Copper-Based Electrocatalysts for Nitrate Reduction to Ammonia
Abstract
:1. Introduction
2. Reaction Mechanism of Electrocatalytic NO3−RR
2.1. Direct Reduction Pathway
2.2. Indirectly Autocatalytic Reduction Pathway
3. Research Status of Electrocatalytic NO3−RR to NH3 Production
3.1. Evaluation Criteria for NO3−RR Performance
3.2. Electrocatalysts Designed for NO3−RR to NH3
4. Cu-Based Catalyst for NO3−RR
4.1. Modifications for Cu-Based Catalysts
4.1.1. Size Modulation
4.1.2. Crystalline Facet Engineering
4.1.3. Surface Defects Engineering
4.1.4. Interfacial Engineering
4.1.5. Electronic Structure Modulation
4.1.6. Synergistic Effect
4.2. Study on Mechanism of Electrocatalysis of NO3−RR Synthesis of NH3 by Cu-Based Catalyst
5. Conclusions and Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Full name | Abbreviation |
ammonia | NH3 |
nitrate | NO3− |
nitrate reduction reaction | NO3−RR |
nitrogen | N2 |
nitrogen reduction reaction | NRR |
nitrite | NO2− |
nitrogen monoxide | NO |
nitrous oxide | N2O |
dinitrogen dioxide | HN2O2 |
nitroxyl | HNO |
hydroxylamine | H2NOH |
nitrosoamide | NONH2 |
Renewable Energy to Fuels through Utilization of Energy-dense Liquids | REFUEL |
Department of Energy | DOE |
biocatalyzed by nitrate/nitrite reductase | bio-NRA |
hydrogen evolution reaction | HER |
adsorbed active hydrogen species | Had |
ion chromatography | IC |
ion selective electrode | ISE |
hydrogen nuclear magnetic resonance spectroscopy | 1H NMR |
single-atom catalyst | SAC |
online differential electrochemical mass spectrometry | DEMS |
X-ray photoelectron spectroscopy | XPS |
X-ray adsorption spectroscopy | XAS |
ultraviolet photoelectron spectroscopy | UPS |
polyallylamine | PA |
References
- Fu, X.; Pedersen, J.B.; Zhou, Y.; Saccoccio, M.; Li, S.; Sažinas, R.; Li, K.; Andersen, S.Z.; Xu, A.; Deissler, N.H.; et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science 2023, 379, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Salmon, N.; Bañares-Alcántara, R. Green ammonia as a spatial energy vector: A review. Sustain. Energy Fuels 2021, 5, 2814–2839. [Google Scholar] [CrossRef]
- MacFarlane, D.R.; Cherepanov, P.V.; Choi, J.; Suryanto, B.H.R.; Hodgetts, R.Y.; Bakker, J.M.; Ferrero Vallana, F.M.; Simonov, A.N. A Roadmap to the Ammonia Economy. Joule 2020, 4, 1186–1205. [Google Scholar] [CrossRef]
- Kandemir, T.; Schuster, M.E.; Senyshyn, A.; Behrens, M.; Schlögl, R. The Haber-Bosch process revisited: On the real structure and stability of “ammonia iron” under working conditions. Angew. Chem. Int. Ed. 2013, 52, 12723–12726. [Google Scholar] [CrossRef]
- Nishina, K. New ammonia demand: Ammonia fuel as a decarbonization tool and a new source of reactive nitrogen. Environ. Res. Lett. 2022, 17, 021003. [Google Scholar] [CrossRef]
- Van der Ham, C.J.; Koper, M.T.; Hetterscheid, D.G. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 2014, 43, 5183–5191. [Google Scholar] [CrossRef]
- Foster, S.L.; Bakovic, S.I.P.; Duda, R.D.; Maheshwari, S.; Milton, R.D.; Minteer, S.D.; Janik, M.J.; Renner, J.N.; Greenlee, L.F. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 2018, 1, 490–500. [Google Scholar] [CrossRef]
- Chen, G.-F.; Cao, X.; Wu, S.; Zeng, X.; Ding, L.-X.; Zhu, M.; Wang, H. Ammonia Electrosynthesis with High Selectivity under Ambient Conditions via a Li+ Incorporation Strategy. J. Am. Chem. Soc. 2017, 139, 9771–9774. [Google Scholar] [CrossRef]
- DOE. Renewable Energy to Fuels through Utilization of Energy-Dense Liquides, Electrochemical Ammonia Conversion; DOE: Washington, DC, USA, 2020. [Google Scholar]
