Thermal Relaxation in Janus Transition Metal Dichalcogenide Bilayers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Pristine and Janus Spatially Homogeneous TMDs
3.2. JTMDs Lateral Heterostructures
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akinwande, D.; Brennan, C.J.; Bunch, J.S.; Egberts, P.; Felts, J.R.; Gao, H.; Huang, R.; Kim, J.-S.S.; Li, T.; Li, Y.; et al. A Review on Mechanics and Mechanical Properties of 2D Materials—Graphene and Beyond. Extrem. Mech. Lett. 2017, 13, 42–77. [Google Scholar] [CrossRef]
- Jie, W.; Yang, Z.; Bai, G.; Hao, J. Luminescence in 2D Materials and van Der Waals Heterostructures. Adv. Opt. Mater. 2018, 6, 1701296. [Google Scholar] [CrossRef]
- Huang, S.; Liu, Y.; Zhao, Y.; Ren, Z.; Guo, C.F. Flexible Electronics: Stretchable Electrodes and Their Future. Adv. Funct. Mater. 2018, 29, 1805924. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Anasori, B. The Rise of MXenes. ACS Nano 2019, 13, 8491–8494. [Google Scholar] [CrossRef]
- Blundo, E.; Felici, M.; Yildirim, T.; Pettinari, G.; Tedeschi, D.; Miriametro, A.; Liu, B.; Ma, W.; Lu, Y.; Polimeni, A. Evidence of the Direct-to-Indirect Band Gap Transition in Strained Two-Dimensional WS2, MoS2, and WSe2. Phys. Rev. Res. 2020, 2, 12024. [Google Scholar] [CrossRef]
- Kalosakas, G.; Lathiotakis, N.N.; Papagelis, K. Width Dependent Elastic Properties of Graphene Nanoribbons. Materials 2021, 14, 5042. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, V.; Mensah, R.A.; Babu, K.; Gawusu, S.; Chanda, A.; Tu, Y.; Neisiany, R.E.; Försth, M.; Sas, G.; Das, O. A Review of the Synthesis, Properties, and Applications of 2D Materials. Part. Part. Syst. Charact. 2022, 39, 2200031. [Google Scholar] [CrossRef]
- Kalosakas, G.; Lathiotakis, N.N.; Papagelis, K. Uniaxially Strained Graphene: Structural Characteristics and G-Mode Splitting. Materials 2022, 15, 67. [Google Scholar] [CrossRef]
- Sgouros, A.P.; Drougkas, E.; Kallivokas, S.V.; Theodorou, D.N. Buckling Kinetics of Graphene Membranes under Uniaxial Compression. Phys. Rev. E 2024, 109, 23001. [Google Scholar] [CrossRef]
- Ko, T.-J.; Wang, M.; Yoo, C.; Okogbue, E.; Islam, M.A.; Li, H.; Shawkat, M.S.; Han, S.S.; Oh, K.H.; Jung, Y. Large-Area 2D TMD Layers for Mechanically Reconfigurable Electronic Devices. J. Phys. D Appl. Phys. 2020, 53, 313002. [Google Scholar] [CrossRef]
- Luo, Y.K.; Xu, J.; Zhu, T.; Wu, G.; McCormick, E.J.; Zhan, W.; Neupane, M.R.; Kawakami, R.K. Opto-Valleytronic Spin Injection in Monolayer MoS2/Few-Layer Graphene Hybrid Spin Valves. Nano Lett. 2017, 17, 3877–3883. [Google Scholar] [CrossRef]
- Anasori, B.; Gogotsi, Y. 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications, 1st ed.; Springer: Cham, Switzerland, 2019; ISBN 978-3-030-19026-2. [Google Scholar]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, D.; Shuai, Z. Indirect-to-Direct Band Gap Crossover in Few-Layer Transition Metal Dichalcogenides: A Theoretical Prediction. J. Phys. Chem. C 2016, 120, 21866–21870. [Google Scholar] [CrossRef]
