Impact of the Heat Treatment Duration on Color and Selected Mechanical and Chemical Properties of Scots Pine Wood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Heat Treatment of Wood
2.2.2. Physical and Mechanical Properties
- -
- ΔL—the difference in the lightness
- -
- Δa; ∆b—the chromatic coordinates.
2.2.3. Chemical Analysis
2.2.4. Statistical Analysis
3. Results and discussion
3.1. Wood Color
3.2. Mechanical Properties
3.3. Chemical Composition of Heat-Treated Wood
3.4. Ultimate Analysis of Heat-Treated Wood
3.5. Infrared Spectroscopy of Heat-Treated Wood
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pétrissans, M.; Géradin, P.; El-Bakali, I.; Seraj, M. Wettability of heat-treated wood. Holzforschung 2003, 57, 301–307. [Google Scholar] [CrossRef]
- Hill, C.A.S. Thermal Modification of Wood. In Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons, Ltd.: Chichester, UK, 2006; pp. 99–110. ISBN 9780470021729. [Google Scholar]
- Kollmann, F.; Fengel, D. Changes in the chemical composition of wood by heat treatment. Holz Roh-Und Werkst. 1965, 12, 461–468. [Google Scholar] [CrossRef]
- Hirai, N.; Sobue, N.; Asano, I. Studies on piezoelectric effect of wood. IV. Effects of heat treatment on cellulose crystallities and piezoelectric effect of wood. Mokuzai Gakkaishi 1972, 18, 535–542. [Google Scholar]
- Kymäläinen, M.; Mlouka, S.B.; Belt, T.; Merk, V.; Liljeström, V.; Hänninen, T.; Uimonen, T.; Kostiainen, M.; Rautkari, L. Chemical, water vapour sorption and ultrastructural analysis of Scots pine wood thermally modified in high-pressure reactor under saturated steam. J. Mater. Sci. 2018, 53, 3027–3037. [Google Scholar] [CrossRef]
- Sivrikaya, H.; Tesařová, D.; Jeřábková, E.; Can, A. Color change and emission of volatile organic compounds from Scots pine exposed to heat and vacuum-heat treatment. J. Build. Eng. 2019, 26, 100918. [Google Scholar] [CrossRef]
- Altgen, M.; Hofmann, T.; Militz, H. Wood moisture content during the thermal modification process affects the improvement in hygroscopicity of Scots pine sapwood. Wood Sci. Technol. 2016, 50, 1181–1195. [Google Scholar] [CrossRef]
- Hillis, W.E. High temperature and chemical effects on wood stability. Part 1: General considerations. J. Wood Sci. Technol. 1984, 18, 281–293. [Google Scholar] [CrossRef]
- Ewert, M.; Scheiding, W. Thermoholz in der Anwendung-Eigenschaften und Möglichkeiten. Holztechnologie 2005, 46, 22–29. [Google Scholar]
- Pfriem, A.; Horbens, M.; Beyer, M.; Peters, J. Untersuchung von Extraktstoffen aus termisch modifizierter Rotbuche (Fagus sylvatica L.) auf ihre fungizide Wirkung. Holztechnologie 2009, 50, 32–36. [Google Scholar]
- González-Peña, M.M.; Hale, M.D.C. The relationship between mechanical performance and chemical changes in thermally modified wood. In Proceedings of the Third European Conference on Wood Modification, Cardiff, UK, 15–16 October 2007. [Google Scholar]
- Boonstra, M.J. A Two-Stage Thermal Modification of Wood. Ph.D. Thesis, Ghent University and Université Henry Poincaré-Nancy 1, Belgium, France, 2008. [Google Scholar]
- Bekhta, P.; Niemz, P. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 2003, 57, 539–546. [Google Scholar] [CrossRef]
- Esteves, B.; Pereira, H. Wood modification by heat treatment: A review. BioResources 2009, 4, 370–404. [Google Scholar] [CrossRef]