- Suryanto, B.H.R.; Du, H.-L.; Wang, D.; Chen, J.; Simonov, A.N.; MacFarlane, D.R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296. [Google Scholar] [CrossRef]
- Long, J.; Chen, S.; Zhang, Y.; Guo, C.; Fu, X.; Deng, D.; Xiao, J. Direct Electrochemical Ammonia Synthesis from Nitric Oxide. Angew. Chem. Int. Ed. 2020, 59, 9711–9718. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Priest, C.; Wang, G.; Wu, G. Restoring the Nitrogen Cycle by Electrochemical Reduction of Nitrate: Progress and Prospects. Small Methods 2020, 4, 2000672. [Google Scholar] [CrossRef]
- Menció, A.; Mas-Pla, J.; Otero, N.; Regàs, O.; Boy-Roura, M.; Puig, R.; Bach, J.; Domènech, C.; Zamorano, M.; Brusi, D.; et al. Nitrate pollution of groundwater; all right…, but nothing else? Sci. Total Environ. 2016, 539, 241–251. [Google Scholar] [CrossRef]
- Yao, F.; Jia, M.; Yang, Q.; Chen, F.; Zhong, Y.; Chen, S.; He, L.; Pi, Z.; Hou, K.; Wang, D.; et al. Highly selective electrochemical nitrate reduction using copper phosphide self-supported copper foam electrode: Performance, mechanism, and application. Water Res. 2021, 193, 116881. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Chen, Z.; Zhang, G.; Chen, W.; Peng, C.; Yang, X.; Zheng, L.; Li, Y.; Ren, X.; Cao, H.; et al. Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide. Energy Environ. Sci. 2022, 15, 760–770. [Google Scholar] [CrossRef]
- Sundararajan, M.; Hillier, I.H.; Burton, N.A. Mechanism of Nitrite Reduction at T2Cu Centers: Electronic Structure Calculations of Catalysis by Copper Nitrite Reductase and by Synthetic Model Compounds. J. Chem. Phys. B 2007, 111, 5511–5517. [Google Scholar] [CrossRef]
- Min, B.; Gao, Q.; Yan, Z.; Han, X.; Hosmer, K.; Campbell, A.; Zhu, H. Powering the Remediation of the Nitrogen Cycle: Progress and Perspectives of Electrochemical Nitrate Reduction. Ind. Eng. Chem. Res. 2021, 60, 14635–14650. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Lanzarini-Lopes, M.; Hristovski, K.; Westerhoff, P. Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications. Appl. Catal. B Environ. 2018, 236, 546–568. [Google Scholar] [CrossRef]
- Dima, G.E.; de Vooys, A.C.A.; Koper, M.T.M. Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions. J. Electroanal. Chem. 2003, 554–555, 15–23. [Google Scholar] [CrossRef]
- Katsounaros, I.; Kyriacou, G. Influence of the concentration and the nature of the supporting electrolyte on the electrochemical reduction of nitrate on tin cathode. Electrochim. Acta 2007, 52, 6412–6420. [Google Scholar] [CrossRef]
- Hristovski, K.D.; Markovski, J. Engineering metal (hydr)oxide sorbents for removal of arsenate and similar weak-acid oxyanion contaminants: A critical review with emphasis on factors governing sorption processes. Sci. Total Environ. 2017, 598, 258–271. [Google Scholar] [CrossRef] [PubMed]
- De Groot, M.T.; Koper, M.T.M. The influence of nitrate concentration and acidity on the electrocatalytic reduction of nitrate on platinum. J. Electroanal. Chem. 2004, 562, 81–94. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Liu, C.; Yu, Y.; Lu, S.; Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021, 403, 126269. [Google Scholar] [CrossRef]
- Montesinos, N.; Quici, N.; Destaillats, H.; Litter, M. Nitric oxide emission during the reductive heterogeneous photocatalysis of aqueous nitrate with TiO2. RSC Adv. 2015, 5, 85319–85322. [Google Scholar] [CrossRef]
- Tugaoen, H.O.N.; Garcia-Segura, S.; Hristovski, K.; Westerhoff, P. Challenges in photocatalytic reduction of nitrate as a water treatment technology. Sci. Total Environ. 2017, 599–600, 1524–1551. [Google Scholar] [CrossRef] [PubMed]
