Dual-Tuned Terahertz Absorption Device Based on Vanadium Dioxide Phase Transition Properties
Abstract
:1. Introduction
2. Modelling and Structural Parameters of the Absorber
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.C.; Shkurinov, A.; Zhang, Y. Extreme terahertz science. Nat. Photonics 2017, 11, 16–18. [Google Scholar] [CrossRef]
- Semchenko, I.V.; Mikhalka, I.S.; Samofalov, A.L.; Khakhomov, S.A. Controlling the Shape of a Double DNA-like Helix as an Element of Metamaterials. Photonics 2024, 11, 788. [Google Scholar] [CrossRef]
- Sun, W.F.; Wang, X.K.; Zhang, Y. Terahertz generation from laser-induced plasma. Opto-Electron. Sci 2022, 1, 220003. [Google Scholar] [CrossRef]
- Chernomyrdin, N.V.; Musina, G.R.; Nikitin, P.V.; Dolganova, I.N.; Kucheryavenko, A.S.; Alekseeva, A.I.; Wang, Y.; Xu, D.; Shi, Q.; Tuchin, V.V.; et al. Terahertz technology in intraoperative neurodiagnostics: A review. Opto-Electron. Adv. 2023, 6, 220071. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Yan, X.Q.; Hu, Z.M. Simple ultrasonic-assisted clean graphene transfer. J. Electron. Sci. Technol. 2022, 20, 100168. [Google Scholar] [CrossRef]
- Yan, S.Q.; Zuo, Y.; Xiao, S.S.; Oxenløwe, L.K.; Ding, Y.H. Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth. Opto-Electron. Adv. 2022, 5, 210159. [Google Scholar] [CrossRef]
- Schaming, D.; Maurice, A.; Gumy, F.; Scanlon, M.D.; Jonin, C.; Girault, H.H.; Brevet, P.-F. Gold Nanoparticles at a Liquid Interface: Towards a Soft Nonlinear Metasurface. Photonics 2024, 11, 789. [Google Scholar] [CrossRef]
- Zeng, C.; Lu, H.; Mao, D.; Du, Y.Q.; Hua, H.; Zhao, W.; Zhao, J. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electron. Adv. 2022, 5, 200098. [Google Scholar] [CrossRef]
- Guan, H.; Hong, J.; Wang, X.; Jingyuan, M.; Zhang, Z.; Liang, A.; Han, X.; Dong, J.; Qiu, W.; Chen, Z.; et al. Broadband, High-Sensitivity Graphene Photodetector Based on Ferroelectric Polarization of Lithium Niobate. Adv. Opt. Mater. 2021, 9, 2100245. [Google Scholar] [CrossRef]
- Liang, S.R.; Xu, F.; Li, W.X.; Yang, W.X.; Cheng, S.B.; Yang, H.; Chen, J.; Yi, Z.; Jiang, P.P. Tunable smart mid infrared thermal control emitter based on phase change material VO2 thin film. Appl. Therm. Eng. 2023, 232, 121074. [Google Scholar] [CrossRef]
- Liu, M.; Wei, R.; Taplin, J. Terahertz Metasurfaces Exploiting the Phase Transition of Vanadium Dioxide. Materials 2023, 16, 7106. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Hippalgaonkar, K.; Yang, F.; Hong, J.; Ko, C.; Suh, J.; Liu, K.; Wang, K.; Urban, J.J.; Zhang, X.; et al. Anomalously low electronic thermal conductivity in metallic vanadium dioxide. Science 2017, 355, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Raza, M.; Li, X.; Mao, C.; Liu, F.; He, H.; Wu, W. A Polarization-Insensitive, Vanadium Dioxide-Based Dynamically Tunable Multiband Terahertz Metamaterial Absorber. Materials 2024, 17, 1757. [Google Scholar] [CrossRef]
- Landy, N.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.; Li, J.T.; Li, J.; Zheng, C.L.; Liu, J.Y.; Lin, L.; Guo, L.; Liu, W. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion. Opto-Electron. Sci. 2022, 1, 210014. [Google Scholar] [CrossRef]
- Xiong, H.; Deng, J.H.; Yang, Q.; Wang, X.; Zhang, H.Q. A metamaterial energy power detector based on electromagnetic energy harvesting technology. ACS Appl. Electron. Mater. 2024, 6, 1204–1210. [Google Scholar] [CrossRef]
