawa, H. The newly developed Sn-Bi-Zn alloy with a low melting point, improved ductility, and high ultimate tensile strength. Materialia 2019, 6, 100300. [Google Scholar] [CrossRef]
- Ho, C.Y.; Chou, H.W.; Chi, H.Y.; Liao, G.H. Microstructures of ternary Sn-Bi-xZn alloys on mechanical and electrochemical properties analysis for connection packaging. J. Alloys Compd. 2024, 1002, 175288. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Wang, F.-J.; Qiao, Y.-X. Effect of trace Zn addition on electromigration of Cu/Sn-10Bi/Cu solder joints. J. Iron Steel Res. Int. 2024. [Google Scholar] [CrossRef]
- Muhd Amli, S.F.N.; Mohd Salleh, M.A.A.; Ramli, M.I.I.; Abdul Razak, N.R.; Yasuda, H.; Chaiprapa, J.; Nogita, K. Effects of surface finish on Sn-3.0Ag-0.5Cu solder joint microstructure and strength. J. Electron. Mater. 2021, 50, 855–868. [Google Scholar] [CrossRef]
- Wang, Q.; Cai, S.; Yang, S.; Yu, Y.; Wan, Y.; Peng, J.; Wang, J.; Wang, X. Comparison of high-speed shear properties of low-temperature Sn-Bi/Cu and Sn-In/Cu. J. Mater. Sci. Mater. Electron. 2024, 35, 576. [Google Scholar] [CrossRef]
- Çadırlı, E.; Böyük, U.; Kaya, H.; Maraşlı, N. Effect of solidification parameters on the microstructure of directionally solidified Sn-Bi-Zn lead-free solder. Met. Mater. Int. 2012, 18, 349–354. [Google Scholar] [CrossRef]
- Chen, X.; Xue, F.; Zhou, J.; Liu, S.; Qian, G. Microstructure, Thermal and Wetting Properties of Sn-Bi-Zn Lead-Free Solder. J. Electron. Mater. 2013, 42, 2708–2715. [Google Scholar] [CrossRef]
- Zhou, S.; Mokhtari, O.; Rafique, M.G.; Shunmugasamy, V.C.; Mansoor, B.; Nishikawa, H. Improvement in the mechanical properties of eutectic Sn58Bi alloy by 0.5 and 1 wt% Zn dopant before and after thermal aging. J. Alloys Compd. 2018, 765, 1243–1252. [Google Scholar] [CrossRef]
- Hamada, N.; Hamada, M.; Uesugi, T.; Takigawa, Y.; Higashi, K. Effect of small dopant of Zinc on creep behavior of tin. Mater. Trans. 2010, 51, 1747–1752. [Google Scholar] [CrossRef]
- Lis, A.; Kenel, C.; Leinenbach, C. Characteristics of Reactive Ni3Sn4 formation and growth in Ni-Sn interlayer systems. Metall. Mater. Trans. A 2016, 47, 2596–2608. [Google Scholar] [CrossRef]
- Shen, L.; Septiwerdani, P.; Chen, Z. Elastic modulus, hardness and creep performance of SnBi alloys using nanoindentation. Mater. Sci. Eng. A 2012, 558, 253–258. [Google Scholar] [CrossRef]
- Ma, D.; Wu, P. Effects of coupled stressing and solid-state aging on the mechanical properties of Sn–58Bi–0.7Zn solder joint. J. Mater. Sci. Mater. Electron. 2015, 26, 6285–6292. [Google Scholar] [CrossRef]
- Ma, D.-L.; Wu, P. Effects of Zn dopant on mechanical properties of eutectic Sn–58Bi solder during liquid-state aging. Trans. Nonferrous Met. Soc. China 2015, 25, 1225–1233. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, H.; Wang, F. Effect of Trace Zn dopant on interfacial evolution in Sn-10Bi/Cu Solder Joints during aging condition. Materials 2019, 12, 4240. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmu, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W.-T. VASPKIT: A aser-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2019, 267, 108033. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Tian, Y.; Wu, P. First-principles study of substitution of Au for Ni in Ni3Sn4. J. Electron. Mater. 2018, 47, 2600–2608. [Google Scholar] [CrossRef]