- Da Cunha, M.C.P.M.; Weber, M.; Nart, F.C. On the adsorption and reduction of NO3− ions at Au and Pt electrodes studied by in situ FTIR spectroscopy. J. Electroanal. Chem. 1996, 414, 163–170. [Google Scholar] [CrossRef]
- De, D.; Kalu, E.E.; Tarjan, P.P.; Englehardt, J.D. Kinetic Studies of the Electrochemical Treatment of Nitrate and Nitrite Ions on Iridium-Modified Carbon Fiber Electrodes. Chem. Eng. Technol. 2004, 27, 56–64. [Google Scholar] [CrossRef]
- Goldstein, S.; Behar, D.; Rajh, T.; Rabani, J. Nitrite Reduction to Nitrous Oxide and Ammonia by TiO2 Electrons in a Colloid Solution via Consecutive One-Electron Transfer Reactions. J. Phys. Chem. A 2016, 120, 2307–2312. [Google Scholar] [CrossRef]
- Su, J.F.; Ruzybayev, I.; Shah, I.; Huang, C.P. The electrochemical reduction of nitrate over micro-architectured metal electrodes with stainless steel scaffold. Appl. Catal. B Environ. 2016, 180, 199–209. [Google Scholar] [CrossRef]
- De Vooys, A.C.A.; Beltramo, G.L.; van Riet, B.; van Veen, J.A.R.; Koper, M.T.M. Mechanisms of electrochemical reduction and oxidation of nitric oxide. Electrochim. Acta 2004, 49, 1307–1314. [Google Scholar] [CrossRef]
- Yoshioka, T.; Iwase, K.; Nakanishi, S.; Hashimoto, K.; Kamiya, K. Electrocatalytic Reduction of Nitrate to Nitrous Oxide by a Copper-Modified Covalent Triazine Framework. J. Phys. Chem. C 2016, 120, 15729–15734. [Google Scholar] [CrossRef]
- Zheng, J.; Lu, T.; Cotton, T.M.; Chumanov, G. Photoinduced Electrochemical Reduction of Nitrite at an Electrochemically Roughened Silver Surface. J. Chem. Phys. B 1999, 103, 6567–6572. [Google Scholar] [CrossRef]
- Yang, J.; Duca, M.; Schouten, K.J.P.; Koper, M.T.M. Formation of volatile products during nitrate reduction on a Sn-modified Pt electrode in acid solution. J. Electroanal. Chem. 2011, 662, 87–92. [Google Scholar] [CrossRef]
- Duca, M.; Cucarella, M.O.; Rodriguez, P.; Koper, M.T.M. Direct Reduction of Nitrite to N2 on a Pt(100) Electrode in Alkaline Media. J. Am. Chem. Soc. 2010, 132, 18042–18044. [Google Scholar] [CrossRef]
- Duca, M.; Figueiredo, M.C.; Climent, V.; Rodriguez, P.; Feliu, J.M.; Koper, M.T.M. Selective Catalytic Reduction at Quasi-Perfect Pt(100) Domains: A Universal Low-Temperature Pathway from Nitrite to N2. J. Am. Chem. Soc. 2011, 133, 10928–10939. [Google Scholar] [CrossRef]
- Bartberger, M.D.; Liu, W.; Ford, E.; Miranda, K.M.; Switzer, C.; Fukuto, J.M.; Farmer, P.J.; Wink, D.A.; Houk, K.N. The reduction potential of nitric oxide (NO) and its importance to NO biochemistry. Proc. Natl. Acad. Sci. USA 2002, 99, 10958–10963. [Google Scholar] [CrossRef]
- Dutton, A.S.; Fukuto, J.M.; Houk, K.N. Theoretical Reduction Potentials for Nitrogen Oxides from CBS-QB3 Energetics and (C)PCM Solvation Calculations. Inorg. Chem. 2005, 44, 4024–4028. [Google Scholar] [CrossRef]
- Lacasa, E.; Cañizares, P.; Llanos, J.; Rodrigo, M.A. Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media. J. Hazard. Mater. 2012, 213–214, 478–484. [Google Scholar] [CrossRef]
- Guo, S.; Heck, K.; Kasiraju, S.; Qian, H.; Zhao, Z.; Grabow, L.C.; Miller, J.T.; Wong, M.S. Insights into Nitrate Reduction over Indium-Decorated Palladium Nanoparticle Catalysts. ACS Catal. 2018, 8, 503–515. [Google Scholar] [CrossRef]
- Chaplin, B.P.; Reinhard, M.; Schneider, W.F.; Schüth, C.; Shapley, J.R.; Strathmann, T.J.; Werth, C.J. Critical Review of Pd-Based Catalytic Treatment of Priority Contaminants in Water. Environ. Sci. Technol. 2012, 46, 3655–3670. [Google Scholar] [CrossRef]
- Taguchi, S.; Feliu, J.M. Electrochemical reduction of nitrate on Pt(S)[n(1 1 1) × (1 1 1)] electrodes in perchloric acid solution. Electrochim. Acta 2007, 52, 6023–6033. [Google Scholar] [CrossRef]
