Microscopic Understanding of the Growth and Structural Evolution of Narrow Bandgap III–V Nanostructures
Abstract
:1. Introduction
2. Growth of III–V Nanostructures: Synthesis and Structure
2.1. Controlled Synthesis of III–V NWs
2.2. Growth of Other III–V Nanostructures: Quantum Dots (QDs) and Nanosheets
2.2.1. Synthesis of QDs
2.2.2. Two-Dimensional (2D) III–V Materials
3. Growth Mechanisms of III–V NWs Revealed by In Situ Techniques
3.1. Role of the Catalysts/Droplets
3.2. Switching of NW Growth Direction
4. Dynamic Structural Evolution of III–V NWs under External Field
4.1. Dissolution/Sublimation of III–V NWs
4.2. Contact Formation Mechanism
4.3. Energy Storage Mechanism
5. Structural–Dependent–Physical Properties of III–V NWs
5.1. Electronic Properties
5.2. Electromechanical Properties
5.3. Mechanical Properties
5.4. Optoelectronic Properties
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rogalski, A.; Martyniuk, P.; Kopytko, M. InAs/GaSb type-II superlattice infrared detectors: Future prospect. Appl. Phys. Rev. 2017, 4, 31304. [Google Scholar] [CrossRef]
- Rodriguez, J.B.; Christol, P.; Cerutti, L.; Chevrier, F.; Joullié, A. MBE growth and characterization of type-II InAs/GaSb superlattices for mid-infrared detection. J. Cryst. Growth 2005, 274, 6–13. [Google Scholar] [CrossRef]
- Friedl, M.; Cerveny, K.; Weigele, P.; Tütüncüoglu, G.; Martí-Sánchez, S.; Huang, C.; Patlatiuk, T.; Potts, H.; Sun, Z.; Hill, M.O.; et al. Template-assisted scalable nanowire networks. Nano Lett. 2018, 18, 2666–2671. [Google Scholar] [CrossRef] [PubMed]
- Tseng, A.; Lynall, D.; Savelyev, I.; Blumin, M.; Wang, S.; Ruda, H. Sensing responses based on transfer characteristics of InAs nanowire field-effect transistors. Sensors 2017, 17, 1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitiello, M.S.; Viti, L.; Coquillat, D.; Knap, W.; Ercolani, D.; Sorba, L. One dimensional semiconductor nanostructures: An effective active-material for terahertz detection. APL Mater. 2015, 3, 26104. [Google Scholar] [CrossRef]
- Wallentin, J.; Osterhoff, M.; Wilke, R.N.; Persson, K.-M.; Wernersson, L.-E.; Sprung, M.; Salditt, T. Hard X-ray detection using a single 100 nm diameter nanowire. Nano Lett. 2014, 14, 7071–7076. [Google Scholar] [CrossRef] [PubMed]
- Chau, R.; Datta, S.; Majumdar, A. Opportunities and challenges of III-V nanoelectronics for future high-speed, low-power logic applications. In Proceedings of the IEEE Compound Semiconductor Integrated Circuit Symposium, Palm Springs, CA, USA, 30 October–2 November 2005; p. 4. [Google Scholar] [CrossRef]
- Del Alamo, J.A. Nanometre-scale electronics with III-V compound semiconductors. Nature 2011, 479, 317–323. [Google Scholar] [CrossRef]
- Zhao, H.; Zhuang, C.; Xu, J.; Zhang, Z.; Shen, W.; Tang, H.; Wang, Y.; Xu, T.; Wang, X.; Li, X. Synergistically enhanced sodium/potassium ion storage performance of SnSb alloy particles confined in three-dimensional carbon framework. Ionics 2020, 26, 5019–5028. [Google Scholar] [CrossRef]
- Wang, B.; Jiang, T.; Hou, L.; Wang, H.; Xu, T.; Zhang, Z.; Kong, D.; Li, X.; Wang, Y. N-doped carbon tubes with sodiophilic sites for dendrite free sodium metal anode. Solid State Ionics 2021, 368, 115711. [Google Scholar] [CrossRef]
- Li, X.; Fu, J.; Sun, Y.; Sun, M.; Cheng, S.; Chen, K.; Yang, X.; Lou, Q.; Xu, T.; Shang, Y.; et al. Design and understanding of core/branch-structured VS2 nanosheets@CNTs as high-performance anode materials for lithium-ion batteries. Nanoscale 2019, 11, 13343–13353. [Google Scholar] [CrossRef] [PubMed]
- Fauske, V.T.; Huh, J.; Divitini, G.; Dheeraj, D.L.; Munshi, A.M.; Ducati, C.; Weman, H.; Fimland, B.O.; van Helvoort, A.T. In situ heat-induced replacement of GaAs nanowires by Au. Nano Lett. 2016, 16, 3051–3057. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Li, X.; Tang, Z.; Wei, X.; Chen, Q. Constant-rate dissolution of InAs nanowires in radiolytic water observed by in situ liquid cell TEM. Nanoscale 2018, 10, 19733–19741. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X.; Wen, M.; Hacopian, E.; Chen, W.; Gong, Y.; Zhang, J.; Li, B.; Zhou, W.; Ajayan, P.M.; et al. Brittle Fracture of 2D MoSe2. Adv. Mater. 2016, 29, 1604201. [Google Scholar] [CrossRef]
