Design and Additive Manufacturing of a Passive Ankle–Foot Orthosis Incorporating Material Characterization for Fiber-Reinforced PETG-CF15
Abstract
:1. Introduction
1.1. Motivation
1.2. State of the Art
1.3. Novelty of This Contribution
2. Materials and Methods
2.1. Determination of Orthotropic Material Data for PETG CF15
2.2. Specification and Collecting of Patient-Specific Data
2.3. Transformation of the Unregulated Mesh into a Simplified and Homogeneous Model
2.4. Meshing of the Simplified Foot Model
2.5. Definition of Input Parameter for Static Structural Analysis
2.6. Heuristic Topology Optimization of a Solid Leg Splint
2.7. Process of Fused Layer Modelling of a Solid Leg Splint
3. Results
3.1. Static Structural Analysis on The Foot Demonstrator
3.2. Topology Optimization as a Helpful Tool for Medical Devices
3.3. Slicing Process of the Topology-Optimized Solid Leg Splint
3.4. Additive Manufacturing of a Stiff Leg Splint with Fused Layer Modelling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choo, Y.J.; Chang, M.C. Commonly Used Types and Recent Development of Ankle-Foot Orthosis: A Narrative Review. Healthcare 2021, 9, 1046. [Google Scholar] [CrossRef]
- Zhou, C.; Yang, Z.; Li, K.; Ye, X. Research and Development of Ankle-Foot Orthoses: A Review. Sensors 2022, 22, 6596. [Google Scholar] [CrossRef] [PubMed]
- Rogati, G.; Caravaggi, P.; Leardini, A. Design principles, manufacturing and evaluation techniques of custom dynamic ankle-foot orthoses: A review study. J. Foot Ankle Res. 2022, 15, 38. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.K.; Chen, L.; Tai, B.; Wang, Y.; Shih, A.; Wensman, J. Additive manufacturing of personalized ankle-foot orthosis. Trans. N. Am. Manuf. Res. Inst. SME 2014, 42, 381–389. [Google Scholar]
- Abzug, J.M.; Schwartz, B.S.; Johnson, A.J. Assessment of Splints Applied for Pediatric Fractures in an Emergency Department/Urgent Care Environment: Incorrect Use of Splints Causes Poor Healing in Children. J. Pediatr. Orthop. 2019, 39, 76–84. [Google Scholar] [CrossRef]
- Dal Maso, A.; Cosmi, F. 3D-printed ankle-foot orthosis: A design method. Mater. Today Proc. 2019, 12, 252–261. [Google Scholar] [CrossRef]
- Scherb, D.; Steck, P.; Wartzack, S.; Miehling, J. Integration of musculoskeletal and model order reduced FE simulation for passive ankle foot orthosis design. In Proceedings of the 27th Congress of the European Society of Biomechanics, Porto, Portugal, 26–29 June 2022. [Google Scholar]
- Wojciechowski, E.; Chang, A.Y.; Balassone, D.; Ford, J.; Cheng, T.L.; Little, D.; Menezes, M.P.; Hogan, S.; Burns, J. Feasibility of designing, manufacturing and delivering 3D printed ankle-foot orthoses: A systematic review. J. Foot Ankle Res. 2019, 12, 11. [Google Scholar] [CrossRef]
- DeBoer, B.; Nguyen, N.; Diba, F.; Hosseini, A. Additive, subtractive, and formative manufacturing of metal components: A life cycle assessment comparison. Int. J. Adv. Manuf. Technol. 2021, 115, 413–432. [Google Scholar] [CrossRef]
- Attaran, M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus. Horiz. 2017, 60, 677–688. [Google Scholar] [CrossRef]
- Kumar, L.J.; Pandey, P.M.; Wimpenny, D.I. (Eds.) 3D Printing and Additive Manufacturing Technologies; Springer: Singapore, 2019; ISBN 9789811303050. [Google Scholar]