- Ghodbane, O.; Sarrazin, M.; Roué, L.; Bélanger, D. Electrochemical Reduction of Nitrate on Pyrolytic Graphite-Supported Cu and Pd–Cu Electrocatalysts. J. Electrochem. Soc. 2008, 155, 117–123. [Google Scholar] [CrossRef]
- Hu, T.; Wang, C.; Wang, M.; Li, C.M.; Guo, C. Theoretical Insights into Superior Nitrate Reduction to Ammonia Performance of Copper Catalysts. ACS Catal. 2021, 11, 14417–14427. [Google Scholar] [CrossRef]
- Andersen, S.Z.; Colic, V.; Yang, S.; Schwalbe, J.A.; Nielander, A.C.; McEnaney, J.M.; Enemark-Rasmussen, K.; Baker, J.G.; Singh, A.R.; Rohr, B.A.; et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 2019, 570, 504–508. [Google Scholar] [CrossRef]
- Hodgetts, R.Y.; Kiryutin, A.S.; Nichols, P.; Du, H.-L.; Bakker, J.M.; Macfarlane, D.R.; Simonov, A.N. Refining Universal Procedures for Ammonium Quantification via Rapid 1H NMR Analysis for Dinitrogen Reduction Studies. ACS Energy Lett. 2020, 5, 736–741. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, R.; Bian, X.; Zhou, C.; Zhao, Y.; Zhang, S.; Wu, F.; Waterhouse, G.I.N.; Wu, L.Z.; Tung, C.H.; et al. Ammonia Detection Methods in Photocatalytic and Electrocatalytic Experiments: How to Improve the Reliability of NH3 Production Rates? Adv. Sci. 2019, 6, 1802109. [Google Scholar] [CrossRef]
- Zhou, L.; Boyd, C.E. Comparison of Nessler, phenate, salicylate and ion selective electrode procedures for determination of total ammonia nitrogen in aquaculture. Aquaculture 2016, 450, 187–193. [Google Scholar] [CrossRef]
- Zhu, Y.; Yuan, D.; Lin, H.; Zhou, T.J. Determination of Ammonium in Seawater by Purge-and-Trap and Flow Injection with Fluorescence Detection. Anal. Lett. 2015, 49, 665–675. [Google Scholar] [CrossRef]
- Thomas, D.H.; Rey, M.; Jackson, P.E. Determination of inorganic cations and ammonium in environmental waters by ion chromatography with a high-capacity cation-exchange column. J. Chromatogr. A 2002, 956, 181–186. [Google Scholar] [CrossRef]
- Leduy, A.; Samson, R. Testing of an ammonia ion selective electrode for ammonia nitrogen measurement in the methanogenic sludge. Biotechnol. Lett. 1982, 4, 303–306. [Google Scholar] [CrossRef]
- Liu, J.; Kelley, M.S.; Wu, W.; Banerjee, A.; Douvalis, A.P.; Wu, J.; Zhang, Y.; Schatz, G.C.; Kanatzidis, M.G. Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. Proc. Natl. Acad. Sci. USA 2016, 113, 5530–5535. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhan, G.; Yang, J.; Quan, F.; Mao, C.; Liu, Y.; Wang, B.; Lei, F.; Li, L.; Chan, A.W.M.; et al. Efficient Ammonia Electrosynthesis from Nitrate on Strained Ruthenium Nanoclusters. J. Am. Chem. Soc. 2020, 142, 7036–7046. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhang, X.; Cai, W.; Zhao, H.; Zhang, Y.; Sun, Y.; Hu, Z.; Li, S.; Lai, J.; Wang, L. Facet-controlled palladium nanocrystalline for enhanced nitrate reduction towards ammonia. J. Colloid Interface Sci. 2021, 600, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Bagger, A.; Rossmeisl, J. Electrochemical Nitric Oxide Reduction on Metal Surfaces. Angew. Chem. Int. Ed. 2021, 60, 21966–21972. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Li, H.; Xiao, J. The progresses in electrochemical reverse artificial nitrogen cycle. Curr. Opin. Electrochem. 2023, 37, 101179. [Google Scholar] [CrossRef]
- Ko, B.H.; Hasa, B.; Shin, H.; Zhao, Y.; Jiao, F. Electrochemical Reduction of Gaseous Nitrogen Oxides on Transition Metals at Ambient Conditions. J. Am. Chem. Soc. 2022, 144, 1258–1266. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Corma, A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018, 118, 4981–5079. [Google Scholar] [CrossRef]