- Li, W.X.; Liu, M.S.; Cheng, S.B.; Zhang, H.F.; Yang, W.X.; Yi, Z.; Zeng, Q.D.; Tang, B.; Ahmad, S.; Sun, T.Y. Polarization independent tunable bandwidth absorber based on single-layer graphene. Diam. Relat. Mater. 2024, 142, 110793. [Google Scholar] [CrossRef]
- Ma, J.; Wu, P.H.; Li, W.X.; Liang, S.R.; Shangguan, Q.Y.; Cheng, S.B.; Tian, Y.H.; Fu, J.Q.; Zhang, L.B. A five-peaks graphene absorber with multiple adjustable and high sensitivity in the far infrared band. Diam. Relat. Mater. 2023, 136, 109960. [Google Scholar] [CrossRef]
- Patel, S.K.; Sorathiya, V.; Sbeah, Z.; Lavadiya, S.; Nguyen, T.K.; Dhasarathan, V. Graphene-based tunable infrared multi band absorber. Opt. Commun. 2020, 474, 126109. [Google Scholar] [CrossRef]
- Sun, P.; You, C.; Mahigir, A.; Liu, T.; Xia, F.; Kong, W.; Veronis, G.; Dowling, J.P.; Dong, L.; Yun, M. Graphene-based dual-band inde-pendently tunable infrared absorber. Nanoscale 2018, 10, 15564–15570. [Google Scholar] [CrossRef]
- Likhon, E.H.; Khaleque, A.; Hossain, A.A.; Abeg, A.I. Switchable dual broadband tunable metamaterial THz absorber using VO2 and graphene structure. In Proceedings of the 2023 26th International Conference on Computer and Information Technology (ICCIT), Cox’s Bazar, Bangladesh, 13–15 December 2023; pp. 1–5. [Google Scholar]
- Xiong, H.; Ma, X.D.; Wang, B.X.; Zhang, H.Q. Design and analysis of an electromagnetic energy conversion device. Sens. Actuators A Phys. 2024, 366, 114972. [Google Scholar] [CrossRef]
- Liang, X.J.; Guan, H.Y.; Luo, K.W.; He, Z.G.; Liang, A.J.; Zhang, W.N.; Lin, Q.; Yang, Z.; Zhang, H.; Xu, C.; et al. Van der Waals integrated LiNbO3/WS2 for High-Performance UV-Vis-NIR Photodetection. Laser Photonics Rev. 2023, 17, 2300286. [Google Scholar] [CrossRef]
- Li, W.X.; Zhao, W.C.; Cheng, S.B.; Yang, W.X.; Yi, Z.; Li, G.F.; Zeng, L.C.; Li, H.L.; Wu, P.H.; Cai, S.S. Terahertz Selective Active Electromagnetic Absorption Film Based on Single-layer Graphene. Surf. Interfaces 2023, 40, 103042. [Google Scholar] [CrossRef]
- Zhang, T.X.; Tao, C.; Ge, S.X.; Pan, D.W.; Li, B.; Huang, W.X.; Wang, W.; Chu, L.Y. Interfaces coupling deformation mechanisms of liquid-liquid-liquid three-phase flow in a confined microchannel. Chem. Eng. J. 2022, 434, 134769. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, J.H.; Gao, S.S. Design of Multi-Band Bandstop Filters Based on Mixed Electric and Magnetic Coupling Resonators. Electronics 2024, 13, 1552. [Google Scholar] [CrossRef]
- Cao, T.; Lian, M.; Chen, X.Y.; Mao, L.B.; Liu, K.; Jia, J.; Su, Y.; Ren, H.; Zhang, S.; Xu, Y.; et al. Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials. Opto-Electron. Sci. 2022, 1, 210010. [Google Scholar] [CrossRef]
- Deng, J.H.; Xiong, H.; Yang, Q.; Wang, B.X.; Zhang, H.Q. Metasurface-based Microwave Power Detector for Polarization Angle Detection. IEEE Sens. J. 2023, 23, 22459–22465. [Google Scholar] [CrossRef]
- Li, Z.L.; Xie, M.X.; Nie, G.Z.; Wang, J.H.; Huang, L.J. Pushing Optical Virus Detection to a Single Particle through a High Q Quasi-bound State in the Continuum in an All-dielectric Metasurface. J. Phys. Chem. Lett. 2023, 14, 10762–11076. [Google Scholar] [CrossRef]
- Li, J.T.; Wang, G.C.; Yue, Z.; Liu, J.Y.; Li, J.; Zheng, C.; Zhang, Y.; Zhang, Y.; Yao, J. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization. Opto-Electron. Adv. 2022, 5, 210062. [Google Scholar] [CrossRef]