- García-Ávila, J.; Rodríguez, C.A.; Vargas-Martínez, A.; Ramírez-Cedillo, E.; Martínez-López, J.I. E-Skin Development and Prototyping via Soft Tooling and Composites with Silicone Rubber and Carbon Nanotubes. Materials 2021, 15, 256. [Google Scholar] [CrossRef]
- Surmen, H.K.; Akalan, N.E.; Arslan, Y.Z. Design, manufacture, and selection of Ankle-Foot-Orthoses. In Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and Human-Computer Interaction; IGI Global: Hershey, PA, USA, 2019. [Google Scholar]
- Ecker, J.V.; Dobrezberger, K.; Gonzalez-Gutierrez, J.; Spoerk, M.; Gierl-Mayer, C.; Danninger, H. Additive Manufacturing of Steel and Copper Using Fused Layer Modelling: Material and Process Development. Powder Metall. Prog. 2019, 19, 63–81. [Google Scholar] [CrossRef]
- Kampker, A.; Triebs, J.B.; Ayvaz, P.; Ilic, D. Investigation of FLM materials for application in high-temperature and high-vibration automotive environments. Procedia CIRP 2019, 81, 358–362. [Google Scholar] [CrossRef]
- Layher, M.; Hopf, A.; Qasarwa, A.; Wille, T.; Götze, K.; Bliedtner, J.; Kerber, A.; Bloß, L.; Krause, H.; Wölfel, C. Individualized Production of Ceramic Components Using Fused Layer Modelling. Interceram. Int. Ceram. Rev. 2022, 71, 42–47. [Google Scholar] [CrossRef]
- Maqsood, N.; Rimašauskas, M. Characterization of carbon fiber reinforced PLA composites manufactured by fused deposition modeling. Compos. Part C Open Access 2021, 4, 100112. [Google Scholar] [CrossRef]
- Calles, A.F.; Carou, D.; Ferreira, R.T.L. Experimental Investigation on the Effect of Carbon Fiber Reinforcements in the Mechanical Resistance of 3D Printed Specimens. Appl. Compos. Mater. 2022, 29, 937–952. [Google Scholar] [CrossRef]
- Prüß, H.; Vietor, T. Design for Fiber-Reinforced Additive Manufacturing. J. Mech. Des. 2015, 137. [Google Scholar] [CrossRef]
- Boolos, M.; Corbin, S.; Herrmann, A.; Regez, B. 3D printed orthotic leg brace with movement assist. Ann. 3d Print. Med. 2022, 7. [Google Scholar] [CrossRef]
- Borstell, D.; Walker, N.; Kurz, S. Methodical Design of a 3D-Printable Orthosis for the Left Hand to Support Double Bass Perceptional Training; University of Texas at Austin: Austin, TX, USA, 2019. [Google Scholar]
- Wallace, K.; Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.-H.; Blessing, L.T.M. (Eds.) Engineering Design: A Systematic Approach, 3rd ed.; Springer: London, UK, 2007; ISBN 1846283183. [Google Scholar]
- Jin, Y.; Plott, J.; Chen, R.; Wensman, J.; Shih, A. Additive Manufacturing of Custom Orthoses and Prostheses—A Review. Procedia CIRP 2015, 36, 199–204. [Google Scholar] [CrossRef]
- Leary, M.; Merli, L.; Torti, F.; Mazur, M.; Brandt, M. Optimal topology for additive manufacture: A method for enabling additive manufacture of support-free optimal structures. Mater. Des. 2014, 63, 678–690. [Google Scholar] [CrossRef]
- Lin, H.; Shi, L.; Wang, D. A rapid and intelligent designing technique for patient-specific and 3D-printed orthopedic cast. 3D Print. Med. 2015, 2, 4. [Google Scholar] [CrossRef]
- Li, H.; Yang, Z.; Li, D.; Qiao, F. A Novel Low-Cost Three-Dimensional Printed Brace Design Method for Early Onset Scoliosis. J. Med. Devices 2022, 16. [Google Scholar] [CrossRef]
- van Lieshout, E.M.M.; Verhofstad, M.H.J.; Beens, L.M.; van Bekkum, J.J.J.; Willemsen, F.; Janzing, H.M.J.; van Vledder, M.G. Personalized 3D-printed forearm braces as an alternative for a traditional plaster cast or splint; A systematic review. Injury 2022, 53 (Suppl. S3), S47–S52. [Google Scholar] [CrossRef] [PubMed]
