TaF4: A Novel Two-Dimensional Antiferromagnetic Material with a High Néel Temperature Investigated Using First-Principles Calculations
Abstract
1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jungwirth, T.; Marti, X.; Wadley, P.; Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 2016, 11, 231. [Google Scholar] [CrossRef] [PubMed]
- Železný, J.; Wadley, P.; Olejník, K.; Hoffmann, A.; Ohno, H. Spin transport and spin torque in antiferromagnetic devices. Nat. Phys. 2018, 14, 220. [Google Scholar] [CrossRef]
- Chen, H.; Liu, L.; Zhou, X.; Meng, Z.; Wang, X.; Duan, Z.; Zhao, G.; Yan, H.; Qin, P.; Liu, Z. Emerging Antiferromagnets for Spintronics. Adv. Mater. 2024, 36, 2310379. [Google Scholar] [CrossRef] [PubMed]
- Araujo, R.d.M.T.; Zarpellon, J.; Mosca, D.H. Unveiling ferromagnetism and antiferromagnetism in two dimensions at room temperature. J. Phys. D Appl. Phys. 2022, 55, 283003. [Google Scholar] [CrossRef]
- Hao, L.; Meyers, D.; Suwa, H.; Yang, J.; Frederick, C.; Dasa, T.R.; Fabbris, G.; Horak, L.; Kriegner, D.; Choi, Y. Giant magnetic response of a two-dimensional antiferromagnet. Nat. Phys. 2018, 14, 806. [Google Scholar] [CrossRef]
- Ke, J.; Yang, M.; Xia, W.; Zhu, H.; Liu, C.; Chen, R.; Dong, C.; Liu, W.; Shi, M.; Guo, Y. Magnetic and magneto-transport studies of two-dimensional ferromagnetic compound Fe3GeTe2. J. Phys. Condens. Matter 2020, 32, 405805. [Google Scholar] [CrossRef]
- Meier, F.; Levy, J.; Loss, D. Quantum computing with antiferromagnetic spin clusters. Phys. Rev. B 2003, 68, 134417. [Google Scholar] [CrossRef]
- Roscilde, T.; Verrucchi, P.; Fubini, A.; Haas, S.; Tognetti, V. Entanglement and factorized ground states in two-dimensional quantum antiferromagnets. Phys. Rev. Lett. 2005, 94, 147208. [Google Scholar] [CrossRef] [PubMed]
- Wadley, P.; Howells, B.; Železný, J.; Andrews, C.; Hills, V.; Campion, R.P.; Novák, V.; Olejník, K.; Maccherozzi, F.; Dhesi, S. Electrical switching of an antiferromagnet. Science 2016, 351, 587. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, J. First-principles design of spintronics materials. Natl. Sci. Rev. 2016, 3, 365. [Google Scholar] [CrossRef]
- Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018, 90, 015005. [Google Scholar] [CrossRef]
- Lavrijsen, R. A new twist for spin torques in antiferromagnets. Nat. Electron. 2019, 2, 372. [Google Scholar] [CrossRef]
- Gu, P.; Wang, C.; Su, D.; Dong, Z.; Wang, Q.; Han, Z.; Watanabe, K.; Taniguchi, T.; Ji, W.; Sun, Y. Multi-state data storage in a two-dimensional stripy antiferromagnet implemented by magnetoelectric effect. Nat. Commun. 2023, 14, 3221. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Zhou, X.; Šmejkal, L.; Wu, L.; Zhu, Z.; Guo, H.; González-Hernández, R.; Wang, X.; Yan, H.; Qin, P. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 2022, 5, 735. [Google Scholar] [CrossRef]
- Šmejkal, L.; González-Hernández, R.; Jungwirth, T.; Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 2020, 6, eaaz8809. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Jiang, X.; Qiu, Z.; Zhao, J. Photoexcitation induced magnetic phase transition and spin dynamics in antiferromagnetic MnPS3 monolayer. NPJ Comput. Mater. 2023, 9, 107. [Google Scholar] [CrossRef]
- He, J.; Li, S.; Frauenheim, T.; Zhou, Z. Ultrafast Laser Pulse Induced Transient Ferrimagnetic State and Spin Relaxation Dynamics in Two-Dimensional Antiferromagnets. Nano Lett. 2023, 23, 8348. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhou, L.; Frauenheim, T.; He, J. Light-Controlled Ultrafast Magnetic State Transition in Antiferromagnetic–Ferromagnetic van der Waals Heterostructures. J. Phys. Chem. Lett. 2022, 13, 6223. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-U.; Lee, S.; Ryoo, J.H.; Kang, S.; Kim, T.Y.; Kim, P.; Park, C.-H.; Park, J.-G.; Cheong, H. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 2016, 16, 7433. [Google Scholar] [CrossRef]
- Kim, K.; Lim, S.Y.; Lee, J.-U.; Lee, S.; Kim, T.Y.; Park, K.; Jeon, G.S.; Park, C.-H.; Park, J.-G.; Cheong, H. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Commun. 2019, 10, 345. [Google Scholar] [CrossRef]
