Evaluation of the Oil-Rich Waste Fillers’ Influence on the Tribological Properties of Polylactide-Based Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Composite Preparation
Pretreatment of the Samples for the Frictional Measurements
2.3. Methods
2.3.1. Microhardness
2.3.2. Vicat Softening Temperature
2.3.3. Scratch Resistance
2.3.4. Scanning Electron Microscopy
2.3.5. Coefficient of Friction
3. Results
3.1. Characteristics of the Materials
3.2. Microhardness
3.3. Scratch Test
3.4. Coefficient of Friction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Castro-Aguirre, E.; Iñiguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 2016, 107, 333–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masutani, K.; Kimura, Y. PLA Synthesis. From the monomer to the polymer. In Poly(lactic acid) Science and Technology: Processing, Properties, Additives and Applications; Jimenez, A., Peltzer, M., Ruseckaite, R., Eds.; Royal Society of Chemistry: London, UK, 2015; pp. 1–36. ISBN 9781782624806. [Google Scholar]
- Yates, M.R.; Barlow, C.Y. Life cycle assessments of biodegradable, commercial biopolymers—A critical review. Resour. Conserv. Recycl. 2013, 78, 54–66. [Google Scholar] [CrossRef]
- DeStefano, V.; Khan, S.; Tabada, A. Applications of PLA in modern medicine. Eng. Regen. 2020, 1, 76–87. [Google Scholar] [CrossRef]
- Lim, L.-T.; Auras, R.; Rubino, M. Processing technologies for poly(lactic acid). Prog. Polym. Sci. 2008, 33, 820–852. [Google Scholar] [CrossRef]
- Rasal, R.M.; Janorkar, A.V.; Hirt, D.E. Poly(lactic acid) modifications. Prog. Polym. Sci. 2010, 35, 338–356. [Google Scholar] [CrossRef]
- Mazzanti, V.; Malagutti, L.; Mollica, F. FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties. Polymers 2019, 11, 1094. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, M.J.; Fernandez, M.D. Effect of organic modifier and clay content on non-isothermal cold crystallization and melting behavior of polylactide/organovermiculite nanocomposites. Polymers 2020, 12, 364. [Google Scholar] [CrossRef] [Green Version]
- Kuciel, S.; Mazur, K.; Hebda, M. The influence of wood and basalt fibres on mechanical, thermal and hydrothermal properties of PLA composites. J. Polym. Environ. 2020, 28, 1204–1215. [Google Scholar]
- Andrzejewski, J.; Krawczak, A.; Wesoły, K.; Szostak, M. Rotational molding of biocomposites with addition of buckwheat husk filler. Structure-property correlation assessment for materials based on polyethylene (PE) and poly(lactic acid) PLA. Compos. Part B Eng. 2020, 202, 108410. [Google Scholar] [CrossRef]
- Sangeetha, V.H.; Deka, H.; Varghese, T.O.; Nayak, S.K. State of the art and future prospectives of poly(lactic acid) based blends and composites. Polym. Compos. 2018, 39, 81–101. [Google Scholar] [CrossRef]
- Banerjee, R.; Ray, S.S. An overview of the recent advances in polylactide-based sustainable nanocomposites. Polym. Eng. Sci. 2021, 61, 617–649. [Google Scholar] [CrossRef]
- Duan, J.; Wu, H.; Fu, W.; Hao, M. Mechanical properties of hybrid sisal/coir fibers reinforced polylactide biocomposites. Polym. Compos. 2018, 39, E188–E199. [Google Scholar] [CrossRef]
- Alam, J.; Alam, M.; Raja, M.; Abduljaleel, Z.; Dass, L.A. MWCNTs-reinforced epoxidized linseed oil plasticized polylactic acid nanocomposite and its electroactive shape memory behaviour. Int. J. Mol. Sci. 2014, 15, 19924–19937. [Google Scholar] [CrossRef] [PubMed]
- Siakeng, R.; Jawaid, M.; Ariffin, H.; Sapuan, S.M.; Asim, M.; Saba, N. Natural fiber reinforced polylactic acid composites: A review. Polym. Compos. 2019, 40, 446–463. [Google Scholar] [CrossRef]