- Chen, Y.; Burgess, T.; An, X.; Mai, Y.W.; Tan, H.H.; Zou, J.; Ringer, S.P.; Jagadish, C.; Liao, X. Effect of a high density of stacking faults on the young’s modulus of GaAs nanowires. Nano Lett. 2016, 16, 1911–1916. [Google Scholar] [CrossRef] [PubMed]
- Dick, K.A.; Thelander, C.; Samuelson, L.; Caroff, P. Crystal phase engineering in single InAs nanowires. Nano Lett. 2010, 10, 3494–3499. [Google Scholar] [CrossRef] [PubMed]
- Gu, P.; Tani, M.; Kono, S.; Sakai, K.; Zhang, X.C. Study of terahertz radiation from InAs and InSb. J. Appl. Phys. 2002, 91, 5533–5537. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Wang, R.; Ye, P.D. GaSb inversion-mode PMOSFETs with atomic-layer-deposited Al2O3 as gate dielectric. IEEE Electron. Dev. Lett. 2011, 32, 883–885. [Google Scholar] [CrossRef]
- Krishnaraja, A.; Svensson, J.; Memisevic, E.; Zhu, Z.; Persson, A.R.; Lind, E.; Wallenberg, L.R.; Wernersson, L.-E. Tuning of source material for InAs/InGaAsSb/GaSb application-specific vertical nanowire tunnel FETs. ACS Appl. Electron. Mater. 2020, 2, 2882–2887. [Google Scholar] [CrossRef]
- Dey, A.W.; Borg, B.M.; Ganjipour, B.; Ek, M.; Dick, K.A.; Lind, E.; Thelander, C.; Wernersson, L.-E. High-current GaSb/InAs(Sb) nanowire tunnel field-effect transistors. IEEE Electron. Dev. Lett. 2013, 34, 211–213. [Google Scholar] [CrossRef] [Green Version]
- Luo, T.; Liang, B.; Liu, Z.; Xie, X.; Lou, Z.; Shen, G. Single-GaSb-nanowire-based room temperature photodetectors with broad spectral response. Sci. Bull. 2015, 60, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Schroer, M.D.; Petta, J.R. Correlating the nanostructure and electronic properties of InAs nanowires. Nano Lett. 2010, 10, 1618–1622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Peng, M.; Zhang, Y.; Zhang, L.; Peng, R.; Miao, C.; Liu, D.; Han, M.; Feng, R.; Ma, Y.; et al. Ultrahigh hole mobility of Sn-catalyzed GaSb nanowires for high speed infrared photodetectors. Nano Lett. 2019, 19, 5920–5929. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, J.; Paladugu, M.; Guo, Y.; Wang, Y.; Kim, Y.; Joyce, H.J.; Gao, Q.; Tan, H.H.; Jagadish, C. Evolution of epitaxial InAs nanowires on GaAs (111)B. Small 2009, 5, 366–369. [Google Scholar] [CrossRef]
- Jeppsson, M.; Dick, K.A.; Nilsson, H.A.; Sköld, N.; Wagner, J.B.; Caroff, P.; Wernersson, L.-E. Characterization of GaSb nanowires grown by MOVPE. J. Cryst. Growth 2008, 310, 5119–5122. [Google Scholar] [CrossRef]
- Lindberg, C.; Whiticar, A.; Dick, K.A.; Sköld, N.; Nygård, J.; Bolinsson, J. Silver as seed-particle material for GaAs nanowires—Dictating crystal phase and growth direction by substrate orientation. Nano Lett. 2016, 16, 2181–2188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, D.S.; Zavarize, M.; Tizei, L.H.G.; Walls, M.; Ospina, C.A.; Iikawa, F.; Ugarte, D.; Cotta, M.A. Different growth regimes in InP nanowire growth mediated by Ag nanoparticles. Nanotechnology 2017, 28, 505604. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Wang, J.-Y.; Zhang, W.; Zhu, L.; Su, X.; Fan, F.; Fu, Y.; Huang, S.; Wei, D.; Zhang, L.; et al. Dimension engineering of high-quality InAs nanostructures on a wafer scale. Nano Lett. 2019, 19, 1632–1642. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-X.; Liu, L.; Yip, S.; Li, D.; Shen, L.; Zhou, Z.; Han, N.; Hung, T.F.; Pun, E.Y.-B.; Wu, X.; et al. Complementary metal oxide semiconductor-compatible, high-mobility, <111>-oriented GaSb nanowires enabled by vapor-solid-solid chemical vapor deposition. ACS Nano 2017, 11, 4237–4246. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-X.; Yip, S.; Li, D.; Han, N.; Dong, G.; Liang, X.; Shu, L.; Hung, T.F.; Mo, X.; Ho, J.C. Approaching the hole mobility limit of GaSb nanowires. ACS Nano 2015, 9, 9268–9275. [Google Scholar] [CrossRef] [PubMed]
- Johansson, J.; Karlsson, L.S.; Dick, K.A.; Bolinsson, J.; Wacaser, B.A.; Deppert, K.; Samuelson, L. Effects of supersaturation on the crystal structure of gold seeded III−V nanowires. Cryst. Growth Des. 2009, 9, 766–773. [Google Scholar] [CrossRef]
- Kuykendall, T.R.; Altoe, M.V.P.; Ogletree, D.F.; Aloni, S. Catalyst-directed crystallographic orientation control of GaN nanowire growth. Nano Lett. 2014, 14, 6767–6773. [Google Scholar] [CrossRef] [PubMed]
- Dick, K.A.; Caroff, P.; Bolinsson, J.; Messing, M.E.; Johansson, J.; Deppert, K.; Wallenberg, L.R.; Samuelson, L. Control of III–V nanowire crystal structure by growth parameter tuning. Semicond. Sci. Technol. 2010, 25, 24009. [Google Scholar] [CrossRef]
