Improved Electrical Characteristics of Field Effect Transistors with GeSeTe-Based Ovonic Threshold Switching Devices
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koswatta, S.O.; Koester, S.J.; Haensch, W. On the possibility of obtaining MOSFET-like performance and sub-60-mV/dec swing in 1-D broken-gap tunnel transistors. IEEE Trans. Electron Devices 2010, 57, 3222–3230. [Google Scholar] [CrossRef]
- Choi, W.Y.; Park, B.-G.; Lee, J.D.; Liu, T.-J.K. Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 2007, 28, 743–745. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Zhi, T.; Xue, J.; Chen, D.; Wang, L.; Zhang, R. Cold source field-effect transistors: Breaking the 60-mV/decade switching limit at room temperature. Phys. Rep. 2023, 1013, 1–33. [Google Scholar] [CrossRef]
- Haensch, W.; Nowak, E.J.; Dennard, R.H.; Solomon, P.; Bryant, A.; Dokumaci, O.; Kumar, A.; Wang, X.; Johnson, J.; Fischetti, M. Silicon CMOS devices beyond scaling. IBM J. Res. Dev. 2006, 50, 339–361. [Google Scholar] [CrossRef]
- Frank, D.J.; Dennard, R.H.; Dennard, E.; Solomon, P.M.; Taur, Y.; Wong, H.-S.P. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 2001, 89, 259–288. [Google Scholar] [CrossRef]
- Jung, H.; Chang, J.; Yoo, C.; OH, J.; Choi, S.; Wong, J. Hyper-FET’s Phase-Transition-Materials Design Guidelines for Ultra-Low Power Applications at 3 nm Technology Node. Nanomaterials 2022, 12, 4096. [Google Scholar] [CrossRef]
- Yan, S.-C.; Sun, C.-H.; Sun, C.J.; Lin, Y.-W.; Yao, Y.-J.; Wu, Y.-C. Trench FinFET Nanostructure with Advanced Ferroelectric Nanomaterial HfZrO2 for Sub-60-mV/Decade Subthreshold Slope for Low Power Application. Nanomaterials 2022, 12, 2165. [Google Scholar] [CrossRef] [PubMed]
- Meindl, J.D.; Chen, Q.; Davis, J.A. Limits on Silicon Nanoelectronics for Terascale Integration. Science 2001, 193, 2044–2049. [Google Scholar] [CrossRef]
- Kobayashi, M. A perspective on steep-subthreshold-slope negative-capacitance field-effect transistor. Appl. Phys. Express 2018, 11, 110101. [Google Scholar] [CrossRef]
- Nirschl, T.; Henzler, S.; Fischer, J.; Fukle, M.; Bargagli-Stoffi, A.; Sterkel, M.; Sedlmeir, J.; Weber, C.; Heinrich, R.; Schaper, U.; et al. Scaling properties of the tunneling field effect transistor (TFET): Device and circuit. Solid-State Electron. 2006, 50, 44–51. [Google Scholar] [CrossRef]
- Bhuwalka, M.K.; Schindler, M.; Abelein, U.; Schmidt, M.; Sulima, T.; Eisele, I. Tunnel FET: A CMOS device for high temperature applications. In Proceedings of the 25th International Conference on Microelectronics, Belgrade, Serbia, 14–17 May 2006; pp. 124–127. [Google Scholar]
- Guo, S.; Prentki, R.J.; Jin, K.; Chen, C.-L.; Guo, H. Negative-Capacitance FET With a Cold Source. IEEE Trans. Electron Devices 2021, 68, 911–918. [Google Scholar] [CrossRef]
- Appenzeller, J.; Lin, Y.M.; Knoch, J.; Avouris, P. Band-to-band Tunneling in Carbon Nanotube Field-Effect Transistors. Phys. Rev. Lett. 2004, 93, 196805. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, A.M.; Riel, H. Tunnel Field-Effect Transistors as Energy-Efficient Electronic Switches. Nature 2011, 479, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Shin, G.H.; Koo, B.; Park, H.; Woo, Y.; Lee, J.E.; Choi, S.Y. Vertical-Tunnel Field-Effect Transistor Based on a Silicon-MoS2 Three-Dimensional-Two-Dimensional Heterostructure. ACS Appl. Mater. Interfaces 2018, 10, 40212–40218. [Google Scholar] [CrossRef]