- Witzgall, C.; Völkl, H.; Wartzack, S. Derivation and Validation of Linear Elastic Orthotropic Material Properties for Short Fibre Reinforced FLM Parts. J. Compos. Sci. 2022, 6, 101. [Google Scholar] [CrossRef]
- Witzgall, C.; Steck, P.; Wartzack, S. On the Influence of Fatigue Damage in Short-Fibre Reinforced Thermoplastic PBT GF30 on Its Residual Strength under High Strain Rates: An Approach towards Simulative Prediction. J. Compos. Sci. 2023, 7, 23. [Google Scholar] [CrossRef]
- Valvez, S.; Silva, A.P.; Reis, P.N.B. Compressive Behaviour of 3D-Printed PETG Composites. Aerospace 2022, 9, 124. [Google Scholar] [CrossRef]
- Hriţuc, A.; Slătineanu, L.; Sover, A.; Mihalache, A.M.; Surugiu, I.; Coteaţă, M. Abrasion Resistance of Plastic Parts Manufactured By 3D Printing. Bull. Polytech. Inst. Iași. Mach. Constr. Sect. 2022, 68, 35–45. [Google Scholar] [CrossRef]
- Lancea, C.; Chicos, L.-A.; Zaharia, S.-M.; Pop, M.-A.; Pascariu, I.S.; Buican, G.-R.; Stamate, V.-M. Simulation, Fabrication and Testing of UAV Composite Landing Gear. Appl. Sci. 2022, 12, 8598. [Google Scholar] [CrossRef]
- Steck, P.; Scherb, D.; Miehling, J.; Völkl, H.; Wartzack, S. Synthesis of passive lightweight orthoses considering human-machine interaction. In Proceedings of the 33rd Symposium Design for X, Hamburg, Germany, 22–23 September 2022; The Design Society: Hamburg, Germany, 2022; p. 10. [Google Scholar]
- Tang, Y.; Zhao, Y.F. A survey of the design methods for additive manufacturing to improve functional performance. Rapid Prototyp. J. 2016, 22, 569–590. [Google Scholar] [CrossRef]
- Völkl, H. Ein Simulationsbasierter Ansatz zur Auslegung Additiv Gefertigter FLM-Faserverbundstrukturen; Friedrich-Alexander-Universität Erlangen-Nürnberg: Erlangen, Germany, 2022. [Google Scholar]
- Mayer, J.; Wartzack, S. Computational Geometry Reconstruction from 3D Topology Optimization Results: A New Parametric Approach by the Medial Axis. Comput. Des. Appl. 2023, 20, 960–975. [Google Scholar] [CrossRef]
- Witzgall, C.; Wartzack, S. Validierung eines Ansatzes zur Simulation kurzfaserverstärkter Thermoplaste in frühen Entwurfsphasen. In Proceedings of the 26th Symposium Design for X, Herrsching, Germany, 7–8 October 2015; Krause, D., Paetzold, K., Wartzack, S., Eds.; pp. 63–74. [Google Scholar]
- Witzgall, C.; Wartzack, S. Eine Untersuchung mechanisch gealterter kurzfaserverstärkter Thermoplaste unter hochdynamischen Lasten. In Proceedings of the 27th Symposium Design for X, Jesteburg, Germany, 5–6 October 2016; Krause, D., Paetzold, K., Wartzack, S., Eds.; pp. 134–146. [Google Scholar]
- Witzgall, C.; Wartzack, S. Experimental and simulative assessment of crashworthiness of mechanically aged short-fibre reinforced thermoplastics. In Proceedings of the 21st International Conference on Engineering Design (ICED 17) Vol 1: Resource Sensitive Design, Design Research Applications and Case Studies, Vancouver, BC, Canada, 21–25 August 2017; Maier, A., Škec, S., Kim, H., Kokkolaras, M., Oehmen, J., Fadel, G., Salustri, F., Van der Loos, M., Eds.; pp. 279–287. [Google Scholar]
- Klein, D.; Witzgall, C.; Wartzack, S. A novel approach for the evaluation of composite suitability of lightweight structures at early design stages. In Proceedings of the International Design Conference—DESIGN, Dubrovnik, Croatia, 19–22 May 2014; pp. 1093–1104. [Google Scholar]