- Hsu, C.; Frisenda, R.; Schmidt, R.; Arora, A.; de Vasconcellos, S.M.; Bratschitsch, R.; van der Zant, H.S.J.; Castellanos-Gomez, A. Thickness-Dependent Refractive Index of 1L, 2L, and 3L MoS2, MoSe2, WS2, and WSe2. Adv. Opt. Mater. 2019, 7, 1900239. [Google Scholar] [CrossRef]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xi, J.; Dumcenco, D.O.; Liu, Z.; Suenaga, K.; Wang, D.; Shuai, Z.; Huang, Y.-S.; Xie, L. Tunable Band Gap Photoluminescence from Atomically Thin Transition-Metal Dichalcogenide Alloys. ACS Nano 2013, 7, 4610–4616. [Google Scholar] [CrossRef]
- Li, H.; Duan, X.; Wu, X.; Zhuang, X.; Zhou, H.; Zhang, Q.; Zhu, X.; Hu, W.; Ren, P.; Guo, P.; et al. Growth of Alloy MoS2xSe2(1−x) Nanosheets with Fully Tunable Chemical Compositions and Optical Properties. J. Am. Chem. Soc. 2014, 136, 3756–3759. [Google Scholar] [CrossRef]
- Duan, X.; Wang, C.; Fan, Z.; Hao, G.; Kou, L.; Halim, U.; Li, H.; Wu, X.; Wang, Y.; Jiang, J.; et al. Synthesis of WS2xSe2−2x Alloy Nanosheets with Composition-Tunable Electronic Properties. Nano Lett. 2016, 16, 264–269. [Google Scholar] [CrossRef]
- Huang, C.; Wu, S.; Sanchez, A.M.; Peters, J.J.P.; Beanland, R.; Ross, J.S.; Rivera, P.; Yao, W.; Cobden, D.H.; Xu, X. Lateral Heterojunctions within Monolayer MoSe2–WSe2 Semiconductors. Nat. Mater. 2014, 13, 1096–1101. [Google Scholar] [CrossRef]
- Pelaez-Fernandez, M.; Lin, Y.C.; Suenaga, K.; Arenal, R. Optoelectronic Properties of Atomically Thin MoxW(1−x)S2 Nanoflakes Probed by Spatially-Resolved Monochromated Eels. Nanomaterials 2021, 11, 3218. [Google Scholar] [CrossRef]
- Deng, S.; Li, L.; Li, M. Stability of Direct Band Gap under Mechanical Strains for Monolayer MoS2, MoSe2, WS2 and WSe2. Phys. E Low-Dimens. Syst. Nanostruct. 2018, 101, 44–49. [Google Scholar] [CrossRef]
- Chang, C.-H.; Fan, X.; Lin, S.-H.; Kuo, J.-L. Orbital Analysis of Electronic Structure and Phonon Dispersion in MoS2, MoSe2, WS2, and WSe2 Monolayers under Strain. Phys. Rev. B 2013, 88, 195420. [Google Scholar] [CrossRef]
- Stergiou, A.; Tagmatarchis, N. Molecular Functionalization of Two-Dimensional MoS2 Nanosheets. Chem.-Eur. J. 2018, 24, 18246–18257. [Google Scholar] [CrossRef] [PubMed]
- Sideri, I.K.; Arenal, R.; Tagmatarchis, N. Covalently Functionalized MoS2 with Dithiolenes. ACS Mater. Lett. 2020, 2, 832–837. [Google Scholar] [CrossRef]
- Vallan, L.; Canton-Vitoria, R.; Gobeze, H.B.; Jang, Y.; Arenal, R.; Benito, A.M.; Maser, W.K.; D’Souza, F.; Tagmatarchis, N. Interfacing Transition Metal Dichalcogenides with Carbon Nanodots for Managing Photoinduced Energy and Charge-Transfer Processes. J. Am. Chem. Soc. 2018, 140, 13488–13496. [Google Scholar] [CrossRef]
- Ross, J.S.; Wu, S.; Yu, H.; Ghimire, N.J.; Jones, A.M.; Aivazian, G.; Yan, J.; Mandrus, D.G.; Xiao, D.; Yao, W.; et al. Electrical Control of Neutral and Charged Excitons in a Monolayer Semiconductor. Nat. Commun. 2013, 4, 1474. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.F.; McGill, K.L.; Park, J.; McEuen, P.L. The Valley Hall Effect in MoS2 Transistors. Science 2014, 344, 1489–1492. [Google Scholar] [CrossRef]