- Fu, X.; Zhao, X.; Hu, X.; He, K.; Yu, Y.; Li, T.; Tu, Q.; Qian, X.; Yue, Q.; Wasielewski, M.R.; et al. Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets. Appl. Mater. Today 2020, 19, 100620. [Google Scholar] [CrossRef]
- Vogler, A. B.C. Gates, L.; Guczi, H. Knözinger (Eds.): Metal Clusters in Catalysis, Vol. 29 aus der Reihe: Studies in Surface Science. Elsevier, Amsterdam, Oxford, New York, Tokyo 1986. 648 Seiten, Preis: Dfl. 195. Ber. Bunsenges. Phys. Chem. 1987, 91, 767–768. [Google Scholar] [CrossRef]
- Yang, J.; Qi, H.; Li, A.; Liu, X.; Yang, X.; Zhang, S.; Zhao, Q.; Jiang, Q.; Su, Y.; Zhang, L.; et al. Potential-Driven Restructuring of Cu Single Atoms to Nanoparticles for Boosting the Electrochemical Reduction of Nitrate to Ammonia. J. Am. Chem. Soc. 2022, 144, 12062–12071. [Google Scholar] [CrossRef]
- Katsounaros, I.; Figueiredo, M.C.; Chen, X.; Calle-Vallejo, F.; Koper, M.T.M. Interconversions of nitrogen-containing species on Pt(100) and Pt(111) electrodes in acidic solutions containing nitrate. Electrochim. Acta 2018, 271, 77–83. [Google Scholar] [CrossRef]
- Pérez-Gallent, E.; Figueiredo, M.C.; Katsounaros, I.; Koper, M.T.M. Electrocatalytic reduction of Nitrate on Copper single crystals in acidic and alkaline solutions. Electrochim. Acta 2017, 227, 77–84. [Google Scholar] [CrossRef]
- Chen, L.-F.; Xie, A.-Y.; Lou, Y.-Y.; Tian, N.; Zhou, Z.-Y.; Sun, S.-G. Electrochemical synthesis of Tetrahexahedral Cu nanocrystals with high-index facets for efficient nitrate electroreduction. J. Electroanal. Chem. 2022, 907, 116022. [Google Scholar] [CrossRef]
- Hu, Q.; Qin, Y.; Wang, X.; Wang, Z.; Huang, X.; Zheng, H.; Gao, K.; Yang, H.; Zhang, P.; Shao, M.; et al. Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate–ammonia conversion. Energy Environ. Sci. 2021, 14, 4989–4997. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, M.; Ren, K.; Ren, T.; Liu, M.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Atomic defects in pothole-rich two-dimensional copper nanoplates triggering enhanced electrocatalytic selective nitrate-to-ammonia transformation. J. Mater. Chem. A 2021, 9, 16411–16417. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, G.; Xu, D.; Lian, X.; Li, H.; Chen, W.; Su, C. Defect chemistry in 2D materials for electrocatalysis. Mater. Today Energy 2019, 12, 215–238. [Google Scholar] [CrossRef]
- Shi, H.; Li, C.; Wang, L.; Wang, W.; Meng, X. Selective reduction of nitrate into N2 by novel Z-scheme NH2-MIL-101(Fe)/BiVO4 heterojunction with enhanced photocatalytic activity. J. Hazard. Mater. 2022, 424, 127711. [Google Scholar] [CrossRef]
- Zhao, J.; Li, N.; Yu, R.; Zhao, Z.; Nan, J. Magnetic field enhanced denitrification in nitrate and ammonia contaminated water under 3D/2D Mn2O3/g-C3N4 photocatalysis. Chem. Eng. J. 2018, 349, 530–538. [Google Scholar] [CrossRef]
- Adamu, H.; McCue, A.J.; Taylor, R.S.F.; Manyar, H.G.; Anderson, J.A. Simultaneous photocatalytic removal of nitrate and oxalic acid over Cu2O/TiO2 and Cu2O/TiO2-AC composites. Appl. Catal. B Environ. 2017, 217, 181–191. [Google Scholar] [CrossRef]
- Kumar, A.; Lee, J.; Kim, M.G.; Debnath, B.; Liu, X.; Hwang, Y.; Wang, Y.; Shao, X.; Jadhav, A.R.; Liu, Y.; et al. Efficient Nitrate Conversion to Ammonia on f-Block Single-Atom/Metal Oxide Heterostructure via Local Electron-Deficiency Modulation. ACS Nano 2022, 16, 15297–15309. [Google Scholar] [CrossRef]
- Yu, T.; Liu, L.; Yang, F. Heterojunction between anodic TiO2/g-C3N4 and cathodic WO3/W nano-catalysts for coupled pollutant removal in a self-biased system. Chin. J. Catal. 2017, 38, 270–277. [Google Scholar] [CrossRef]