- Li, W.X.; Zhao, W.C.; Cheng, S.B.; Zhang, H.F.; Yi, Z.; Sun, T.Y.; Wu, P.H.; Zeng, Q.D.; Raza, R. Tunable Metamaterial Absorption Device based on Fabry–Perot Resonance as Temperature and Refractive Index Sensing. Opt. Lasers Eng. 2024, 181, 108368. [Google Scholar] [CrossRef]
- Luo, J. Dynamical behavior analysis and soliton solutions of the generalized Whitham–Broer–Kaup–Boussineq–Kupershmidt equations. Results Phys. 2024, 107667. [Google Scholar] [CrossRef]
- Liang, S.R.; Cheng, S.B.; Zhang, H.F.; Yang, W.X.; Yi, Z.; Zeng, Q.D.; Tang, B.; Wu, P.; Ahmad, S.; Sun, T. Structural color tunable intelligent mid-infrared thermal control emitter. Ceram. Int. 2024, 50, 23611–23620. [Google Scholar] [CrossRef]
- Fu, R.; Chen, K.X.; Li, Z.L.; Yu, S.H.; Zheng, G.X. Metasurface-based nanoprinting: Principle, design and advances. Opto-Electron. Sci. 2022, 1, 220011. [Google Scholar] [CrossRef]
- Kurland, Z.A.; Goyette, T. A Novel Electrophoretic Technique to Improve Metasurface Sensing of Low Concentration Particles in Solution. Sensors 2023, 23, 8359. [Google Scholar] [CrossRef] [PubMed]
- Ashalley, E.; Ma, C.P.; Zhu, Y.S.; Xu, H.X.; Yu, P.; Wang, Z.M. Recent progress in chiral absorptive metamaterials. J. Electron. Sci. Technol. 2021, 19, 100098. [Google Scholar] [CrossRef]
- Zhang, Y.; Pu, M.; Jin, J.; Lu, X.; Guo, Y.; Cai, J.; Zhang, F.; Ha, Y.; He, Q.; Xu, M.; et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron. Adv. 2022, 5, 220058. [Google Scholar] [CrossRef]
- Li, W.X.; Liu, Y.H.; Ling, L.; Sheng, Z.X.; Cheng, S.B.; Yi, Z.; Wu, P.H.; Zeng, Q.D.; Tang, B.; Ahmad, S. The tunable absorber films of grating structure of AlCuFe quasicrystal with high Q and refractive index sensitivity. Surf. Interfaces 2024, 48, 104248. [Google Scholar] [CrossRef]
- Shui, T.; Chen, X.M.; Yang, W.X. Coherent control of spatial and angular Goos-Hänchen shifts with spontaneously generated coherence and incoherent pumping. Appl. Opt. 2022, 61, 10072–10079. [Google Scholar] [CrossRef] [PubMed]
- Shangguan, Q.; Zhao, Y.; Song, Z.; Wang, J.; Yang, H.; Chen, J.; Liu, C.; Cheng, S.; Yang, W.; Yi, Z. High sensitivity active adjustable graphene absorber for refractive index sensing applications. Diam. Relat. Mater. 2022, 128, 109273. [Google Scholar] [CrossRef]
- Liang, S.; Xu, F.; Yang, H.; Cheng, S.; Yang, W.; Yi, Z.; Song, Q.; Wu, P.; Chen, J.; Tang, C. Ultra long infrared metamaterial absorber with high absorption and broad band based on nano cross surrounding. Opt. Laser Technol. 2023, 158, 108789. [Google Scholar] [CrossRef]
- Guddala, S.; Kumar, R.; Ramakrishna, S.A. Thermally induced nonlinear optical absorption in metamaterial perfect absorbers. Appl. Phys. Lett. 2015, 106, 111901. [Google Scholar] [CrossRef]
- Guddala, S.; Ramakrishna, S.A. Optical limiting by nonlinear tuning of resonance in metamaterial absorbers. Opt. Lett. 2016, 41, 5150–5153. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Jing, C.; Wang, M.K.; Zhang, S.J.; Zhang, Z.Y.; Liu, Y. Measurement and characterization of microwave interaction between integrated distributed feedback laser diode and electro-absorption modulator. J. Electron. Sci. Technol. 2022, 20, 100179. [Google Scholar] [CrossRef]
- Guddala, S.; Rao, D.N.; Ramakrishna, S.A. Resonant enhancement of Raman scattering in metamaterials with hybrid electromagnetic and plasmonic resonances. J. Opt. 2016, 18, 065104. [Google Scholar] [CrossRef]