- Chang, Y.-H.; Zhang, W.; Zhu, Y.; Han, Y.; Pu, J.; Chang, J.-K.; Hsu, W.-T.; Huang, J.-K.; Hsu, C.-L.; Chiu, M.-H.; et al. Monolayer MoSe2 Grown by Chemical Vapor Deposition for Fast Photodetection. ACS Nano 2014, 8, 8582–8590. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Liu, Q.; Gan, X.; Hu, M.; Zhang, T.; Li, C.; Kang, F.; Terrones, M.; Lv, R. Ultrasensitive Pressure Detection of Few-Layer MoS2. Adv. Mater. 2017, 29, 1603266. [Google Scholar] [CrossRef]
- Zhu, C.; Zeng, Z.; Li, H.; Li, F.; Fan, C.; Zhang, H. Single-Layer MoS2-Based Nanoprobes for Homogeneous Detection of Biomolecules. J. Am. Chem. Soc. 2013, 135, 5998–6001. [Google Scholar] [CrossRef]
- Loan, P.T.K.; Zhang, W.; Lin, C.-T.; Wei, K.-H.; Li, L.-J.; Chen, C.-H. Graphene/MoS2 Heterostructures for Ultrasensitive Detection of DNA Hybridisation. Adv. Mater. 2014, 26, 4838–4844. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, B.; Zhu, C.; Zhang, X.; Tan, C.; Li, H.; Chen, B.; Yang, J.; Chen, J.; Huang, Y.; et al. Single-Layer Transition Metal Dichalcogenide Nanosheet-Based Nanosensors for Rapid, Sensitive, and Multiplexed Detection of DNA. Adv. Mater. 2015, 27, 935–939. [Google Scholar] [CrossRef]
- Cheng, L.; Yuan, C.; Shen, S.; Yi, X.; Gong, H.; Yang, K.; Liu, Z. Bottom-Up Synthesis of Metal-Ion-Doped WS2 Nanoflakes for Cancer Theranostics. ACS Nano 2015, 9, 11090–11101. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y.; Li, X.; Gao, W.; Zhang, L.; Liu, J.; Zheng, Y.; Chen, H.; Shi, J. Injectable 2D MoS2-Integrated Drug Delivering Implant for Highly Efficient NIR-Triggered Synergistic Tumor Hyperthermia. Adv. Mater. 2015, 27, 7117–7122. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Zhang, Q.; Zhao, X.; Liu, M.; Wee, A.T.S. Defect Engineering of Two-Dimensional Transition-Metal Dichalcogenides: Applications, Challenges, and Opportunities. ACS Nano 2021, 15, 2165–2181. [Google Scholar] [CrossRef] [PubMed]
- Jariwala, D.; Howell, S.L.; Chen, K.-S.; Kang, J.; Sangwan, V.K.; Filippone, S.A.; Turrisi, R.; Marks, T.J.; Lauhon, L.J.; Hersam, M.C. Hybrid, Gate-Tunable, van Der Waals p–n Heterojunctions from Pentacene and MoS2. Nano Lett. 2016, 16, 497–503. [Google Scholar] [CrossRef]
- Ross, J.S.; Klement, P.; Jones, A.M.; Ghimire, N.J.; Yan, J.; Mandrus, D.G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W.; et al. Electrically Tunable Excitonic Light-Emitting Diodes Based on Monolayer WSe2 p-n Junctions. Nat. Nanotechnol. 2014, 9, 268–272. [Google Scholar] [CrossRef]
- Yang, W.; Shang, J.; Wang, J.; Shen, X.; Cao, B.; Peimyoo, N.; Zou, C.; Chen, Y.; Wang, Y.; Cong, C.; et al. Electrically Tunable Valley-Light Emitting Diode (VLED) Based on CVD-Grown Monolayer WS2. Nano Lett. 2016, 16, 1560–1567. [Google Scholar] [CrossRef]
- Lin, S.; Li, X.; Wang, P.; Xu, Z.; Zhang, S.; Zhong, H.; Wu, Z.; Xu, W.; Chen, H. Interface Designed MoS2/GaAs Heterostructure Solar Cell with Sandwich Stacked Hexagonal Boron Nitride. Sci. Rep. 2015, 5, 15103. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, N.; Li, D.; Zhu, J. Thermal Properties of Two Dimensional Layered Materials. Adv. Funct. Mater. 2017, 27, 1604134. [Google Scholar] [CrossRef]