- Boonstra, M.J.; Van Acker, J.; Tjeerdsma, B.F.; Kegel, E.F. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann. For. Sci. 2007, 64, 679–690. [Google Scholar] [CrossRef] [Green Version]
- Bourgois, P.J.; Janin, G.; Guyonnet, R. The colour measurement–a fast method to study and to optimize the chemical transformations undergone in thermally-treated wood. Holzforschung 1991, 45, 377–382. [Google Scholar] [CrossRef]
- Brischke, C.; Walzbacher, C.R.; Brandt, K.; Rapp, A.O. Quality control of thermal modified timber: Interrelationship between heat treatment intensities and CIE L*a*b* colour data on homogenized wood samples. Holzforschung 2007, 61, 19–22. [Google Scholar] [CrossRef]
- Johansson, D.; Morén, T. The potential of colour measurement for strength prediction of thermally treated wood. Holz Roh-Und Werkst. 2006, 64, 104–110. [Google Scholar] [CrossRef]
- González-Peña, M.M.; Hale, M.D.C. Colour in thermally modified wood of beech, Norway spruce and Scots pine. Part 1: Colour evolution and colour changes. Holzforschung 2009, 63, 385–393. [Google Scholar] [CrossRef]
- Krauss, A.; Piernik, M.; Pinkowski, G. Cutting power during milling of thermally modified pine wood. Drv. Ind. 2016, 67, 215–222. [Google Scholar] [CrossRef]
- Piernik, M.; Rogoziński, T.; Krauss, A.; Pinkowski, G. The influence of the thermal modification of pine (Pinus sylvestris L.) wood on the creation of fine dust particles in plane milling. J. Occup. Health 2019, 61, 481–488. [Google Scholar] [CrossRef] [Green Version]
- PN-ISO 7724-3:2003; Farby i lakiery–Kolorymetria–Część 3: Obliczanie różnic barwy. Polish Committee for Standarization: Warsaw, Poland, 2003.
- ISO 13061-1:2014; Physical and Mechanical Properties of Wood—Test. Methods for Small Clear Wood Specimens—Part 1: Determination of Moisture Content for Physical and Mechanical Tests. International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 13061-2:2014; Physical and Mechanical Properties of Wood—Test. Methods for Small Clear Wood Specimens—Part 2: Determination of Density for Physical and Mechanical Tests. International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 13061-17:2017; Physical and Mechanical Properties of Wood—Test. Methods for Small Clear Wood Specimens—Part 17: Determination of Ultimate Stress in Compression Parallel to Grain. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 13061-5:2020; Physical and Mechanical Properties of Wood—Test. Methods For Small Clear Wood Specimens—Part 5: Determination of Strength in Compression Perpendicular to Grain. International Organization for Standardization: Geneva, Switzerland, 2020.
- PN-D-04107:1981; Drewno. Oznaczanie wytrzymałości na rozciąganie wzdłuż włókien. Polish Committee for Standarization: Warsaw, Poland, 1981.
- PN-D-04104:1979; Drewno. Oznaczanie udarności i wytrzymałości na zginanie dynamiczne. Polish Committee for Standarization: Warsaw, Poland, 1979.
- TAPPI T 204 cm-07; Solvent Extractives of Wood and Pulp. Technical Association of the Pulp and Paper Industry (TAPPI): Atlanta, GA, USA, 2007.
- Seifert, K. Zur Frage der Cellulose-Schnellbestimmung nach der Acety-laceton-Methode. Papier 1960, 14, 104–106. [Google Scholar]
- TAPPI T 222 om-06; Acid-Insoluble Lignin in Wood and Pulp. Technical Association of the Pulp and Paper Industry (TAPPI): Atlanta, GA, USA, 2006.
- TAPPI T 9 wd-75; Holocellulose in Wood. Technical Association of the Pulp and Paper Industry (TAPPI): Atlanta, GA, USA, 2006.