- Borgström, M.T.; Wallentin, J.; Trägårdh, J.; Ramvall, P.; Ek, M.; Wallenberg, L.R.; Samuelson, L.; Deppert, K. In situ etching for total control over axial and radial nanowire growth. Nano Res. 2010, 3, 264–270. [Google Scholar] [CrossRef] [Green Version]
- Plissard, S.R.; Slapak, D.R.; Verheijen, M.A.; Hocevar, M.; Immink, G.W.G.; van Weperen, I.; Nadj-Perge, S.; Frolov, S.M.; Kouwenhoven, L.P.; Bakkers, E.P.A.M. From InSb nanowires to nanocubes: Looking for the sweet spot. Nano Lett. 2012, 12, 1794–1798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, S.; Wallentin, J.; Jacobsson, D.; Deppert, K.; Dick, K.A. A general approach for sharp crystal phase switching in InAs, GaAs, InP, and GaP nanowires using only group V flow. Nano Lett. 2013, 13, 4099–4105. [Google Scholar] [CrossRef] [PubMed]
- Dayeh, S.A.; Yu, E.T.; Wang, D. III−V nanowire growth mechanism: V/III ratio and temperature effects. Nano Lett. 2007, 7, 2486–2490. [Google Scholar] [CrossRef] [PubMed]
- Caroff, P.; Dick, K.A.; Johansson, J.; Messing, M.E.; Deppert, K.; Samuelson, L. Controlled polytypic and twin-plane superlattices in III–V nanowires. Nat. Nanotechnol. 2008, 4, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-x.; Han, N.; Fang, M.; Lin, H.; Cheung, H.-Y.; Yip, S.; Wang, E.-J.; Hung, T.; Wong, C.-Y.; Ho, J.C. Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires. Nat. Commun. 2014, 5, 5429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Love, J.C.; Wolfe, D.B.; Haasch, R.; Chabinyc, M.L.; Paul, K.E.; Whitesides, G.M.; Nuzzo, R.G. Formation and structure of self-assembled monolayers of alkanethiolates on palladium. J. Am. Chem. Soc. 2003, 125, 2597–2609. [Google Scholar] [CrossRef] [PubMed]
- Borg, M.; Schmid, H.; Moselund, K.E.; Signorello, G.; Gignac, L.; Bruley, J.; Breslin, C.; Kanungo, D.; Pratyush, D.K.; Werner, P.; et al. Vertical III–V nanowire device integration on Si(100). Nano Lett. 2014, 14, 1914–1920. [Google Scholar] [CrossRef] [PubMed]
- Guzelian, A.A.; Banin, U.; Kadavanich, A.V.; Peng, X.; Alivisatos, A.P. Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots. Appl. Phys. Lett. 1996, 69, 1432–1434. [Google Scholar] [CrossRef]
- Green, M. Solution routes to III-V semiconductor quantum dots: Nanotechnology: Quatum dots. Curr. Opin. Solid State Mater. Sci. 2002, 6, 355–363. [Google Scholar] [CrossRef]
- Yu, P.; Beard, M.C.; Ellingson, R.J.; Ferrere, S.; Curtis, C.; Drexler, J.; Luiszer, F.; Nozik, A.J. Absorption cross-section and related optical properties of colloidal InAs quantum dots. J. Phys. Chem. B 2005, 109, 7084–7087. [Google Scholar] [CrossRef]
- Chitara, B.; Late, D.J.; Krupanidhi, S.B.; Rao, C.N.R. Room-temperature gas sensors based on gallium nitride nanoparticles. Solid State Commun. 2010, 150, 2053–2056. [Google Scholar] [CrossRef]
- Yong, K.-T.; Ding, H.; Roy, I.; Law, W.-C.; Bergey, E.J.; Maitra, A.; Prasad, P.N. Solution-based synthesis of III–V quantum dots and their applications in gas sensing and bio-imaging. Nano Today 2014, 9, 69–84. [Google Scholar] [CrossRef]
- Yong, K.-T.; Ding, H.; Roy, I.; Law, W.-C.; Bergey, E.J.; Maitra, A.; Prasad, P.N. Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 2009, 3, 502–510. [Google Scholar] [CrossRef]
- Bharali, D.J.; Lucey, D.W.; Jayakumar, H.; Pudavar, H.E.; Prasad, P.N. Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J. Am. Chem. Soc. 2005, 127, 11364–11371. [Google Scholar] [CrossRef] [PubMed]
- Hatami, F.; Ledentsov, N.N.; Grundmann, M.; Böhrer, J.; Heinrichsdorff, F.; Beer, M.; Bimberg, D.; Ruvimov, S.S.; Werner, P.; Gösele, U.; et al. Radiative recombination in type-II GaSb/GaAs quantum dots. Appl. Phys. Lett. 1995, 67, 656–658. [Google Scholar] [CrossRef]
- Bennett, B.R.; Magno, R.; Shanabrook, B.V. Molecular beam epitaxial growth of InSb, GaSb, and AlSb nanometer-scale dots on GaAs. Appl. Phys. Lett. 1996, 68, 505–507. [Google Scholar] [CrossRef]
- Lee, C.-D.; Park, C.; Lee, H.J.; Noh, S.K.; Lee, K.-S.; Park, S.-J. Formation of self-assembled GaAs/AlGaAs quantum dots by low-temperature epitaxy. Appl. Phys. Lett. 1998, 73, 2615–2617. [Google Scholar] [CrossRef] [Green Version]
- Hatami, F.; Kim, S.M.; Yuen, H.B.; Harris, J.S. InSb and InSb:N multiple quantum dots. Appl. Phys. Lett. 2006, 89, 133115. [Google Scholar] [CrossRef]