- Naorem, R.; Dayal, G.; Ramakrishna, S.A. Thermally switchable metamaterial absorber with a VO2 ground plane. Opt. Commun. 2015, 346, 154–157. [Google Scholar] [CrossRef]
- Asl, A.B.; Pourkhalil, D.; Rostami, A.; Mirtaghioglu, H. A perfect electrically tunable graphene-based metamaterial absorber. J. Comput. Electron. 2021, 20, 864–872. [Google Scholar] [CrossRef]
- Zhu, X.Z.; Cheng, Y.Z.; Fan, J.P.; Chen, F.; Luo, H.; Wu, L. Switchable efficiency terahertz anomalous refraction and focusing based on graphene metasurface. Diam. Relat. Mater. 2022, 121, 108743. [Google Scholar] [CrossRef]
- Thareja, V.; Kang, J.H.; Yuan, H.; Kaveh, M.M.; Harold, Y.H.; Cui, Y.; Pieter, G.K.; Mark, L.B. Electrically Tunable Coherent Optical Absorption in Graphene with Ion Gel. Nano Lett. 2015, 15, 1570–1576. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yi, Y.; Yang, H.; Cheng, S.; Yang, W.X.; Zhang, H.; Yi, Z.; Yi, Y.; Li, H. Active Tunable Terahertz Band-width Absorber Based on single layer Graphene. Commun. Theor. Phys. 2023, 75, 045503. [Google Scholar] [CrossRef]
- Angelini, M.; Zagaglia, L.; Marabelli, F.; Floris, F. Convergence and Performance Analysis of a Particle Swarm Optimization Algorithm for Optical Tuning of Gold Nanohole Arrays. Materials 2024, 17, 807. [Google Scholar] [CrossRef]
- Li, X.; Chen, Q.M.; Zhang, X.; Zhao, R.Z.; Xiao, S.M.; Wang, Y.; Huang, L. Time-sequential color code division multiplexing holographic display with metasurface. Opto-Electron. Adv. 2023, 6, 220060. [Google Scholar] [CrossRef]
- Fan, J.X.; Li, Z.L.; Xue, Z.Q.; Xing, H.Y.; Lu, D.; Xu, G.; Gu, J.; Han, J.; Cong, L. Hybrid bound states in the continuum in terahertz metasurfaces. Opto-Electron. Sci. 2023, 2, 230006. [Google Scholar] [CrossRef]
- Ki, Y.G.; Jeon, H.W.; Kim, S.J. Design of Metasurface-Based Photodetector with High-Quality Factor. Electronics 2024, 13, 753. [Google Scholar] [CrossRef]
- Ha, T.D. Effects of material and dimension on TCF, frequency, and Q of radial contour mode AlN-on-Si MEMS resonators. J. Electron. Sci. Technol. 2021, 19, 100120. [Google Scholar] [CrossRef]
- Gigli, C.; Leo, G. All-dielectric χ(2) metasurfaces: Recent progress. Opto-Electron. Adv. 2022, 5, 210093. [Google Scholar] [CrossRef]
- Manio, G.A.V.; Kouchi, M.T.; Dacuycuy, S.J.; Ohta, A.T.; Shiroma, W.A. Rapid Prototyping of Anomalous Reflective Metasurfaces Using Spray-Coated Liquid Metal. Materials 2024, 17, 2003. [Google Scholar] [CrossRef]
- Huang, Y.J.; Xiao, T.X.; Chen, S.; Xie, Z.W.; Zheng, J.; Zhu, J.; Su, Y.; Chen, W.; Liu, K.; Tang, M.; et al. All-optical controlled-NOT logic gate achieving directional asymmetric transmission based on metasurface doublet. Opto-Electron. Adv. 2023, 6, 220073. [Google Scholar] [CrossRef]
- Lee, C.; Kim, K.; Park, P.; Jang, Y.; Jo, J.; Choi, T.; Lee, H. Ultra-Wideband Electromagnetic Composite Absorber Based on Pixelated Metasurface with Optimization Algorithm. Materials 2023, 16, 5916. [Google Scholar] [CrossRef]
- Krasikov, S.; Tranter, A.; Bogdanov, A.; Kivshar, Y. Intelligent metaphotonics empowered by machine learning. Opto-Electron. Adv. 2022, 5, 210147. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, X.K.; Liu, S.T.; Zhang, Y. Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band. Opto-Electron. Adv. 2023, 6, 220012. [Google Scholar] [CrossRef]