- Nelson, M.L.; O’Connor, R.T. Relation of certain infrared bands to cellulose crystallinity and crystal lat-tice type. Part I. Spectra types I, II, III and amorphous cellulose. J. Appl. Polym. Sci. 1964, 8, 1311–1324. [Google Scholar] [CrossRef]
- Carrillo, F.; Colom, X.; Suñol, J.J.; Saurina, J. Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. Eur. Polym. J. 2004, 40, 2229–2234. [Google Scholar] [CrossRef]
- Oh, S.Y.; Yoo, D.I.; Shin, Y.; Seo, G. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr. Res. 2005, 340, 417–428. [Google Scholar] [CrossRef]
- Müller, U.; Rätzsch, M.; Schwanninger, M.; Steiner, M.; Zöbl, H. Yellowing and IR-changes of spruce wood as result of UV-irradiation. J. Photochem. Photobiol. Biol. 2003, 69, 97–105. [Google Scholar] [CrossRef]
- Korkut, S.; Akgül, M.; Dündar, T. The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood. Bioresour. Technol. 2008, 99, 1861–1868. [Google Scholar] [CrossRef] [PubMed]
- Parysek, M. Badania Zmian Składu Chemicznego Drewna Zmodyfikowanego Termicznie. Ph.D. Thesis, Poznań University of Life Sciences, Poznań, Poland, 2010. [Google Scholar]
- Hill, C.; Altgen, M.; Rautkari, L. Thermal modification of wood—a review: Chemical changes and hygroscopicity. J. Mater. Sci. 2021, 56, 6581–6614. [Google Scholar] [CrossRef]
- Rousset, P.; Lapierre, C.; Pollet, B.; Quirino, W.; Perre, P. Effect of severe thermal treatment on spruce and beech wood lignins. Ann. For. Sci. 2009, 66, 110. [Google Scholar] [CrossRef] [Green Version]
- Vybohova, E.; Balazova, Z. The effect of heat treatment on the chemical composition of Ash wood. BioResources 2018, 13, 8394–8408. [Google Scholar] [CrossRef]
- Sikora, A.; Kačík, F.; Gaff, M.; Vondrová, V.; Bubeníková, T.; Kubovský, I. Impact of thermal modification on color and chemical changes of spruce and oak wood. J. Wood Sci. 2018, 64, 406–416. [Google Scholar] [CrossRef]
- Chaouch, M.; Dumarçay, S.; Pétrissans, A.; Pétrissans, M.; Gérardin, P. Effect of heat treatment intensity on some conferred properties of different European softwood and hardwood species. Wood Sci. Technol. 2013, 47, 663–673. [Google Scholar] [CrossRef]
- Boonstra, M.J.; Tjeerdsma, B. Chemical analysis of heat treated softwoods. Holz Als Roh-Und Werkst. 2006, 64, 204–211. [Google Scholar] [CrossRef]
- Mohareb, A.; Sirmah, P.; Pétrissans, M.; Gérardin, P. Effect of heat treatment intensity on wood chemical composition and decay durability of Pinus patula. Eur. J. Wood Wood Prod. 2012, 70, 519–524. [Google Scholar] [CrossRef]
- Willems, W.; Lykidis, C.; Altgen, M.; Clauder, L. Quality control methods for thermally modified wood. Holzforschung 2015, 69, 875–884. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, Y.; Cao, J.; Sun, W. Correlation between dynamic wetting behavior and chemical components of thermally modified wood. Appl. Surf. Sci. 2015, 324, 332–338. [Google Scholar] [CrossRef]