- Timm, R.; Eisele, H.; Lenz, A.; Becker, S.K.; Grabowski, J.; Kim, T.Y.; Müller-Kirsch, L.; Pötschke, K.; Pohl, U.W.; Bimberg, D.; et al. Structure and intermixing of GaSb/GaAs quantum dots. Appl. Phys. Lett. 2004, 85, 5890–5892. [Google Scholar] [CrossRef]
- Malik, M.A.; O’Brien, P.; Norager, S.; Smith, J. Gallium arsenide nanoparticles: Synthesis and characterisation. J. Mater. Chem. 2003, 13, 2591. [Google Scholar] [CrossRef]
- Janik, J.F.; Wells, R.L.; Young, V.G.; Rheingold, A.L.; Guzei, I.A. New pnictinogallanes [H2GaE(SiMe3)2]3 (E = P, As) formation, structural characterization, and thermal decomposition to afford nanocrystalline GaP and GaAs. J. Am. Chem. Soc. 1998, 120, 532–537. [Google Scholar] [CrossRef]
- Harris, D.K.; Bawendi, M.G. Improved precursor chemistry for the synthesis of III–V quantum dots. J. Am. Chem. Soc. 2012, 134, 20211–20213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Jiao, H.; Wang, X.; Chen, Y.; Wang, H.; Zhu, L.; Jiang, W.; Liu, J.; Sun, L.; Lin, T.; et al. Highly sensitive InSb nanosheets infrared photodetector passivated by ferroelectric polymer. Adv. Funct. Mater. 2020, 30, 2006156. [Google Scholar] [CrossRef]
- Glavin, N.R.; Chabak, K.D.; Heller, E.R.; Moore, E.A.; Prusnick, T.A.; Maruyama, B.; Walker, D.E.; Dorsey, D.L.; Paduano, Q.; Snure, M. Flexible gallium nitride for high-performance, strainable radio-frequency devices. Adv. Mater. 2017, 29, 1701838. [Google Scholar] [CrossRef] [PubMed]
- Kang, N.; Fan, D.; Zhi, J.; Pan, D.; Li, S.; Wang, C.; Guo, J.; Zhao, J.; Xu, H. Two-dimensional quantum transport in free-standing InSb nanosheets. Nano Lett. 2018, 19, 561–569. [Google Scholar] [CrossRef]
- De la Mata, M.; Leturcq, R.; Plissard, S.R.; Rolland, C.; Magén, C.; Arbiol, J.; Caroff, P. Twin-induced InSb nanosails: A convenient high mobility quantum system. Nano Lett. 2016, 16, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Chi, C.-Y.; Chang, C.-C.; Hu, S.; Yeh, T.-W.; Cronin, S.B.; Dapkus, P.D. Twin-free gaas nanosheets by selective area growth: Implications for defect-free nanostructures. Nano Lett. 2013, 13, 2506–2515. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Fan, D.X.; Kang, N.; Zhi, J.H.; Yu, X.Z.; Xu, H.Q.; Zhao, J.H. Free-standing two-dimensional single-crystalline InSb nanosheets. Nano Lett. 2016, 16, 834–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidl, J.; Gluschke, J.G.; Yuan, X.; Naureen, S.; Shahid, N.; Tan, H.H.; Jagadish, C.; Micolich, A.P.; Caroff, P. Regaining a spatial dimension: Mechanically transferrable two-dimensional InAs nanofins grown by selective area epitaxy. Nano Lett. 2019, 19, 4666–4677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazibegovic, S.; Badawy, G.; Buckers, T.L.J.; Leubner, P.; Shen, J.; de Vries, F.K.; Koelling, S.; Kouwenhoven, L.P.; Verheijen, M.A.; Bakkers, E.P.A.M. Bottom-up grown 2D InSb nanostructures. Adv. Mater. 2019, 31, 1808181. [Google Scholar] [CrossRef] [PubMed]
- Maliakkal, C.B.; Jacobsson, D.; Tornberg, M.; Persson, A.R.; Johansson, J.; Wallenberg, R.; Dick, K.A. In situ analysis of catalyst composition during gold catalyzed GaAs nanowire growth. Nat. Commun. 2019, 10, 4577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persson, A.I.; Larsson, M.W.; Stenstrom, S.; Ohlsson, B.J.; Samuelson, L.; Wallenberg, L.R. Solid-phase diffusion mechanism for GaAs nanowire growth. Nat. Mater. 2004, 3, 677–681. [Google Scholar] [CrossRef]
- Lin, P.A.; Liang, D.; Reeves, S.; Gao, X.P.; Sankaran, R.M. Shape-controlled Au particles for InAs nanowire growth. Nano Lett. 2012, 12, 315–320. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, J.; Huang, J.Y.; Wang, J.; Zhang, Z.; Mao, S.X. Dynamic process of phase transition from wurtzite to zinc blende structure in InAs nanowires. Nano Lett. 2013, 13, 6023–6027. [Google Scholar] [CrossRef]
- Jacobsson, D.; Panciera, F.; Tersoff, J.; Reuter, M.C.; Lehmann, S.; Hofmann, S.; Dick, K.A.; Ross, F.M. Interface dynamics and crystal phase switching in GaAs nanowires. Nature 2016, 531, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Koivusalo, E.S.; Hakkarainen, T.V.; Galeti, H.V.A.; Gobato, Y.G.; Dubrovskii, V.G.; Guina, M.D. Deterministic switching of the growth direction of self-catalyzed GaAs nanowires. Nano Lett. 2018, 19, 82–89. [Google Scholar] [CrossRef]