- Sujin Jose, A.; Athijayamani, A.; Jani, S.P. A review on the mechanical properties of bio waste particulate reinforced polymer composites. Mater. Today Proc. 2020, 37, 1757–1760. [Google Scholar] [CrossRef]
- Łopusiewicz, Ł.; Drozłowska, E.; Tarnowiecka-Kuca, A.; Bartkowiak, A.; Mazurkiewicz-Zapałowicz, K.; Salachna, P. Biotransformation of Flaxseed oil cake into bioactive camembert-analogue using lactic acid bacteria, Penicillium camemberti and Geotrichum candidum. Microorganisms 2020, 8, 1266. [Google Scholar] [CrossRef]
- Mysiukiewicz, O.; Barczewski, M. Crystallization of polylactide-based green composites filled with oil-rich waste fillers. J. Polym. Res. 2020, 27, 374. [Google Scholar] [CrossRef]
- Mysiukiewicz, O.; Barczewski, M.; Skórczewska, K.; Szulc, J.; Kloziński, A. Accelerated weathering of polylactide-based composites filled with linseed cake: The influence of time and oil content within the filler. Polymers 2019, 11, 1495. [Google Scholar] [CrossRef] [Green Version]
- Mysiukiewicz, O.; Barczewski, M.; Kloziński, A. The influence of sub-zero conditions on the mechanical properties of polylactide-based composites. Materials 2020, 13, 5789. [Google Scholar] [CrossRef]
- Brostow, W.; Khoja, S.; Simoes, R. Sliding wear behavior of polymers studied with mesoscopic molecular dynamics. J. Mater. Sci. 2017, 52, 1203–1213. [Google Scholar] [CrossRef]
- Myshkin, N.K.; Petrokovets, M.I.; Kovalev, A.V. Tribology of polymers: Adhesion, friction, wear, and mass-transfer. Tribol. Int. 2005, 38, 910–921. [Google Scholar] [CrossRef]
- Cho, D.-H.; Bhushan, B.; Dyess, J. Mechanisms of static and kinetic friction of polypropylene, polyethylene terephthalate, and high-density polyethylene pairs during sliding. Tribol. Int. 2016, 94, 165–175. [Google Scholar] [CrossRef]
- Auras, R.; Harte, B.; Selke, S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004, 4, 835–864. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, P.K.; Singh, I.; Madaan, J. Tribological behavior of natural fiber reinforced PLA composites. Wear 2013, 297, 829–840. [Google Scholar] [CrossRef]
- Ramachandran, M.G.; Rajeswari, N. Influence of nano silica on mechanical and tribological properties of additive manufactured PLA bio nanocomposite. Silicon 2022, 14, 703–709. [Google Scholar] [CrossRef]
- Quinchia, L.A.; Delgado, M.A.; Reddyhoff, T.; Gallegos, C.; Spikes, H.A. Tribological studies of potential vegetable oil-based lubricants containing environmentally friendly viscosity modifiers. Tribol. Int. 2014, 69, 110–117. [Google Scholar] [CrossRef]
- Myshkin, N.K.; Grigoriev, A.Y.; Kavaliova, I.N. Influence of composition of plant oils on their tribological properties. Tribol. Ind. 2017, 39, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Trzepieciński, T. Tribological performance of environmentally friendly bio-degradable lubricants based on a combination of boric acid and bio-based oils. Materials 2020, 13, 3892. [Google Scholar] [CrossRef]
- Mysiukiewicz, O.; Barczewski, M. Utilization of linseed cake as a postagricultural functional filler for poly(lactic acid) green composites. J. Appl. Polym. Sci. 2019, 136, 47152. [Google Scholar] [CrossRef]
- Barczewski, M.; Matykiewicz, D.; Mysiukiewicz, O.; Kloziński, A.; Andrzejewski, J.; Piasecki, A. Synergistic effect of different basalt fillers and annealing on the structure and properties of polylactide composites. Polym. Test. 2020, 89, 106628. [Google Scholar] [CrossRef]
- Okutan Baba, B.; Ozmen, U. Preparation and mechanical characterization of chicken feather/PLA composites. Polym. Compos. 2017, 38, 837–845. [Google Scholar] [CrossRef]
- Raj Sachin, S.; Kandasamy Kannan, T.; Rajasekar, R. Effect of wood particulate size on the mechanical properties of PLA biocomposite. Pigment Resin Technol. 2020, 49, 465–472. [Google Scholar] [CrossRef]