- González-Peña, M.M.; Curling, S.F.; Hale, M.D.C. On the effect of heat on the chemical composition and dimensions of thermally-modified wood. Polym. Degrad. Stab. 2009, 94, 2184–2193. [Google Scholar] [CrossRef]
- Miklečić, J.; Jirouš-Rajković, V.; Antonović, A.; Španić, N. Discolouration of thermally modified wood during simulated indoor sunlight exposure. BioResources 2011, 6, 434–446. [Google Scholar] [CrossRef]
- Shen, H.; Cao, J.; Sun, W.; Peng, Y. Influence of post-extraction on photostability of thermally modified Scots pine wood during artificial weathering. BioResources 2016, 11, 4512–4525. [Google Scholar] [CrossRef] [Green Version]
- Bhuiyan, M.T.R.; Hirai, N.; Sobue, N. Changes of crystallinity of wood cellulose by heat treatment under dried and moist conditions. J. Wood Sci. 2000, 46, 431–436. [Google Scholar] [CrossRef]
- Akgül, M.; Gümüskaya, E.; Korkut, S. Crystalline structure of heat-treated Scot pine [Pinus sylvestris L.] and Uludag fir [Abies nordmannina (Stev.) subbsp. bornmulleriana (Mattf.)] wood. Wood Sci. Technol. 2007, 41, 281–289. [Google Scholar] [CrossRef]
- Kasprzyk, H.; Wichlacz, K. Some aspects of estimation of the crystallinity of gamma radiation wood cellulose by FTIR spectroscopy and X-ray diffraction techniques. Acta Sci. Pol. Silvarum 2004, 3, 73–84. [Google Scholar]
- Poletto, M.; Zattera, A.J.; Forte, M.M.C.; Santana, R.M.C. Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresour. Technol. 2012, 109, 148–153. [Google Scholar] [CrossRef]
- Grześkiewicz, M.; Dąbrowski, P. Badanie wybranych właściwości fizycznych i mechanicznych drewna modyfikowanego-ThermoWood. Przemysł Drzewny 2004, 55, 33–36. [Google Scholar]
Time t (h) | Parameters of Color (–) | |||
---|---|---|---|---|
∆L | ∆a | ∆b | ∆E | |
1 | −41.49 ± 2.72 | 10.10 ± 0.49 | 23.27 ± 1.15 | 48.40 ± 2.09 |
2 | −49.53 ± 2.01 | 10.52 ± 0.51 | 19.18 ± 1.02 | 54.17 ± 1.68 |
4 | −47.93 ± 1.21 | 10.19 ± 0.49 | 20.18 ± 1.02 | 53.01 ± 1.00 |
6 | −52.19 ± 1.54 | 9.45 ± 0.51 | 17.24 ± 1.11 | 55.79 ± 1.20 |
8 | −55.85 ± 1.31 | 8.41 ± 0.36 | 13.73 ± 1.02 | 58.15 ± 1.02 |
Control * | −12.60 ± 0.73 | 4.75 ± 0.37 | 24.69 ± 0.95 | 28.13 ± 1.14 |
Parameters of Color | Constants | Correlation Coefficient | |
---|---|---|---|
a | b | R | |
∆E | 1.048 | 49.712 | 0.77 |
∆L | −1.574 | −43.085 | 0.81 |
∆a | −0.267 | 10.872 | 0.76 |
∆b | −0.994 | 22.553 | 0.83 |
Mechanical Properties | Heat Treatment Duration (h) | |||||
---|---|---|---|---|---|---|
1 | 2 | 4 | 6 | 8 | Control * | |
CSL [MPa] | 64.0 ± 10.5 | 64.9 ± 4.4 | 67.9 ± 3.4 | 59.9 ± 4.8 | 55.7 ± 2.3 | 70.2 ± 4.3 |
CST [MPa] | 3.9 ± 0.5 | 4.2 ± 0.4 | 5.4 ± 0.5 | 4.3 ± 0.1 | 4.6 ± 0.2 | 7.5 ± 0.3 |
CSR [MPa] | 2.3 ± 0.3 | 2.4 ± 0.3 | 2.7 ± 0.3 | 2.5 ± 0.3 | 2.3 ± 0.2 | 3.8 ± 0.5 |
TSL [MPa] | 63.4 ± 8.0 | 58.5 ± 8.2 | 58.4 ± 11.9 | 55.0 ± 6.9 | 56.6 ± 15.6 | 100.1 ± 14.3 |
MOEL [GPa] | 12.6 ± 1.0 | 14.9 ± 0.7 | 16.2 ± 0.7 | 12.5 ± 0.9 | 15.4 ± 0.5 | 13.9 ± 1.4 |
IS [J/cm2] | 2.81 ± 0.30 | 2.61 ± 0.37 | 1.54 ± 0.27 | 2.40 ± 0.34 | 1.72 ± 0.43 | 3.85 ± 0.55 |
Content (%) | Heat Treatment Duration (h) | |||||