- Panciera, F.; Baraissov, Z.; Patriarche, G.; Dubrovskii, V.G.; Glas, F.; Travers, L.; Mirsaidov, U.; Harmand, J.C. Phase selection in self-catalyzed GaAs nanowires. Nano Lett. 2020, 20, 1669–1675. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, N.; Li, L.; Su, J.; Chen, P.P.; Lu, W.; Gao, Y.; Zou, J. In situ TEM observation of crystal structure transformation in InAs nanowires on atomic scale. Nano Lett. 2018, 18, 6597–6603. [Google Scholar] [CrossRef]
- Dalacu, D.; Kam, A.; Austing, D.G.; Poole, P.J. Droplet dynamics in controlled InAs nanowire interconnections. Nano Lett. 2013, 13, 2676–2681. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Plissard, S.R.; Verheijen, M.A.; Feiner, L.F.; Cavalli, A.; Bakkers, E.P. Reversible switching of InP nanowire growth direction by catalyst engineering. Nano Lett. 2013, 13, 3802–3806. [Google Scholar] [CrossRef] [PubMed]
- Potts, H.; Morgan, N.P.; Tutuncuoglu, G.; Friedl, M.; Morral, A.F. Tuning growth direction of catalyst-free InAs(Sb) nanowires with indium droplets. Nanotechnology 2017, 28, 54001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.; Lee, J.; Pin, M.; Kwon, J.H.; Kim, I.; Yeom, M.S.; Kim, C.S.; Lee, H.S.; Ahn, S.J.; Yi, S.H.; et al. Anisotropic atomistic evolution during the sublimation of polar InAs nanowires. Nanoscale 2019, 11, 6685–6692. [Google Scholar] [CrossRef]
- Tornberg, M.; Jacobsson, D.; Persson, A.R.; Wallenberg, R.; Dick, K.A.; Kodambaka, S. Kinetics of Au-Ga droplet mediated decomposition of GaAs nanowires. Nano Lett. 2019, 19, 3498–3504. [Google Scholar] [CrossRef] [PubMed]
- Pennington, R.S.; Jinschek, J.R.; Wagner, J.B.; Boothroyd, C.B.; Dunin-Borkowski, R.E. Atomic resolution imaging ofin situInAs nanowire dissolution at elevated temperature. J. Phys. Conf. Ser. 2010, 209, 12013. [Google Scholar] [CrossRef] [Green Version]
- Gang, G.W.; Lee, J.H.; Kim, S.Y.; Jeong, T.; Bin Kim, K.; Thi Hong Men, N.; Kim, Y.R.; Ahn, S.J.; Kim, C.S.; Kim, Y.H. Microstructural evolution in self-catalyzed GaAs nanowires during in-situ TEM study. Nanotechnology 2021, 32, 145709. [Google Scholar] [CrossRef] [PubMed]
- Caroff, P.; Wagner, J.B.; Dick, K.A.; Nilsson, H.A.; Jeppsson, M.; Deppert, K.; Samuelson, L.; Wallenberg, L.R.; Wernersson, L.E. High-quality InAs/InSb nanowire heterostructures grown by metal-organic vapor-phase epitaxy. Small 2008, 4, 878–882. [Google Scholar] [CrossRef]
- Baraskar, A.; Jain, V.; Wistey, M.A.; Singisetti, U.; Lee, Y.J.; Thibeault, B.; Gossard, A.; Rodwell, M.J.W. High doping effects on in-situ ohmic contacts to n-InAs. In Proceedings of the 22nd International Conference on Indium Phosphide and Related Materials (IPRM), Takamatsu, Japan, 31 May–4 June 2010. [Google Scholar]
- Jo, M.H.; Shin, J.C. Ti/Ni ohmic contact formation to InAs nanowire. J. Nanosci. Nanotechnol. 2017, 17, 3333–3336. [Google Scholar] [CrossRef]
- Lyu, Y.-T.; Jaw, K.-L.; Lee, C.-T.; Tsai, C.-D.; Lin, Y.-J.; Cherng, Y.-T. Ohmic performance comparison for Ti/Ni/Au and Ti/Pt/Au on InAs/graded InGaAs/GaAs layers. Mater. Chem. Phys. 2000, 63, 122–126. [Google Scholar] [CrossRef]
- Lee, C.-T.; Jaw, K.-L.; Tsai, C.-D. Thermal stability of Ti/Pt/Au ohmic contacts on InAs/graded InGaAs layers. Sol. State Electron. 1998, 42, 871–875. [Google Scholar] [CrossRef]
- Tung, R.T. Schottky-barrier formation at single-crystal metal-semiconductor interfaces. Phys. Rev. Lett. 1984, 52, 461–464. [Google Scholar] [CrossRef]
- Morimoto, T.; Ohguro, T.; Momose, H.S.; Iinuma, T.; Kunishima, I.; Suguro, K.; Katakabe, I.; Nakajima, H.; Tsuchiaki, M.; Ono, M.; et al. Self-aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI. IEEE Trans. Electron. Dev. 1995, 42, 915–922. [Google Scholar] [CrossRef]
- Orrù, M.; Rubini, S.; Roddaro, S. Formation of axial metal–semiconductor junctions in GaAs nanowires by thermal annealing. Semicond. Sci. Technol. 2014, 29, 054001. [Google Scholar] [CrossRef]