- Dadras Chomachayi, M.; Jalali-arani, A.; Beltrán, F.R.; de la Orden, M.U.; Martínez Urreaga, J. Biodegradable Nanocomposites Developed from PLA/PCL Blends and silk fibroin nanoparticles: Study on the microstructure, thermal behavior, crystallinity and performance. J. Polym. Environ. 2020, 28, 1252–1264. [Google Scholar] [CrossRef]
- Díez-Rodríguez, T.M.; Blázquez-Blázquez, E.; Pérez, E.; Cerrada, M.L. Composites based on poly(Lactic acid) (pla) and sba-15: Effect of mesoporous silica on thermal stability and on isothermal crystallization from either glass or molten state. Polymers 2020, 12, 2743. [Google Scholar] [CrossRef] [PubMed]
- Balart, J.F.; Fombuena, V.; Fenollar, O.; Boronat, T.; Sánchez-Nacher, L. Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Compos. Part B Eng. 2016, 86, 168–177. [Google Scholar] [CrossRef]
- Agüero, Á.; Lascano, D.; Garcia-Sanoguera, D.; Fenollar, O.; Torres-Giner, S. Valorization of linen processing by-products for the development of injection-molded green composite pieces of polylactide with improved performance. Sustain. 2020, 12, 652. [Google Scholar] [CrossRef] [Green Version]
- Yousif, B.F.; El-Tayeb, N.S.M. Adhesive Wear Performance of T-OPRP and UT-OPRP Composites. Tribol. Lett. 2008, 32, 199–208. [Google Scholar] [CrossRef]
- Carrasco, F.; Pagès, P.; Gámez-Pérez, J.; Santana, O.O.; Maspoch, M.L. Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polym. Degrad. Stab. 2010, 95, 116–125. [Google Scholar] [CrossRef]
- Ferri, J.M.; Samper, M.D.; García-Sanoguera, D.; Reig, M.J.; Fenollar, O.; Balart, R. Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). J. Mater. Sci. 2016, 51, 5356–5366. [Google Scholar] [CrossRef]
- Yi, L.; Zhang, J.; Yang, J.; Sun, F.; Zhang, H.; Zhao, L. Effect of annealing induced crystalline evolution on the scratch resistance of polylactide. Tribol. Int. 2018, 128, 328–336. [Google Scholar] [CrossRef]
- Pušnik Crešnar, K.; Bek, M.; Luxbacher, T.; Bruncko, M.; Fras Zemljic, L. Insight into the surface properties of wood fiber-polymer composites. Polymers 2021, 13, 1535. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Han, C.; Yu, Y.; Xiao, L.; Shao, Y. Crystallization behaviors of poly(lactic acid) composites fabricated using functionalized eggshell powder and poly(ethylene glycol). Thermochim. Acta 2018, 663, 67–76. [Google Scholar] [CrossRef]
- Khakestani, M.; Jafari, S.H.; Zahedi, P.; Bagheri, R.; Hajiaghaee, R. Physical, morphological, and biological studies on PLA/nHA composite nanofibrous webs containing Equisetum arvense herbal extract for bone tissue engineering. J. Appl. Polym. Sci. 2017, 134, 1–10. [Google Scholar] [CrossRef]
- Khattab, R.Y.; Arntfield, S.D. Functional properties of raw and processed canola meal. LWT-Food Sci. Technol. 2009, 42, 1119–1124. [Google Scholar] [CrossRef]
- Kanakannavar, S.; Pitchaimani, J.; Ramesh, M.R. Tribological behaviour of natural fibre 3D braided woven fabric reinforced PLA composites. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2020, 235, 1353–1364. [Google Scholar] [CrossRef]
- Ertane, E.G.; Dorner-Reisel, A.; Baran, O.; Welzel, T.; Matner, V.; Svoboda, S. Processing and Wear Behaviour of 3D Printed PLA Reinforced with Biogenic Carbon. Adv. Tribol. 2018, 2018, 1763182. [Google Scholar] [CrossRef] [Green Version]
- Hanon, M.M.; Marczis, R.; Zsidai, L. Impact of 3D-printing structure on the tribological properties of polymers. Ind. Lubr. Tribol. 2020, 72, 811–818. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Siengchin, S.; Senthil Muthu Kumar, T.; Karthikeyan, S.; Chandrasekar, M.; Yorseng, K.; Ungtrakul, T.; Rajini, N. Tribological characterization of cellulose fiber-reinforced polymer composites. Tribol. Polym. Compos. 2021, 2021, 95–113. [Google Scholar]