- Jang, C.W.; Lee, W.J.; Kim, J.K.; Park, S.M.; Kim, S.; Choi, S.-H. Growth of Two-Dimensional Janus MoSSe by a Single in Situ Process without Initial or Follow-up Treatments. NPG Asia Mater. 2022, 14, 15. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, S.; Kholmanov, I.; Dong, L.; Er, D.; Chen, W.; Guo, H.; Jin, Z.; Shenoy, V.B.; Shi, L.; et al. Janus Monolayer Transition-Metal Dichalcogenides. ACS Nano 2017, 11, 8192–8198. [Google Scholar] [CrossRef]
- Tang, X.; Kou, L. 2D Janus Transition Metal Dichalcogenides: Properties and Applications. Phys. Status Solidi Basic Res. 2022, 259, 2100562. [Google Scholar] [CrossRef]
- Li, R.; Cheng, Y.; Huang, W. Recent Progress of Janus 2D Transition Metal Chalcogenides: From Theory to Experiments. Small 2018, 14, 1802091. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, D.B.; Turgut, G.; Qin, Y.; Sayyad, M.Y.; Hajra, D.; Howell, M.; Liu, L.; Yang, S.; Patoary, N.H.; Li, H.; et al. Room-Temperature Synthesis of 2D Janus Crystals and Their Heterostructures. Adv. Mater. 2020, 32, 2006320. [Google Scholar] [CrossRef]
- De Gennes, P.-G. Soft Matter (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 1992, 31, 842–845. [Google Scholar] [CrossRef]
- Lu, A.-Y.; Zhu, H.; Xiao, J.; Chuu, C.-P.; Han, Y.; Chiu, M.-H.; Cheng, C.-C.; Yang, C.-W.; Wei, K.-H.; Yang, Y.; et al. Janus Monolayers of Transition Metal Dichalcogenides. Nat. Nanotechnol. 2017, 12, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hong, Y.; Wang, X.; Yue, Y.; Xie, D.; Jiang, J.; Xiong, Y.; Li, P. Phonon Thermal Properties of Transition-Metal Dichalcogenides MoS2 and MoSe2 Heterostructure. J. Phys. Chem. C 2017, 121, 10336–10344. [Google Scholar] [CrossRef]
- Konstantopoulou, A.; Sgouros, A.P.; Sigalas, M.M. Computational Study of Phononic Resonators and Waveguides in Monolayer Transition Metal Dichalcogenides. Phys. Chem. Chem. Phys. 2017, 19, 8082–8090. [Google Scholar] [CrossRef]
- Jin, C.; Ma, E.Y.; Karni, O.; Regan, E.C.; Wang, F.; Heinz, T.F. Ultrafast Dynamics in van Der Waals Heterostructures. Nat. Nanotechnol. 2018, 13, 994–1003. [Google Scholar] [CrossRef]
- Sgouros, A.P.; Konstantopoulou, A.; Kalosakas, G.; Sigalas, M.M. Temperature Profiles and Thermal Conductivities of Nanostructured Transition Metal Dichalcogenides. Int. J. Heat Mass Transf. 2019, 140, 579–586. [Google Scholar] [CrossRef]
- Zhang, W.; Srivastava, A.; Li, X.; Zhang, L. Chiral Phonons in the Indirect Optical Transition of a MoS2/WS2 Heterostructure. Phys. Rev. B 2020, 102, 174301. [Google Scholar] [CrossRef]
- Parzefall, P.; Holler, J.; Scheuck, M.; Beer, A.; Lin, K.-Q.; Peng, B.; Monserrat, B.; Nagler, P.; Kempf, M.; Korn, T.; et al. Moiré Phonons in Twisted MoSe2–WSe2 Heterobilayers and Their Correlation with Interlayer Excitons. 2D Materials 2021, 8, 35030. [Google Scholar] [CrossRef]
- Kanistras, N.; Sgouros, A.P.; Kalosakas, G.; Sigalas, M.M. Delayed Thermal Relaxation in Lateral Heterostructures of Transition-Metal Dichalcogenides. J. Phys. Chem. C 2022, 126, 6815–6824. [Google Scholar] [CrossRef]