- Long, G.; Zhang, T.; Cai, X.; Hu, J.; Cho, C.-W.; Xu, S.; Shen, J.; Wu, Z.; Han, T.; Lin, J. Isolation and characterization of few-layer manganese thiophosphite. ACS Nano 2017, 11, 11330. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Yu, Y.; Song, Y.; Zhang, J.; Wang, N.Z.; Sun, Z.; Yi, Y.; Wu, Y.Z.; Wu, S.; Zhu, J. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; He, K.; Hu, H.; Ouyang, G.; Zhu, C.; Wang, W.; Qin, S.; Tao, Y.; Chen, R.; Zhang, L. Strong Neel Ordering and Luminescence Correlation in a Two-Dimensional Antiferromagnet. Laser Photonics Rev. 2022, 16, 2100431. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, C.; Du, A. Two-dimensional vanadium tetrafluoride with antiferromagnetic ferroelasticity and bidirectional negative Poisson’s ratio. J. Mater. Chem. C 2021, 9, 95. [Google Scholar] [CrossRef]
- Xu, S.; Jia, F.; Cheng, X.; Ren, W. Predicting intrinsic antiferromagnetic and ferroelastic MnF 4 monolayer with controllable magnetization. J. Mater. Chem. C 2021, 9, 17152. [Google Scholar] [CrossRef]
- Wang, N.; Chen, J.; Ding, N.; Zhang, H.; Dong, S.; Wang, S.-S. Magneto-optical Kerr effect and magnetoelasticity in a weakly ferromagnetic RuF 4 monolayer. Phys. Rev. B 2022, 106, 064435. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Söderlind, P.; Eriksson, O.; Johansson, B.; Wills, J. Electronic properties of f-electron metals using the generalized gradient approximation. Phys. Rev. B 1994, 50, 7291. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1. [Google Scholar] [CrossRef]
- Baroni, S.; De Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515. [Google Scholar] [CrossRef]
- Liu, L.; Ren, X.; Xie, J.; Cheng, B.; Liu, W.; An, T.; Qin, H.; Hu, J. Magnetic switches via electric field in BN nanoribbons. Appl. Surf. Sci. 2019, 480, 300. [Google Scholar] [CrossRef]
- Luo, J.; Xiang, G.; Tang, Y.; Ou, K.; Chen, X. The electric and magnetic properties of novel two-dimensional MnBr2 and MnI2 from first-principles calculations. J. Appl. Phys. 2020, 128, 113901. [Google Scholar] [CrossRef]
- Luo, J.; Ou, K.; Tang, Y.; Zhang, W.; Ni, Y.; Wang, H.; Lan, M. The electric and magnetic properties of novel two-dimensional H and T’Phase GdX2 (X = F, Cl, Br, I) from first-principles calculations. Eur. Phys. J. Plus 2023, 138, 563. [Google Scholar] [CrossRef]
- Zurek, E. Discovering new materials via a priori crystal structure prediction. Rev. Comput. Chem. 2016, 29, 274. [Google Scholar]
- Liu, Z.; Liu, J.Z.; Cheng, Y.; Li, Z.; Wang, L.; Zheng, Q. Interlayer binding energy of graphite: A mesoscopic determination from deformation. Phys. Rev. B 2012, 85, 205418. [Google Scholar] [CrossRef]
E (THz) | Irreps. | Activity |
---|---|---|
0 | Eu | - |
0 | A2u | - |
1.904 | Eu | IR |
4.159 | Eg | R |
5.327 | B2u | - |
6.706 | Eu | IR |
7.081 | A2u | IR |
15.351 | Eu | IR |
20.727 | A1g | R |
20.967 | A2u | IR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Zhang, Q.; Lin, J.; Ni, Y.; Wang, H.; Tang, Y.; Lan, M. TaF4: A Novel Two-Dimensional Antiferromagnetic Material with a High Néel Temperature Investigated Using First-Principles Calculations. Materials 2024, 17, 2780. https://doi.org/10.3390/ma17112780
Luo J, Zhang Q, Lin J, Ni Y, Wang H, Tang Y, Lan M. TaF4: A Novel Two-Dimensional Antiferromagnetic Material with a High Néel Temperature Investigated Using First-Principles Calculations. Materials. 2024; 17(11):2780. https://doi.org/10.3390/ma17112780
Chicago/Turabian StyleLuo, Jia, Qingkai Zhang, Jindong Lin, Yuxiang Ni, Hongyan Wang, Yongliang Tang, and Mu Lan. 2024. "TaF4: A Novel Two-Dimensional Antiferromagnetic Material with a High Néel Temperature Investigated Using First-Principles Calculations" Materials 17, no. 11: 2780. https://doi.org/10.3390/ma17112780
APA StyleLuo, J., Zhang, Q., Lin, J., Ni, Y., Wang, H., Tang, Y., & Lan, M. (2024). TaF4: A Novel Two-Dimensional Antiferromagnetic Material with a High Néel Temperature Investigated Using First-Principles Calculations. Materials, 17(11), 2780. https://doi.org/10.3390/ma17112780