- Cao, W.; Sarkar, D.; Khatami, Y.; Kang, J.; Banerjee, K. Subthreshold-Swing Physics of Tunnel Field-Effect Transistors. AIP Adv. 2014, 4, 067141. [Google Scholar] [CrossRef]
- Jo, J.; Shin, C. Negative Capacitance Field Effect Transistor With Hysteresis-Free Sub-60-mV/Decade Switching. IEEE Electron Device Lett. 2016, 37, 245–248. [Google Scholar] [CrossRef]
- Morin, F.J. Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature. Phys. Rev. Lett. 1959, 3, 34–36. [Google Scholar] [CrossRef]
- Berglund, C.N.; Guggenheim, H.J. Electronic Properties of VO2 near the Semiconductor-Metal Transition. Phys. Rev. 1969, 185, 1022–1033. [Google Scholar] [CrossRef]
- Yi, W.; Tsang, K.K.; Lam, S.K.; Bai, X.; Crowell, J.A.; Flores, E.A. Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. 2018, 9, 4661. [Google Scholar] [CrossRef] [PubMed]
- Morrison, V.R.; Chatelain, R.P.; Tiwari, K.L.; Hendaoui, A.; Bruhács, A.; Chaker, M.; Siwick, B.J. A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction. Science 2014, 346, 445–448. [Google Scholar] [CrossRef]
- Kim, H.T.; Lee, Y.W.; Kim, B.J.; Chae, B.G.; Yun, S.J.; Kang, K.Y.; Han, K.J.; Yee, K.J.; Lim, Y.S. Monoclinic and correlated metal phase in VO2 as evidence of the Mott transition: Coherent phonon analysis. Phys. Rev. Lett. 2006, 97, 266401. [Google Scholar] [CrossRef]
- Tao, Z.; Zhou, F.; Han, T.T.; Torres, D.; Wang, T.; Sepulveda, N.; Chang, K.; Young, M.; Lunt, R.R.; Ruan, C.Y. The nature of photoinduced phase transition and metastable states in vanadium dioxide. Sci. Rep. 2016, 6, 38514. [Google Scholar] [CrossRef]
- Zhang, S.; Chou, J.Y.; Lauhon, L.J. Direct Correlation of Structural Domain Formation with the Metal Insulator Transition in a VO2 Nanobeam. Nano Lett. 2009, 9, 4527–4532. [Google Scholar] [CrossRef] [PubMed]
- Qazilbash, M.M.; Brehm, M.; Chae, B.-G.; Ho, P.-C.; Andreev, G.O.; Kim, B.-J.; Yun, S.J.; Balatsky, A.V.; Maple, M.B.; Keilmann, F.; et al. Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging. Science 2007, 318, 1750–1753. [Google Scholar] [CrossRef] [PubMed]
- Redaelli, A.; Pirovano, A.; Benvenuti, A.; Lacaita, A. Steep Slope Field-Effect Transistors with Ag/TiO2-Based Threshold Switching Device. IEEE Electron Device Lett. 2016, 37, 16105152. [Google Scholar]
- Song, J.; Woo, J.; Prakash, A.; Lee, D.; Hwang, H. Threshold selector with high selectivity and steep slope for cross-point memory array. IEEE Electron Device Lett. 2015, 36, 681. [Google Scholar] [CrossRef]
- Wang, Z.; Rao, M.; Midya, R.; Joshi, S.; Jiang, H.; Lin, P.; Song, W.; Asapu, S.; Zhuo, Y.; Li, C.; et al. Threshold Switching of Ag or Cu in Dielectrics: Materials, Mechanism, and Applications. Adv. Funct. Mater. 2018, 28, 1704862. [Google Scholar] [CrossRef]
- Velea, A.; Opsomer, K.; Devulder, W.; Dumortier, J.; Fan, J.; Detavernier, C.; Jurczak, M.; Govoreanu, B. Te-based chalcogenide materials for selector applications. Sci. Rep. 2017, 7, 8103. [Google Scholar] [CrossRef]
- Zhu, M.; Ren, K.; Song, Z. Ovonic threshold switching selectors for three-dimensional stackable phase-change memory. MRS Bull. 2019, 44, 715. [Google Scholar] [CrossRef]