- Bharadwaj, S.; Ramasubramaniam, A.; Ram-Mohan, L.R. Lateral Transition-Metal Dichalcogenide Heterostructures for High Efficiency Thermoelectric Devices. Nanoscale 2022, 14, 11750–11759. [Google Scholar] [CrossRef]
- Miao, T.; Xiang, M.; Chen, D.; An, M.; Ma, W. Thermal Transport Characteristics of Two-Dimensional t-PdTe2 and Its Janus Structures. Int. J. Heat Mass Transf. 2022, 183, 122099. [Google Scholar] [CrossRef]
- Lindsay, L.; Hua, C.; Ruan, X.L.; Lee, S. Survey of Ab Initio Phonon Thermal Transport. Mater. Today Phys. 2018, 7, 106–120. [Google Scholar] [CrossRef]
- Seyf, H.R.; Gordiz, K.; DeAngelis, F.; Henry, A. Using Green-Kubo Modal Analysis (GKMA) and Interface Conductance Modal Analysis (ICMA) to Study Phonon Transport with Molecular Dynamics. J. Appl. Phys. 2019, 125, 81101. [Google Scholar] [CrossRef]
- Hong, Y.; Zhang, J.; Zeng, X.C. Thermal Conductivity of Monolayer MoSe2 and MoS2. J. Phys. Chem. C 2016, 120, 26067–26075. [Google Scholar] [CrossRef]
- Varshney, V.; Patnaik, S.S.; Muratore, C.; Roy, A.K.; Voevodin, A.A.; Farmer, B.L. MD Simulations of Molybdenum Disulphide (MoS2): Force-Field Parameterization and Thermal Transport Behavior. Comput. Mater. Sci. 2010, 48, 101–108. [Google Scholar] [CrossRef]
- Sgouros, A.P.; Neupane, M.R.; Sigalas, M.M.; Aravantinos-Zafiris, N.; Lake, R.K. Nanoscale Phononic Interconnects in THz Frequencies. Phys. Chem. Chem. Phys. 2014, 16, 23355–23364. [Google Scholar] [CrossRef]
- Cavallini, M.; Gentili, D. Atomic Vacancies in Transition Metal Dichalcogenides: Properties, Fabrication, and Limits. Chempluschem 2022, 87, e202100562. [Google Scholar] [CrossRef]
- Ding, Z.; Pei, Q.-X.; Jiang, J.-W.; Zhang, Y.-W. Manipulating the Thermal Conductivity of Monolayer MoS2 via Lattice Defect and Strain Engineering. J. Phys. Chem. C 2015, 119, 16358–16365. [Google Scholar] [CrossRef]
- Liu, H.; Yang, L.; Zhao, Y.; Sun, S.; Wei, X. Exploring Optoelectronic and Thermal Characteristics of Janus MoSeTe and WSeTe Monolayers under Mechanical Strain. Mater. Today Commun. 2024, 40, 109570. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Y.-X.; Gao, G.; Xu, K.; Shao, H. Theoretical Investigations of Janus WSeTe Monolayer and Related van Der Waals Heterostructures with Promising Thermoelectric Performance. Appl. Surf. Sci. 2022, 593, 153402. [Google Scholar] [CrossRef]
- Kohlrausch, R. Ueber Das Dellmann’sche Elektrometer. Ann. Phys. 1847, 148, 353–405. [Google Scholar] [CrossRef]
- Tsironis, G.P.; Aubry, S. Slow Relaxation Phenomena Induced by Breathers in Nonlinear Lattices. Phys. Rev. Lett. 1996, 77, 5225–5228. [Google Scholar] [CrossRef]
- Kalosakas, G.; Rasmussen, K.O.; Bishop, A.R. Non-Exponential Decay of Base-Pair Opening Fluctuations in DNA. Chem. Phys. Lett. 2006, 432, 291–295. [Google Scholar] [CrossRef]
- Krylow, S.; Hernandez, F.V.; Bauerhenne, B.; Garcia, M.E. Ultrafast Structural Relaxation Dynamics of Laser-Excited Graphene: Ab Initio Molecular Dynamics Simulations Including Electron-Phonon Interactions. Phys. Rev. B 2020, 101, 205428. [Google Scholar] [CrossRef]
- Ngai, K.L. Dynamic and Thermodynamic Properties of Glass-Forming Substances. J. Non-Cryst. Solids 2000, 275, 7–51. [Google Scholar] [CrossRef]