- Chueh, Y.-L.; Ford, A.C.; Ho, J.C.; Jacobson, Z.A.; Fan, Z.; Chen, C.-Y.; Chou, L.-J.; Javey, A. Formation and characterization of NixInAs/InAs nanowire heterostructures by solid source reaction. Nano Lett. 2008, 8, 4528–4533. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Wang, Y.; Huang, S.; Zhang, B.; Lim, Y.V.; Sim, G.J.; Valdivia y Alvarado, P.; Ge, Q.; Yang, H.Y. 3D printed compressible quasi-solid-state nickel-iron battery. ACS Nano 2020, 14, 9675–9686. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lim, Y.V.; Huang, S.; Ding, M.; Kong, D.; Pei, Y.; Xu, T.; Shi, Y.; Li, X.; Yang, H.Y. Enhanced sodium storage kinetics by volume regulation and surface engineering via rationally designed hierarchical porous FeP@C/rGO. Nanoscale 2020, 12, 4341–4351. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Dayeh, S.A. Size and orientation effects on the kinetics and structure of nickelide contacts to InGaAs fin structures. Nano Lett. 2015, 15, 3770–3779. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Jungjohann, K.L.; Mook, W.M.; Nogan, J.; Dayeh, S.A. Atomic scale dynamics of contact formation in the cross-section of InGaAs nanowire channels. Nano Lett. 2017, 17, 2189–2196. [Google Scholar] [CrossRef] [PubMed]
- Kinsbron, E.; Gallagher, P.K.; English, A.T. Dissociation of GaAs and Ga0.7Al0.3As during alloying of gold contact films. Sol. State Electron. 1979, 22, 517–524. [Google Scholar] [CrossRef]
- Sebestyen, T.; Mojzes, I.; Szigethy, D. Use of Ga in metal-GaAs contacts to eliminate large As loss peaks. Electron. Lett. 1980, 16, 504–505. [Google Scholar] [CrossRef]
- Holloway, P.H.; Mueller, C.H. Chemical reactions at metal/compound semiconductor interfaces: Au and GaAs. Thin Solid Films 1992, 221, 254–261. [Google Scholar] [CrossRef]
- Bauer, C.L. Investigation of interfacial reactions between thin films of gold and substrates of gallium arsenide by transmission electron microscopy. Surf. Sci. 1986, 168, 395–403. [Google Scholar] [CrossRef]
- Li, W.; Liu, T.; Zhang, J.; Peng, N.; Zheng, R.; Yu, H.; Bai, Y.; Cui, Y.; Shu, J. Commercially available InSb as a high-performance anode for secondary batteries towards superior lithium storage. Sustain. Energy Fuels 2019, 3, 2668–2674. [Google Scholar] [CrossRef]
- Usui, H.; Domi, Y.; Takada, N.; Sakaguchi, H. Reaction mechanism of indium antimonide as a sodium storage material. Cryst. Growth Des. 2020, 21, 218–226. [Google Scholar] [CrossRef]
- Chen, K.; Li, X.; Zang, J.; Zhang, Z.; Wang, Y.; Lou, Q.; Bai, Y.; Fu, J.; Zhuang, C.; Zhang, Y.; et al. Robust VS4@rGO nanocomposite as a high-capacity and long-life cathode material for aqueous zinc-ion batteries. Nanoscale 2021, 13, 12370–12378. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Tang, H.; Xu, T.; Wu, D.; Shi, Z.; Tian, Y.; Li, X. Porous NiO hollow quasi-nanospheres derived from a new metal-organic framework template as high-performance anode materials for lithium ion batteries. Ionics 2017, 23, 3273–3280. [Google Scholar] [CrossRef]
- Park, S.-H. Crystal orientation effects on electronic properties of wurtzite InGaN/GaN quantum wells. J. Appl. Phys. 2002, 91, 9904. [Google Scholar] [CrossRef]
- Ning, F.; Tang, L.-M.; Zhang, Y.; Chen, K.-Q. First-principles study of quantum confinement and surface effects on the electronic properties of InAs nanowires. J. Appl. Phys. 2013, 114, 224304. [Google Scholar] [CrossRef]
- Alam, K.; Sajjad, R.N. Electronic properties and orientation-dependent performance of InAs nanowire transistors. IEEE Trans. Electron. Dev. 2010, 57, 2880–2885. [Google Scholar] [CrossRef]
- Fu, M.; Tang, Z.; Li, X.; Ning, Z.; Pan, D.; Zhao, J.; Wei, X.; Chen, Q. Crystal phase- and orientation-dependent electrical transport properties of InAs nanowires. Nano Lett. 2016, 16, 2478–2484. [Google Scholar] [CrossRef]
- Krogstrup, P.; Jørgensen, H.I.; Heiss, M.; Demichel, O.; Holm, J.V.; Aagesen, M.; Nygard, J.; Fontcuberta i Morral, A. Single-nanowire solar cells beyond the Shockley-Queisser limit. Nat. Photon. 2013, 7, 306–310. [Google Scholar] [CrossRef] [Green Version]
- Ahtapodov, L.; Todorovic, J.; Olk, P.; Mjåland, T.; Slåttnes, P.; Dheeraj, D.L.; van Helvoort, A.T.J.; Fimland, B.-O.; Weman, H. A story told by a single nanowire: Optical properties of wurtzite GaAs. Nano Lett. 2012, 12, 6090–6095. [Google Scholar] [CrossRef] [Green Version]
- Han, N.; Yang, Z.-x.; Wang, F.; Yip, S.; Li, D.; Hung, T.F.; Chen, Y.; Ho, J.C. Crystal orientation controlled photovoltaic properties of multilayer GaAs nanowire arrays. ACS Nano 2016, 10, 6283–6290. [Google Scholar] [CrossRef] [PubMed]