- Seo, H.K.; Ryu, J.J.; Lee, S.Y.; Park, M.; Park, S.G.; Song, W.; Kim, G.H.; Yang, M.K. Material and structural engineering of ovonic threshold switch for highly reliably performance. Adv. Electron. Mater. 2022, 8, 2200161. [Google Scholar] [CrossRef]
- Seong, D.; Lee, S.Y.; Seo, H.K.; Kim, J.-W.; Park, M.; Yang, M.K. Highly Reliable Ovonic Threshold Switch with TiN/GeTe/TiN Structure. Materials 2023, 16, 2066. [Google Scholar] [CrossRef]
- Redaelli, A.; Pirovano, A.; Benvenuti, A.; Lacaita, A. Threshold switching and phase transition numerical models for phase change memory simulations. J. Appl. Phys. 2008, 103, 111101. [Google Scholar] [CrossRef]
- Adler, D.; Shur, M.S.; Silver, M.; Ovshinsky, S.R. Threshold switching in chalcogenide-glass thin films. J. Appl. Phys. 1980, 51, 3289. [Google Scholar] [CrossRef]
- Chen, Z.; Tong, H.; Li, X.; Wang, L.; Zhao, R.; Gu, W.; Miao, Z. Experimental evidence for non-purely electric field-induced threshold switching and modified thermal-assisted model in GeTe phase change material. Appl. Phys. Lett. 2021, 118, 203502. [Google Scholar] [CrossRef]
- Clima, S.; Garbin, D.; Devulder, W.; Keukelier, J.; Opsomer, K.; Goux, L.; Kar, G.S.; Pourtois, G. Material relaxation in chalcogenide OTS SELECTOR materials. Microelectron. Eng. 2019, 215, 110996. [Google Scholar] [CrossRef]
- Clima, S.; Ravsher, T.; Garbin, D.; Degraeve, R.; Fantini, A.; Delhougne, T.; Kar, G.S.; Pourtois, G. Ovonic Threshold Switch Chalcogenides: Connecting the First-Principles Electronic Structure to Selector Device Parameters. ACS Appl. Electron. Mater. 2023, 5, 461–469. [Google Scholar] [CrossRef]
- Woo, J.; Lee, D.; Park, J.; Song, J.; Hwang, H. Steep Slope Field-Effect Transistors With B-Te-Based Ovonic Threshold Switch Device. ACS Nano 2012, 6, 8166. [Google Scholar]
- Wang, X.; Li, H. A steep-slope tellurium transistor with a native voltage amplifying threshold switch. Appl. Phys. Lett. 2022, 120, 223502. [Google Scholar] [CrossRef]
- Kang, C.; Choi, H.; Son, H.; Kang, T.; Lee, S.-M.; Lee, S. A steep-switching impact ionization-based threshold switching field-effect transistor. Nanoscale 2023, 15, 5771–5777. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.Y.; Seo, H.K.; Jeong, S.Y.; Yang, M.K. Improved Electrical Characteristics of Field Effect Transistors with GeSeTe-Based Ovonic Threshold Switching Devices. Materials 2023, 16, 4315. https://doi.org/10.3390/ma16124315
Lee SY, Seo HK, Jeong SY, Yang MK. Improved Electrical Characteristics of Field Effect Transistors with GeSeTe-Based Ovonic Threshold Switching Devices. Materials. 2023; 16(12):4315. https://doi.org/10.3390/ma16124315
Chicago/Turabian StyleLee, Su Yeon, Hyun Kyu Seo, Se Yeon Jeong, and Min Kyu Yang. 2023. "Improved Electrical Characteristics of Field Effect Transistors with GeSeTe-Based Ovonic Threshold Switching Devices" Materials 16, no. 12: 4315. https://doi.org/10.3390/ma16124315
APA StyleLee, S. Y., Seo, H. K., Jeong, S. Y., & Yang, M. K. (2023). Improved Electrical Characteristics of Field Effect Transistors with GeSeTe-Based Ovonic Threshold Switching Devices. Materials, 16(12), 4315. https://doi.org/10.3390/ma16124315