- Gao, F.; Qu, J. Elastic moduli of (Ni,Cu)3Sn4 ternary alloys from first-principles calculations. J. Electron. Mater. 2010, 39, 2429–2434. [Google Scholar] [CrossRef]
- Li, L.H.; Wang, W.L.; Wei, B. First-principle and molecular dynamics calculations for physical properties of Ni-Sn alloy system. Comput. Mater. Sci. 2015, 99, 274–284. [Google Scholar]
- Bi, X.; Hu, X.; Jiang, X.; Li, Q. Effect of Cu additions on mechanical properties of Ni3Sn4-based intermetallic compounds: First-principles calculations and nano-indentation measurements. Vacuum 2019, 164, 7–14. [Google Scholar] [CrossRef]
- Qi, L.; Huang, J.; Zhang, H.; Zhao, X.; Wang, H.; Cheng, D. Growth behavior of intermetallic compounds at SnAgCu/Ni and Cu interfaces. J. Mater. Eng. Perform. 2010, 19, 129–134. [Google Scholar] [CrossRef]
- Sharif, A.; Chan, Y.C. Effect of reaction time on mechanical strength of the interface formed between the Sn-Zn(-Bi) solder and the Au/Ni/Cu bond pad. J. Electron. Mater. 2006, 35, 1812–1817. [Google Scholar] [CrossRef]
- Tsukamoto, H.; Nishimura, T.; Suenaga, S.; Nogita, K. Shear and tensile impact strength of lead-free solder ball grid arrays placed on Ni (P)/Au surface-finished substrates. Mater. Sci. Eng. B 2010, 171, 162–171. [Google Scholar] [CrossRef]
- Kim, P.; Jang, J.; Lee, T.; Tu, K.-N. Interfacial reaction and wetting behavior in eutectic SnPb solder on Ni/Ti thin films and Ni foils. J. Appl. Phys. 1999, 86, 6746–6751. [Google Scholar] [CrossRef]
- Jang, J.; Frear, D.; Lee, T.; Tu, K.-N. Morphology of interfacial reaction between lead-free solders and electroless Ni–P under bump metallization. J. Appl. Phys. 2000, 88, 6359–6363. [Google Scholar] [CrossRef]
a (Å) | b (Å) | c (Å) | β (°) | Volume (Å3) | Ef (eV/atom) | |
---|---|---|---|---|---|---|
Ni3Sn4 | 12.301 | 4.101 | 5.275 | 105.1 | 256.91 | −0.2740 |
Sn2: Ni3(Sn3.5Zn0.5) | 12.196 | 4.098 | 5.224 | 106.06 | 250.89 | −0.2480 |
Sn1: Ni3(Sn3.5Zn0.5) | 12.242 | 4.086 | 5.221 | 106.53 | 250.33 | −0.2451 |
Ni1: (Ni2.5Zn0.5)Sn4 | 12.467 | 4.125 | 5.366 | 105.26 | 266.21 | −0.2107 |
Ni2: (Ni2.5Zn0.5)Sn4 | 12.455 | 4.211 | 5.303 | 105.69 | 267.82 | −0.2097 |
Ni3Sn4 [41] | 12.29 | 4.1 | 5.27 | - | 256.2 | −0.287 |
Ni3Sn4 [42] | 12.345 | 4.111 | 5.323 | 105.5 | - | −0.316 |
Ni3Sn4 [43] | 12.537 | 3.889 | 5.272 | - | 257.46 | −0.234 |
Ni3Sn4 [44] | 12.418 | 4.111 | 5.315 | 105.48 | - | −0.267 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Zhu, J.; Zhou, H.; Liao, M.; Wang, F.; Chen, J. Effects of Minor Zn Dopants in Sn-10Bi Solder on Interfacial Reaction and Shear Properties of Solder on Ni/Au Surface Finish. Materials 2024, 17, 4364. https://doi.org/10.3390/ma17174364
Li S, Zhu J, Zhou H, Liao M, Wang F, Chen J. Effects of Minor Zn Dopants in Sn-10Bi Solder on Interfacial Reaction and Shear Properties of Solder on Ni/Au Surface Finish. Materials. 2024; 17(17):4364. https://doi.org/10.3390/ma17174364
Chicago/Turabian StyleLi, Sijin, Junxian Zhu, Huiling Zhou, Mingqing Liao, Fengjiang Wang, and Jian Chen. 2024. "Effects of Minor Zn Dopants in Sn-10Bi Solder on Interfacial Reaction and Shear Properties of Solder on Ni/Au Surface Finish" Materials 17, no. 17: 4364. https://doi.org/10.3390/ma17174364
APA StyleLi, S., Zhu, J., Zhou, H., Liao, M., Wang, F., & Chen, J. (2024). Effects of Minor Zn Dopants in Sn-10Bi Solder on Interfacial Reaction and Shear Properties of Solder on Ni/Au Surface Finish. Materials, 17(17), 4364. https://doi.org/10.3390/ma17174364