- Hartwich, T.S.; Völkl, H.; Franz, M.; Witzgall, C.; Krause, D.; Wartzack, S. Zur Notwendigkeit eines konstruktionsmethodischen Ansatzes für die zeitfeste Auslegung endlosfaserverstärkter Kunststoffbauteile. In Design for X—Beiträge zum 30. DfX-Symposium; Krause, D., Paetzold, K., Wartzack, S., Eds.; Design Society: Shenzhen, China, 2019; pp. 109–122. [Google Scholar]
- Farhan, M.; Wang, J.Z.; Bray, P.; Burns, J.; Cheng, T.L. Comparison of 3D scanning versus traditional methods of capturing foot and ankle morphology for the fabrication of orthoses: A systematic review. J. Foot Ankle Res. 2021, 14, 2. [Google Scholar] [CrossRef]
- Bendsøe, M.P.; Kikuchi, N. Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 1988, 71, 197–224. [Google Scholar] [CrossRef]
- Rozvany, G.I.N.; Zhou, M.; Birker, T. Generalized shape optimization without homogenization. Struct. Optim. 1992, 4, 250–252. [Google Scholar] [CrossRef]
- Moldenhauer, H. Die orthotrope Wärmeleitung als numerischer Integrator allgemeiner Richtungsfelder mit Anwendung zur optimalen Faserplatzierung und Kraftflussvisualisierung; Karlsruher Institut für Technologie (KIT): Karlsruhe, Germany, 2016. [Google Scholar]
- Moldenhauer, H. Integration of Direction Fields with Standard Options in Finite Element Programs. Math. Comput. Appl. 2018, 23, 24. [Google Scholar] [CrossRef]
- Bendsøe, M.P.; Sigmund, O. Topology Optimization: Theory, Methods, and Applications, 2nd ed.; Corrected Printing; Springer: Berlin/Heidelberg, Germany, 2004; ISBN 9783662050866. [Google Scholar]
- FormFutura 3D Printing Materials. CarbonFil: Product Page. Available online: https://formfutura.com/product/carbonfil/ (accessed on 20 March 2023).
- 3D-Fabrik. FormFutura CarbonFil Data Sheet. Available online: https://www.3d-fabrik.at/media/products/tds-carbonfil_1.pdf (accessed on 20 March 2023).
MPa | MPa | MPa | - | - | - | MPa | MPa | MPa |
8153 | 1949 | 1549 | 0.31 | 0.17 | 0.36 | 1096 | 642 | 1120 |
Hotend Temperature | Bed Temperature | Layer Fan Speed | Perimeter Print Speed | Infill Print Speed |
260 °C | 100 °C | 60% | 30 mm·s−1 | 25 mm·s−1 |
First Layer Print Speed | General Print Speed | Support Type | Infill Density | Slicer Engine |
8 mm·s−1 | 20 mm·s−1 | Organic | 100% | Arachne |
Layer Thickness | Extrusion Flow Rate | Nozzle Diameter | Brim Thickness | Infill Pattern |
0.2 mm | 92% | 0.6 mm | 3 mm | Concentric |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steck, P.; Scherb, D.; Witzgall, C.; Miehling, J.; Wartzack, S. Design and Additive Manufacturing of a Passive Ankle–Foot Orthosis Incorporating Material Characterization for Fiber-Reinforced PETG-CF15. Materials 2023, 16, 3503. https://doi.org/10.3390/ma16093503
Steck P, Scherb D, Witzgall C, Miehling J, Wartzack S. Design and Additive Manufacturing of a Passive Ankle–Foot Orthosis Incorporating Material Characterization for Fiber-Reinforced PETG-CF15. Materials. 2023; 16(9):3503. https://doi.org/10.3390/ma16093503
Chicago/Turabian StyleSteck, Patrick, David Scherb, Christian Witzgall, Jörg Miehling, and Sandro Wartzack. 2023. "Design and Additive Manufacturing of a Passive Ankle–Foot Orthosis Incorporating Material Characterization for Fiber-Reinforced PETG-CF15" Materials 16, no. 9: 3503. https://doi.org/10.3390/ma16093503