---|---|---|---|---|---|---|
1 | 2 | 4 | 6 | 8 | Control | |
Extractives | 11.80 b ± 0.01 | 11.60 b,c ± 0.00 | 11.24 c ± 0.01 | 10.80 d ± 0.10 | 11.50 b,c ± 0.10 | 13.29 a ± 0.11 |
Cellulose | 46.65 e ± 0.38 | 47.67 d ± 0.18 | 57.29 a ± 0.16 | 52.06 b ± 0.32 | 50.42 c ± 0.03 | 45.24 f ± 0.30 |
Hemicelluloses * | 20.45 | 19.58 | 6.32 | 8.92 | 10.08 | 42.26 |
Holocellulose | 67.10 b ± 0.11 | 67.26 b ± 0.10 | 63.61 c ± 0.09 | 60.98 d ± 0.06 | 60.50 d ± 0.33 | 87.48 a ± 0.08 |
Lignin | 29.57 d ± 0.18 | 30.87 c ± 0.17 | 32.40 a,b ± 0.02 | 32.55 a ± 0.09 | 32.00 b ± 0.04 | 26.91 e ± 0.27 |
H/L | 2.26 | 2.17 | 1.96 | 1.87 | 1.89 | 3.25 |
C/L | 1.57 | 1.54 | 1.76 | 1.59 | 1.57 | 1.68 |
Content of Element (%) | Heat Treatment Duration (h) | |||||
---|---|---|---|---|---|---|
1 | 2 | 4 | 6 | 8 | Control | |
Nitrogen | 0.057 b ± 0.001 | 0.058 a,b ± 0.003 | 0.061 a,b ± 0.001 | 0.060 a,b ± 0.000 | 0.067 a ± 0.001 | 0.062 a,b ± 0.003 |
Carbon | 50.076 b ± 0.169 | 50.137 b ± 0.068 | 50.327 b ± 0.059 | 51.238 a ± 0.146 | 51.561 a ± 0.069 | 47.757 c ± 0.013 |
Hydrogen | 6.075 a ± 0.022 | 6.124 a ± 0.003 | 6.111 a ± 0.008 | 6.037 a ± 0.001 | 6.028 a ± 0.009 | 6.170 a ± 0.069 |
Oxygen | 43.382 b ± 0.134 | 43.431 c ± 0.087 | 43.261 d ± 0.016 | 42.414 e ± 0.143 | 42.124 f ± 0.046 | 45.831 a ± 0.080 |
O/C ratio | 0.870 | 0.866 | 0.860 | 0.828 | 0.817 | 0.960 |
H/C ratio | 0.121 | 0.122 | 0.121 | 0.118 | 0.117 | 0.129 |
Heat Treatment Duration (h) | ||||||
---|---|---|---|---|---|---|
1 | 2 | 4 | 6 | 8 | Control | |
TCI (1372/2885) * | 1.43 ± 0.01 | 1.48 ± 0.02 | 1.46 ± 0.06 | 1.49 ± 0.05 | 1.50 ± 0.03 | 1.38 ± 0.06 |
LOI (1427/896) * | 0.60 ± 0.02 | 0.65 ± 0.01 | 0.65 ± 0.09 | 0.68 ± 0.02 | 0.68 ± 0.05 | 0.62 ± 0.01 |
HBI (3400/1320) | 1.25 ± 0.01 | 1.22 ± 0.03 | 1.18 ± 0.02 | 1.15 ± 0.01 | 1.05 ± 0.01 | 1.34 ± 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piernik, M.; Woźniak, M.; Pinkowski, G.; Szentner, K.; Ratajczak, I.; Krauss, A. Impact of the Heat Treatment Duration on Color and Selected Mechanical and Chemical Properties of Scots Pine Wood. Materials 2022, 15, 5425. https://doi.org/10.3390/ma15155425
Piernik M, Woźniak M, Pinkowski G, Szentner K, Ratajczak I, Krauss A. Impact of the Heat Treatment Duration on Color and Selected Mechanical and Chemical Properties of Scots Pine Wood. Materials. 2022; 15(15):5425. https://doi.org/10.3390/ma15155425
Chicago/Turabian StylePiernik, Magdalena, Magdalena Woźniak, Grzegorz Pinkowski, Kinga Szentner, Izabela Ratajczak, and Andrzej Krauss. 2022. "Impact of the Heat Treatment Duration on Color and Selected Mechanical and Chemical Properties of Scots Pine Wood" Materials 15, no. 15: 5425. https://doi.org/10.3390/ma15155425
APA StylePiernik, M., Woźniak, M., Pinkowski, G., Szentner, K., Ratajczak, I., & Krauss, A. (2022). Impact of the Heat Treatment Duration on Color and Selected Mechanical and Chemical Properties of Scots Pine Wood. Materials, 15(15), 5425. https://doi.org/10.3390/ma15155425