- Mante, P.A.; Lehmann, S.; Anttu, N.; Dick, K.A.; Yartsev, A. Nondestructive complete mechanical characterization of zinc blende and wurtzite GaAs nanowires using time-resolved pump-probe spectroscopy. Nano Lett. 2016, 16, 4792–4798. [Google Scholar] [CrossRef] [PubMed]
- Lenzi, M.; Gnudi, A.; Reggiani, S.; Gnani, E.; Rudan, M.; Baccarani, G. Semiclassical transport in silicon nanowire FETs including surface roughness. J. Comput. Electron. 2008, 7, 355–358. [Google Scholar] [CrossRef]
- Ramayya, E.B.; Vasileska, D.; Goodnick, S.M.; Knezevic, I. Electron mobility in silicon nanowires. IEEE Trans. Nanotechnol. 2007, 6, 113–117. [Google Scholar] [CrossRef] [Green Version]
- Ford, A.C.; Ho, J.C.; Chueh, Y.-L.; Tseng, Y.-C.; Fan, Z.; Guo, J.; Bokor, J.; Javey, A. Diameter-dependent electron mobility of InAs nanowires. Nano Lett. 2009, 9, 360–365. [Google Scholar] [CrossRef]
- Jabeen, F.; Rubini, S.; Martelli, F.; Franciosi, A.; Kolmakov, A.; Gregoratti, L.; Amati, M.; Barinov, A.; Goldoni, A.; Kiskinova, M. Contactless monitoring of the diameter-dependent conductivity of GaAs nanowires. Nano Res. 2010, 3, 706–713. [Google Scholar] [CrossRef] [Green Version]
- Joyce, H.J.; Docherty, C.J.; Gao, Q.; Tan, H.H.; Jagadish, C.; Lloyd-Hughes, J.; Herz, L.M.; Johnston, M.B. Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy. Nanotechnology 2013, 24, 214006. [Google Scholar] [CrossRef]
- Thelander, C.; Caroff, P.; Plissard, S.; Dick, K.A. Electrical properties of InAs1−xSbx and InSb nanowires grown by molecular beam epitaxy. Appl. Phys. Lett. 2012, 100, 232105. [Google Scholar] [CrossRef] [Green Version]
- Sourribes, M.J.L.; Isakov, I.; Panfilova, M.; Liu, H.; Warburton, P.A. Mobility enhancement by Sb-mediated minimisation of stacking fault density in InAs nanowires grown on silicon. Nano Lett. 2014, 14, 1643–1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Wei, X.; Xu, T.; Pan, D.; Zhao, J.; Chen, Q. Remarkable and crystal-structure-dependent piezoelectric and piezoresistive effects of InAs nanowires. Adv. Mater. 2015, 27, 2852–2858. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Zhang, Z.; Hu, Y.; Chen, P.; Lu, W.; Drennan, J.; Han, X.; Zou, J. Orientation dependence of electromechanical characteristics of defect-free InAs nanowires. Nano Lett. 2016, 16, 1787–1793. [Google Scholar] [CrossRef]
- Chen, X.; Yang, X.; Lou, Q.; Zhang, Y.; Chen, Y.; Lu, Y.; Dong, L.; Shan, C.-X. Fabry-Perot interference and piezo-phototronic effect enhanced flexible MoS2 photodetector. Nano Res. 2021. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, X.; Zhang, Y.; Chen, X.; Sun, J.; Xu, Z.; Li, K.; Dong, L.; Shan, C. Ultra-sensitive flexible Ga2O3 solar-blind photodetector array realized via ultra-thin absorbing medium. Nano Res. 2021. [Google Scholar] [CrossRef]
- Lou, Q.; Yang, X.; Liu, K.; Ding, Z.; Qin, J.; Li, Y.; Lv, C.; Shang, Y.; Zhang, Y.; Zhang, Z.; et al. Pressure-induced photoluminescence enhancement and ambient retention in confined carbon dots. Nano Res. 2022, 15, 2545–2551. [Google Scholar] [CrossRef]
- Alekseev, P.A.; Sharov, V.A.; Geydt, P.; Dunaevskiy, M.S.; Lysak, V.V.; Cirlin, G.E.; Reznik, R.R.; Khrebtov, A.I.; Soshnikov, I.P.; Lähderanta, E. Piezoelectric current generation in wurtzite GaAs nanowires. Phys. Status Solidi RRL 2018, 12, 1700358. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Zhang, X.; Sun, Q.; Wei, D.; Chen, P.; Zou, J. Anomalous photoelectrical properties through strain engineering based on a single bent InAsSb nanowire. ACS Appl. Mater. Interfaces 2021, 13, 5691–5698. [Google Scholar] [CrossRef]
- Zeng, L.; Gammer, C.; Ozdol, B.; Nordqvist, T.; Nygard, J.; Krogstrup, P.; Minor, A.M.; Jager, W.; Olsson, E. Correlation between electrical transport and nanoscale strain in InAs/In0.6Ga0.4As core-shell nanowires. Nano Lett. 2018, 18, 4949–4956. [Google Scholar] [CrossRef] [Green Version]
- Erdélyi, R.; Hannibal Madsen, M.; Sáfrán, G.; Hajnal, Z.; Endre Lukács, I.; Fülöp, G.; Csonka, S.; Nygård, J.; Volk, J. In-situ mechanical characterization of wurtzite InAs nanowires. Sol. State Commun. 2012, 152, 1829–1833. [Google Scholar] [CrossRef]
- Santos, d.L.C.; Piquini, P. Diameter dependence of mechanical, electronic, and structural properties of InAs and InP nanowires: A first-principles study. Phys. Rev. B 2010, 81, 075408. [Google Scholar] [CrossRef]