- Deng, Q.; Du, T.; Gomaa, H.; Cheng, Y.; An, C. Methods of Manipulation of Acoustic Radiation Using Metamaterials with a Focus on Polymers: Design and Mechanism Insights. Polymers 2024, 16, 2405. [Google Scholar] [CrossRef]
- Qi, Y.P.; Shi, Q.; Zhao, S.Y.; Zhou, Z.H.; Wang, X.X. Intensity controlled and multi-multiplexed full-space achromatic metalens and modulated orbital angular momentum. Opt. Express 2024, 32, 3194. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.-H.; Kim, H. A Waveguide Inline Binary Metasurface for Wavelength-Selective Transmission and Standing Wave Focusing. Nanomaterials 2024, 14, 367. [Google Scholar] [CrossRef]
- Singh, K.; Esselle, K. Suppressing Sidelobes in Metasurface-Based Antennas Using a Cross-Entropy Method Variant and Full Wave Electromagnetic Simulations. Electronics 2023, 12, 4229. [Google Scholar] [CrossRef]
- Gao, H.; Fan, X.H.; Wang, Y.X.; Liu, Y.C.; Wang, X.G.; Xu, K.; Deng, L.; Zeng, C.; Li, T.; Xia, J.; et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron. Sci. 2023, 2, 220026. [Google Scholar] [CrossRef]
- Dong, Y.; Yu, D.; Li, G. Terahertz metamaterial modulator based on phase change material VO2. Symmetry 2021, 13, 2230. [Google Scholar] [CrossRef]
- Wang, D.; Cai, B.; Yang, L.L.; Wu, L.; Cheng, Y.Z.; Chen, F.; Luo, H.; Li, X.C. Transmission/reflection mode switchable ultra-broadband terahertz vanadium dioxide (VO2) metasurface filter for electromagnetic shielding application. Surf. Interfaces 2024, 49, 104403. [Google Scholar] [CrossRef]
- Zhou, R.; Jiang, T.; Peng, Z. Tunable broadband terahertz absorber based on graphene metamaterials and VO2. Opt. Mater. 2021, 114, 110915. [Google Scholar] [CrossRef]
- Ding, Z.; Su, W.; Wu, H. Ultra-broadband tunable terahertz absorber based on graphene metasurface with multi-square rings. Mater. Sci. Semicond. Process. 2023, 163, 107557. [Google Scholar] [CrossRef]
Parameter | a | d | L | w | p | h | H1 |
---|---|---|---|---|---|---|---|
Value/μm | 8 | 10 | 30 | 0.6 | 29.2 | 13 | 0.5 |
Reference | Base | Metasurface | Relative Bandwidth (%) 1 Metallic State | Relative Bandwidth (%) 1 Insulated State | Number of Absorber Layers |
---|---|---|---|---|---|
[67] | VO2 | VO2 | 82.5% | 0 | 4 |
[68] | VO2/Copper | VO2/Copper | 112% | 0 | 6 |
[69] | VO2 | Graphene | 53% | 0 | 3 |
[70] | Au | Graphene | 54% | 0 | 3 |
Proposed | VO2 | Graphene | 102% | 22% | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, R.; Yi, Y.; Song, Q.; Yi, Z.; Yi, Y.; Cheng, S.; Zhang, J.; Tang, C.; Sun, T.; Zeng, Q. Dual-Tuned Terahertz Absorption Device Based on Vanadium Dioxide Phase Transition Properties. Materials 2024, 17, 4287. https://doi.org/10.3390/ma17174287
Zheng R, Yi Y, Song Q, Yi Z, Yi Y, Cheng S, Zhang J, Tang C, Sun T, Zeng Q. Dual-Tuned Terahertz Absorption Device Based on Vanadium Dioxide Phase Transition Properties. Materials. 2024; 17(17):4287. https://doi.org/10.3390/ma17174287
Chicago/Turabian StyleZheng, Ruyuan, Yingting Yi, Qianju Song, Zao Yi, Yougen Yi, Shubo Cheng, Jianguo Zhang, Chaojun Tang, Tangyou Sun, and Qingdong Zeng. 2024. "Dual-Tuned Terahertz Absorption Device Based on Vanadium Dioxide Phase Transition Properties" Materials 17, no. 17: 4287. https://doi.org/10.3390/ma17174287
APA StyleZheng, R., Yi, Y., Song, Q., Yi, Z., Yi, Y., Cheng, S., Zhang, J., Tang, C., Sun, T., & Zeng, Q. (2024). Dual-Tuned Terahertz Absorption Device Based on Vanadium Dioxide Phase Transition Properties. Materials, 17(17), 4287. https://doi.org/10.3390/ma17174287