- Bahadur, S. The development of transfer layers and their role in polymer tribology. Wear 2000, 245, 92–99. [Google Scholar] [CrossRef]
- Ye, J.; Burris, D.L.; Xie, T. A review of transfer films and their role in ultra-low-wear sliding of polymers. Lubricants 2016, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Bajpai, P.K.; Singh, I.; Madaan, J. Frictional and adhesive wear performance of natural fibre reinforced polypropylene composites. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2013, 227, 385–392. [Google Scholar] [CrossRef]
- Menezes, P.L.; Kishore; Kailas, S.V.; Lovell, M.R. Friction and transfer layer formation in polymer-steel tribo-system: Role of surface texture and roughness parameters. Wear 2011, 271, 2213–2221. [Google Scholar] [CrossRef]
- Cardoso, P.H.M.; de Oliveira, M.F.L.; de Oliveira, M.G.; da Silva Moreira Thiré, R.M. 3D printed parts of polylactic acid reinforced with carbon black and alumina nanofillers for tribological applications. Macromol. Symp. 2020, 394, 1–13. [Google Scholar] [CrossRef]
- Cho, D.H.; Bhushan, B. Nanofriction and nanowear of polypropylene, polyethylene terephthalate, and high-density polyethylene during sliding. Wear 2016, 352–353, 18–23. [Google Scholar] [CrossRef]
Property | PLA | PLA-LC0.9 | PLA-LC4.6 | PLA-LC17.7 | PLA-LC30.4 | PLA-LC39.8 |
---|---|---|---|---|---|---|
Tensile strength [MPa] 1 | 74.3 ± 0.39 | 59.4 ± 0.18 | 56.5 ± 2.43 | 53.7 ± 0.64 | 46.4 ± 0.87 | 36.7 ± 0.22 |
Tensile modulus [MPa] 1 | 2270 ± 400 | 2430 ± 65 | 2270 ± 88 | 2160 ± 102 | 1890 ± 44 | 1650 ± 90 |
Elongation at break [%] 1 | 8.0 ± 1.80 | 4.5 ± 0.21 | 4.4 ± 0.37 | 4.9 ± 0.27 | 16.0 ± 6.0 | 45.0 ± 5.4 |
Impact strength [kJ/m2] 2 | 2.38 ± 0.20 | 1.83 ± 0.30 | 2.17 ± 0.40 | 2.34 ± 0.40 | 2.42 ± 0.40 | 3.12 ± 0.10 |
Glass transition [°C] 1 | 70.2 | 69.6 | 68.2 | 68.2 | 67.8 | 67.4 |
Crystallinity [%] 1 | 32.5 | 40.2 | 40.9 | 43.7 | 57.6 | 65.2 |
Sample | Mass Loss [10−4 g] | Density 1 [g/cm3] | Volume Difference [10−4 mm3] | Specific Wear Rate [10−8 mm3/(Nm)] |
---|---|---|---|---|
PLA | 0.7 | 1.239 | 0.6 | 1.3 |
PLA-LC0.9 | 2.8 | 1.246 | 2.2 | 5.2 |
PLA-LC4.6 | 1.3 | 1.249 | 0.10 | 2.4 |
PLA-LC17.7 | 2.0 | 1.238 | 0.16 | 3.7 |
PLA-LC30.4 | 1.6 | 1.228 | 0.13 | 3.0 |
PLA-LC39.8 | 1.3 | 1.209 | 0.11 | 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mysiukiewicz, O.; Sulej-Chojnacka, J.; Kotkowiak, M.; Wiśniewski, T.; Piasecki, A.; Barczewski, M. Evaluation of the Oil-Rich Waste Fillers’ Influence on the Tribological Properties of Polylactide-Based Composites. Materials 2022, 15, 1237. https://doi.org/10.3390/ma15031237
Mysiukiewicz O, Sulej-Chojnacka J, Kotkowiak M, Wiśniewski T, Piasecki A, Barczewski M. Evaluation of the Oil-Rich Waste Fillers’ Influence on the Tribological Properties of Polylactide-Based Composites. Materials. 2022; 15(3):1237. https://doi.org/10.3390/ma15031237
Chicago/Turabian StyleMysiukiewicz, Olga, Joanna Sulej-Chojnacka, Mateusz Kotkowiak, Tomasz Wiśniewski, Adam Piasecki, and Mateusz Barczewski. 2022. "Evaluation of the Oil-Rich Waste Fillers’ Influence on the Tribological Properties of Polylactide-Based Composites" Materials 15, no. 3: 1237. https://doi.org/10.3390/ma15031237
APA StyleMysiukiewicz, O., Sulej-Chojnacka, J., Kotkowiak, M., Wiśniewski, T., Piasecki, A., & Barczewski, M. (2022). Evaluation of the Oil-Rich Waste Fillers’ Influence on the Tribological Properties of Polylactide-Based Composites. Materials, 15(3), 1237. https://doi.org/10.3390/ma15031237