- Li, X.; Wei, X.L.; Xu, T.T.; Ning, Z.Y.; Shu, J.P.; Wang, X.Y.; Pan, D.; Zhao, J.H.; Yang, T.; Chen, Q. Mechanical properties of individual InAs nanowires studied by tensile tests. Appl. Phys. Lett. 2014, 104, 103110. [Google Scholar] [CrossRef]
- Pickering, E.; Bo, A.; Zhan, H.; Liao, X.; Tan, H.H.; Gu, Y. In situ mechanical resonance behaviour of pristine and defective zinc blende GaAs nanowires. Nanoscale 2018, 10, 2588–2595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alekseev, P.A.; Borodin, B.R.; Geydt, P.; Khayrudinov, V.; Bespalova, K.; Kirilenko, D.A.; Reznik, R.R.; Nashchekin, A.V.; Haggren, T.; Lahderanta, E.; et al. Effect of crystal structure on the Young’s modulus of GaP nanowires. Nanotechnology 2021, 32, 385706. [Google Scholar] [CrossRef]
- Chen, B.; Wang, J.; Gao, Q.; Chen, Y.; Liao, X.; Lu, C.; Tan, H.H.; Mai, Y.W.; Zou, J.; Ringer, S.P.; et al. Strengthening brittle semiconductor nanowires through stacking faults: Insights from in situ mechanical testing. Nano Lett. 2013, 13, 4369–4373. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Papadimitriou, I.; Castillo-Rodriguez, M.; Wang, C.; Esteban-Manzanares, G.; Yuan, X.; Tan, H.H.; Molina-Aldareguia, J.M.; Llorca, J. Mechanical behavior of InP twinning superlattice nanowires. Nano Lett. 2019, 19, 4490–4497. [Google Scholar] [CrossRef]
- Chen, B.; Gao, Q.; Wang, Y.; Liao, X.; Mai, Y.W.; Tan, H.H.; Zou, J.; Ringer, S.P.; Jagadish, C. Anelastic behavior in GaAs semiconductor nanowires. Nano Lett. 2013, 13, 3169–3172. [Google Scholar] [CrossRef]
- Wang, Y.; Joyce, H.J.; Gao, Q.; Liao, X.; Tan, H.H.; Zou, J.; Ringer, S.P.; Shan, Z.; Jagadish, C. Self-healing of fractured GaAs nanowires. Nano Lett. 2011, 11, 1546–1549. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.B.; Wang, L.F.; Joyce, H.J.; Gao, Q.; Liao, X.Z.; Mai, Y.W.; Tan, H.H.; Zou, J.; Ringer, S.P.; Gao, H.J.; et al. Super deformability and Young’s modulus of GaAs nanowires. Adv. Mater. 2011, 23, 1356–1360. [Google Scholar] [CrossRef] [PubMed]
- Bao, P.; Wang, Y.; Cui, X.; Gao, Q.; Yen, H.-W.; Liu, H.; Kong Yeoh, W.; Liao, X.; Du, S.; Hoe Tan, H.; et al. Atomic-scale observation of parallel development of super elasticity and reversible plasticity in GaAs nanowires. Appl. Phys. Lett. 2014, 104, 021904. [Google Scholar] [CrossRef]
- Wang, J.; Lu, C.; Wang, Q.; Xiao, P.; Ke, F.; Bai, Y.; Shen, Y.; Wang, Y.; Chen, B.; Liao, X.; et al. Self-healing in fractured GaAs nanowires. Acta Materialia 2012, 60, 5593–5600. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Lin, F.; Zhang, Z.; Chen, X.; Huang, H.; Wang, D.; Tang, J.; Fang, X.; Fang, D.; Ho, J.C.; et al. Enhancing performance of a GaAs/AlGaAs/GaAs nanowire photodetector based on the two-dimensional electron-hole tube structure. Nano Lett. 2020, 20, 2654–2659. [Google Scholar] [CrossRef]
- Dai, X.; Zhang, S.; Wang, Z.; Adamo, G.; Liu, H.; Huang, Y.; Couteau, C.; Soci, C. GaAs/AlGaAs nanowire photodetector. Nano Lett. 2014, 14, 2688–2693. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Pan, D.; Han, Y.; Sun, M.; Zhao, J.; Chen, Q. Vis-IR wide-spectrum photodetector at room temperature based on p–n junction-type GaAs1–xSbx/InAs core–shell nanowire. ACS Appl. Mater. Interfaces 2019, 11, 38973–38981. [Google Scholar] [CrossRef]
- Ali, H.; Zhang, Y.; Tang, J.; Peng, K.; Sun, S.; Sun, Y.; Song, F.; Falak, A.; Wu, S.; Qian, C.; et al. High-responsivity photodetection by a self-catalyzed phase-pure p-GaAs nanowire. Small 2018, 14, 1704429. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Li, X.; Cheng, S.; Shan, C. Microscopic Understanding of the Growth and Structural Evolution of Narrow Bandgap III–V Nanostructures. Materials 2022, 15, 1917. https://doi.org/10.3390/ma15051917
Zhang L, Li X, Cheng S, Shan C. Microscopic Understanding of the Growth and Structural Evolution of Narrow Bandgap III–V Nanostructures. Materials. 2022; 15(5):1917. https://doi.org/10.3390/ma15051917
Chicago/Turabian StyleZhang, Leilei, Xing Li, Shaobo Cheng, and Chongxin Shan. 2022. "Microscopic Understanding of the Growth and Structural Evolution of Narrow Bandgap III–V Nanostructures" Materials 15, no. 5: 1917. https://doi.org/10.3390/ma15051917
APA StyleZhang, L., Li, X., Cheng, S., & Shan, C. (2022). Microscopic Understanding of the Growth and Structural Evolution of Narrow Bandgap III–V Nanostructures. Materials, 15(5), 1917. https://doi.org/10.3390/ma15051917