- Deng, Z.; Ma, C.; Fan, X.; Li, Z.; Luo, Y.; Sun, S.; Zheng, D.; Liu, Q.; Du, J.; Lu, Q.; et al. Construction of CoP/TiO2 nanoarray for enhanced electrochemical nitrate reduction to ammonia. Mater. Today Phys. 2022, 28, 100854. [Google Scholar] [CrossRef]
- Liu, S.; Cui, L.; Yin, S.; Ren, H.; Wang, Z.; Xu, Y.; Li, X.; Wang, L.; Wang, H. Heterointerface-triggered electronic structure reformation: Pd/CuO nano-olives motivate nitrite electroreduction to ammonia. Appl. Catal. B Environ. 2022, 319, 121876. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, W.; Jia, R.; Yu, Y.; Zhang, B. Unveiling the Activity Origin of a Copper-based Electrocatalyst for Selective Nitrate Reduction to Ammonia. Angew. Chem. Int. Ed. 2020, 59, 5350–5354. [Google Scholar] [CrossRef]
- Chen, G.-F.; Yuan, Y.; Jiang, H.; Ren, S.-Y.; Ding, L.-X.; Ma, L.; Wu, T.; Lu, J.; Wang, H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nat. Energy 2020, 5, 605–613. [Google Scholar] [CrossRef]
- Reyter, D.; Reyter, D.; Chamoulaud, G.; Chamoulaud, G.; Bélanger, D.; Roué, L. Electrocatalytic reduction of nitrate on copper electrodes prepared by high-energy ball milling. J. Electroanal. Chem. 2006, 596, 13–24. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.; Zhang, Z.; Mo, Z.; Wang, C.; Gao, S. Flower-like open-structured polycrystalline copper with synergistic multi-crystal plane for efficient electrocatalytic reduction of nitrate to ammonia. Nano Energy 2022, 97, 107124. [Google Scholar] [CrossRef]
- Yuan, J.; Xing, Z.; Tang, Y.; Liu, C. Tuning the Oxidation State of Cu Electrodes for Selective Electrosynthesis of Ammonia from Nitrate. ACS Appl. Mater. Interfaces 2021, 13, 52469–52478. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Jia, X.; He, Y.; Zhang, H.; Zhou, X.; Zhang, H.; Zhang, S.; Dong, Y.; Hu, X.; Kuklin, A.V.; et al. Two-dimensional BCN matrix inlaid with single-atom-Cu driven electrochemical nitrate reduction reaction to achieve sustainable industrial-grade production of ammonia. Appl. Mater. Today 2021, 25, 101206. [Google Scholar] [CrossRef]
- Qin, J.; Chen, L.; Wu, K.; Wang, X.; Zhao, Q.; Li, L.; Liu, B.; Ye, Z. Electrochemical Synthesis of Ammonium from Nitrates via Surface Engineering in Cu2O(100) Facets. ACS Appl. Energy Mater. 2022, 5, 71–76. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, A.; Wang, Z.; Huang, L.; Li, J.; Li, F.; Wicks, J.; Luo, M.; Nam, D.H.; Tan, C.S.; et al. Enhanced Nitrate-to-Ammonia Activity on Copper-Nickel Alloys via Tuning of Intermediate Adsorption. J. Am. Chem. Soc. 2020, 142, 5702–5708. [Google Scholar] [CrossRef]
- Ge, Z.-X.; Wang, T.-J.; Ding, Y.; Yin, S.-B.; Li, F.-M.; Chen, P.; Chen, Y. Interfacial Engineering Enhances the Electroactivity of Frame-Like Concave RhCu Bimetallic Nanocubes for Nitrate Reduction. Adv. Energy Mater. 2022, 12, 2103916. [Google Scholar] [CrossRef]
- Liu, J.-X.; Richards, D.; Singh, N.; Goldsmith, B.R. Activity and Selectivity Trends in Electrocatalytic Nitrate Reduction on Transition Metals. ACS Catal. 2019, 9, 7052–7064. [Google Scholar] [CrossRef]
- Barrabés, N.; Just, J.; Dafinov, A.; Medina, F.; Fierro, J.L.G.; Sueiras, J.E.; Salagre, P.; Cesteros, Y. Catalytic reduction of nitrate on Pt-Cu and Pd-Cu on active carbon using continuous reactor: The effect of copper nanoparticles. Appl. Catal. B Environ. 2006, 62, 77–85. [Google Scholar] [CrossRef]
- Zhang, Q.; Ding, L.; Cui, H.; Zhai, J.; Wei, Z.; Li, Q. Electrodeposition of Cu-Pd alloys onto electrophoretic deposited carbon nanotubes for nitrate electroreduction. Appl. Surf. Sci. 2014, 308, 113–120. [Google Scholar] [CrossRef]