- Lunkenheimer, P.; Schneider, U.; Brand, R.; Loid, A. Glassy Dynamics. Contemp. Phys. 2000, 41, 15–36. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, Y.; Ouyang, Y.; Chen, Y. A Systematic Investigation of Thermal Conductivities of Transition Metal Dichalcogenides. Int. J. Heat Mass Transf. 2017, 108, 417–422. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, D.; Li, Y.; Lee, G.H.; Cui, X.; Chenet, D.; You, Y.; Heinz, T.F.; Hone, J.C. Measurement of Lateral and Interfacial Thermal Conductivity of Single- and Bilayer MoS2 and MoSe2 Using Refined Optothermal Raman Technique. ACS Appl. Mater. Interfaces 2015, 7, 25923–25929. [Google Scholar] [CrossRef]
- Swope, W.C.; Andersen, H.C.; Berens, P.H.; Wilson, K.R. A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters. J. Chem. Phys. 1982, 76, 637–649. [Google Scholar] [CrossRef]
- In ’T Veld, P.J.; Ismail, A.E.; Grest, G.S. Application of Ewald Summations to Long-Range Dispersion Forces. J. Chem. Phys. 2007, 127, 144711. [Google Scholar] [CrossRef]
- Hockney, R.W.; Eastwood, J.W. Computer Simulation Using Particles; Hilger, A., Ed.; CRC Press: Bristol, UK, 1988; ISBN 9780852743928. [Google Scholar]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in ’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Nosé, S. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef]
- Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant Pressure Molecular Dynamics Algorithms. J. Chem. Phys. 1994, 101, 4177–4189. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Kuckir, I. Photopea. Available online: https://www.photopea.com/ (accessed on 16 July 2024).
- Sanders, J. Veusz-3.6.2. Available online: https://veusz.github.io/ (accessed on 16 July 2024).
- Kuzmin, A.V.; Yurkov, M.M. Thermal Conductivity Coefficient UO2 of Theoretical Density and Regular Stoichiometry. MATEC Web Conf. 2017, 92, 01050. [Google Scholar] [CrossRef]
- Qiao, H.; Dumur, É.; Andersson, G.; Yan, H.; Chou, M.-H.; Grebel, J.; Conner, C.R.; Joshi, Y.J.; Miller, J.M.; Povey, R.G.; et al. Splitting Phonons: Building a Platform for Linear Mechanical Quantum Computing. Science 2023, 380, 1030–1033. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sgouros, A.P.; Michos, F.I.; Sigalas, M.M.; Kalosakas, G. Thermal Relaxation in Janus Transition Metal Dichalcogenide Bilayers. Materials 2024, 17, 4200. https://doi.org/10.3390/ma17174200
Sgouros AP, Michos FI, Sigalas MM, Kalosakas G. Thermal Relaxation in Janus Transition Metal Dichalcogenide Bilayers. Materials. 2024; 17(17):4200. https://doi.org/10.3390/ma17174200
Chicago/Turabian StyleSgouros, Aristotelis P., Fotios I. Michos, Michail M. Sigalas, and George Kalosakas. 2024. "Thermal Relaxation in Janus Transition Metal Dichalcogenide Bilayers" Materials 17, no. 17: 4200. https://doi.org/10.3390/ma17174200
APA StyleSgouros, A. P., Michos, F. I., Sigalas, M. M., & Kalosakas, G. (2024). Thermal Relaxation in Janus Transition Metal Dichalcogenide Bilayers. Materials, 17(17), 4200. https://doi.org/10.3390/ma17174200