- Lei, X.; Liu, F.; Li, M.; Ma, X.; Wang, X.; Zhang, H. Fabrication and characterization of a Cu-Pd-TNPs polymetallic nanoelectrode for electrochemically removing nitrate from groundwater. Chemosphere 2018, 212, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.-J.; Wu, Z.-L.; Lin, C.-Y.; Huang, Y.-H.; Huang, C.-P. Manipulating the crystalline morphology and facet orientation of copper and copper-palladium nanocatalysts supported on stainless steel mesh with the aid of cationic surfactant to improve the electrochemical reduction of nitrate and N2 selectivity. Appl. Catal. B Environ. 2020, 273, 119053. [Google Scholar] [CrossRef]
- Kerkeni, S.; Lamy-Pitara, E.; Barbier, J. Copper–platinum catalysts prepared and characterized by electrochemical methods for the reduction of nitrate and nitrite. Catal. Today 2002, 75, 35–42. [Google Scholar] [CrossRef]
- Wang, J.; Teng, W.; Ling, L.; Fan, J.; Zhang, W.x.; Deng, Z.-l. Nanodenitrification with bimetallic nanoparticles confined in N-doped mesoporous carbon. Environ. Sci. Nano 2020, 7, 1496–1506. [Google Scholar] [CrossRef]
- Liu, H.; Lang, X.; Zhu, C.; Timoshenko, J.; Rüscher, M.; Bai, L.; Guijarro, N.; Yin, H.; Peng, Y.; Li, J.; et al. Efficient Electrochemical Nitrate Reduction to Ammonia with Copper-Supported Rhodium Cluster and Single-Atom Catalysts. Angew. Chem. Int. Ed. 2022, 61, e202202556. [Google Scholar] [CrossRef]
- He, W.; Zhang, J.; Dieckhofer, S.; Varhade, S.; Brix, A.C.; Lielpetere, A.; Seisel, S.; Junqueira, J.R.C.; Schuhmann, W. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 2022, 13, 1129. [Google Scholar] [CrossRef]
- Mattarozzi, L.; Cattarin, S.; Comisso, N.; Gambirasi, A.; Guerriero, P.; Musiani, M.; Vázquez-Gómez, L.; Verlato, E. Hydrogen evolution assisted electrodeposition of porous Cu-Ni alloy electrodes and their use for nitrate reduction in alkali. Electrochim. Acta 2014, 140, 337–344. [Google Scholar] [CrossRef]
- Mattarozzi, L.; Cattarin, S.; Comisso, N.; Gerbasi, R.; Guerriero, P.; Musiani, M.; Vázquez-Gómez, L.; Verlato, E. Electrodeposition of Compact and Porous Cu-Zn Alloy Electrodes and Their Use in the Cathodic Reduction of Nitrate. J. Electrochem. Soc. 2015, 162, D236. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Wang, W.; Yin, L.; Crittenden, J.C. Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys. Appl. Catal. B Environ. 2022, 310, 121346. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, K.; Ren, T.; Wang, M.; Liu, M.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Cooperativity of Cu and Pd active sites in CuPd aerogels enhances nitrate electroreduction to ammonia. Chem. Commun. 2021, 57, 7525–7528. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Chen, Z.; Xiong, S.; Chen, J.; Wang, C.; Wang, R.; Kuwahara, Y.; Luo, J.; Yamashita, H.; Peng, Y.; et al. Alloying effect-induced electron polarization drives nitrate electroreduction to ammonia. Chem. Catal. 2021, 1, 1088–1103. [Google Scholar] [CrossRef]
- Fang, J.-Y.; Zheng, Q.-Z.; Lou, Y.-Y.; Zhao, K.-M.; Hu, S.-N.; Li, G.; Akdim, O.; Huang, X.-Y.; Sun, S.-G. Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 2022, 13, 7899. [Google Scholar] [CrossRef] [PubMed]
- Butcher, D.P.; Gewirth, A.A. Nitrate reduction pathways on Cu single crystal surfaces: Effect of oxide and Cl−. Nano Energy 2016, 29, 457–465. [Google Scholar] [CrossRef]
- Bae, S.-E.; Stewart, K.L.; Gewirth, A.A. Nitrate Adsorption and Reduction on Cu(100) in Acidic Solution. J. Am. Chem. Soc. 2007, 129, 10171–10180. [Google Scholar] [CrossRef]
- Magnussen, O.M. Ordered Anion Adlayers on Metal Electrode Surfaces. Chem. Rev. 2002, 102, 679–726. [Google Scholar] [CrossRef]
- Kleinert, M.; Cuesta, A.; Kibler, L.A.; Kolb, D.M. In-situ observation of an ordered sulfate adlayer on Au(100) electrodes. Surf. Sci. 1999, 430, L521–L526. [Google Scholar] [CrossRef]
- Li, W.; Xiao, C.; Zhao, Y.; Zhao, Q.; Fan, R.; Xue, J. Electrochemical Reduction of High-Concentrated Nitrate Using Ti/TiO2 Nanotube Array Anode and Fe Cathode in Dual-Chamber Cell. Catal. Lett. 2016, 146, 2585–2595. [Google Scholar] [CrossRef]
- Zhang, C.; He, D.; Ma, J.; Waite, T.D. Active chlorine mediated ammonia oxidation revisited: Reaction mechanism, kinetic modelling and implications. Water Res. 2018, 145, 220–230. [Google Scholar] [CrossRef]
Cathode Material | FE to NH3 | Current Density (mA cm−2) | NH3 Production Reported | Conditions | Potential (V vs. RHE) | Ref. |
---|---|---|---|---|---|---|
Cu foil | 30% | ~−0.36 | 3.9 ugNH3 mgcat−1 h−1 (3.9 ugNH3 h−1 cm−2) | 10 mM KNO3, 0.1 M KOH | −0.15 | [59] |
Cu nanoparticle | 61% | ~−4.65 | 225.8 ugNH3 mgcat−1 h−1 (225.8 ugNH3 h−1 cm−2) | 10 mM KNO3, 0.1 M KOH | −0.15 | [59] |
Cu nanosheets | 99.7% | ~−4.92 | 390.1 ugNH3 mgcat−1 h−1 (390.1 ugNH3 h−1 cm−2) | 10 mM KNO3, 0.1 M KOH | −0.15 | [59] |
Cu SAC | 84.7% | ~−75 | 0.26 mmol cm−2 h−1 (12.5 mol gCu−1 h−1) | 0.1 M KNO3, 0.1 M KOH | −1.00 | [61] |
THH Cu NCs | 98.3% | ~−70 | - | 0.1 M K2SO4, 50.1 M KNO3 | −0.9 | [64] |
Cu-NBs-100 | 95.3% | ~−300 | 650 mmol gcat−1 h−1 | 0.1 M KNO3, 1 M KOH | −0.15 | [65] |
dr-Cu-NPs | 81.99% | ~−30 | 781.25 μg h−1 mg−1 | 0.5 M K2SO4, 50 ppm KNO3 | −0.646 | [66] |
Cu-incorporated PTCDA | 77% | - | 0.0256 mmol h−1 cm−2 | 0.1 mM PBS, 36 mM NO3− | −0.4 | [76] |
Cu/Cu2O NWAs | 95.8% | - | 0.2449 mmol h−1 cm−2 | 0.5 M Na2SO4, 14.3 mM NO3− | −0.196 | [75] |
Cu crystallite | 97% | ~−6.4 | - | 0.1 M NaNO3, 1 M NaOH | −0.376 | [77] |
FOSP-Cu | 93.9% | - | 101.4 μmol h−1 cm−2 | 0.1 M KNO3, 0.5 M Na2SO4 | −0.266 | [78] |
OD-Cu | 92% | - | 1.1 mmol cm−2 h−1 | 0.1 M KNO3, 1 M KOH | −0.15 | [79] |
BCN-Cu | 98.2% | ~−40 | 3358.74 μg h−1 cm−2 | 0.1 M KNO3, 1 M KOH | −0.6 | [80] |
Cu2O(100) | 82.5% | - | 743 μg h−1 mgcat−1 | 0.1 M NaSO4, 50 ppm NaNO3 | −0.6 | [81] |
Cathode Material | FE to NH3 | Current Density (mA cm−2) | NH3 Production Reported | Conditions | Potential | Ref. |
---|---|---|---|---|---|---|
Cu50Ni50 | 99% | ~−90 | - | 100 mM NO3−, 1 M KOH | −0.1V vs. RHE | [82] |
Cu70Ni30 porous | 95.9% | ~−400 | - | 0.1 M NaNO3, 1 M NaOH | −1.20 V vs. Hg/HgO | [93] |
Cu70Zn30 porous | 97% | ~−400 | - | 0.1 M NaNO3, 1 M NaOH | −1.40 V vs. Hg/HgO | [94] |
Au1Cu (111) | 98.7% | 555 μg h−1 cm−2 | 0.1 M KOH, 7.14 mM NO3− | −0.2 V vs. RHE | [95] | |
Cu3Pd1 | 90.02% | 784.37 mg h−1 mgcat−1 | 0.5 M K2SO4, 50 ppm KNO3-N | −0.46 V vs. RHE | [96] | |
PdCu-Cu2O | 94.32% | 0.190 mmol h−1 cm−2 | 0.5 M Na2SO4, 100 ppm NO3−-N | −0.80 V vs. RHE | [97] | |
PA-RhCu cNCs | 93.7% | - | 2.40 mg h−1 mgcat−1 | 0.1 M HClO4, 0.05 M KNO3 | +0.05 V vs. RHE | [83] |
Rh@Cu | 93.0% | −162 | 1.27 mmol h−1 cm−2 | 100 mM NO3−, 0.1 M Na2SO4 | −0.2 V vs. RHE | [91] |
CuCoSP | 93.3% | −300 | 1.17 mol cm−2 h−1 | 100 mM NO3−, 0.1 M KOH | −0.175 V vs. RHE | [92] |
CuCo nanosheet | 100% | −1035 | 960 mmol h−1 mgcat−1 | 100 mM NO3−, 0.1 M KOH | 0.4 V vs. RHE | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, J.-Y.; Fan, J.-L.; Liu, S.-B.; Sun, S.-P.; Lou, Y.-Y. Copper-Based Electrocatalysts for Nitrate Reduction to Ammonia. Materials 2023, 16, 4000. https://doi.org/10.3390/ma16114000
Fang J-Y, Fan J-L, Liu S-B, Sun S-P, Lou Y-Y. Copper-Based Electrocatalysts for Nitrate Reduction to Ammonia. Materials. 2023; 16(11):4000. https://doi.org/10.3390/ma16114000
Chicago/Turabian StyleFang, Jia-Yi, Jin-Long Fan, Sheng-Bo Liu, Sheng-Peng Sun, and Yao-Yin Lou. 2023. "Copper-Based Electrocatalysts for Nitrate Reduction to Ammonia" Materials 16, no. 11: 4000. https://doi.org/10.3390/ma16114000