Laser Superficial Fusion of Gold Nanoparticles with PEEK Polymer for Cardiovascular Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Microscopic Observations
2.3. Medical X-ray Photo Imaging
3. Results
4. Discussion
5. Conclusions
- The Au NP fusion inside the PEEK matrix is possible for the proposed in experiment laser power.
- The more energy is applied to the micromachined area, the more average percentage of Au is presented in the lasered area.
- The influence on laser power on the effectiveness of reducing particle size during the process. The lower the power, the lower the number of particles observed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, T.; Koch, J.; Unger, C.; Fadeeva, E.; Koroleva, A.; Zhao, Q.; Chichkov, B.N. Ultrashort Picosecond Laser Processing of Micro-Molds for Fabricating Plastic Parts with Superhydrophobic Surfaces. Appl. Phys. A 2012, 108, 863–869. [Google Scholar] [CrossRef]
- Purnama, A.; Furlan, V.; Dessi, D.; Demir, A.G.; Tolouei, R.; Paternoster, C.; Levesque, L.; Previtali, B.; Mantovani, D. Laser Surface Texturing of SS316L for Enhanced Adhesion of HUVECs. Surf. Eng. 2020, 36, 1240–1249. [Google Scholar] [CrossRef]
- Woźniak, A.; Adamiak, M.; Chladek, G.; Bonek, M.; Walke, W.; Bialas, O. The Influence of Hybrid Surface Modification on the Selected Properties of CP Titanium Grade II Manufactured by Selective Laser Melting. Materials 2020, 13, 2829. [Google Scholar] [CrossRef]
- Available online: https://www.who.int/healthinfo/statistics/en/ (accessed on 25 May 2020).
- Chang, Y.-Y.; Zhang, J.-H.; Huang, H.-L. Effects of Laser Texture Oxidation and High-Temperature Annealing of TiV Alloy Thin Films on Mechanical and Antibacterial Properties and Cytotoxicity. Materials 2018, 11, 2495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frostevarg, J.; Olsson, R.; Powell, J.; Palmquist, A.; Brånemark, R. Formation Mechanisms of Surfaces for Osseointegration on Titanium Using Pulsed Laser Spattering. Appl. Surf. Sci. 2019, 485, 158–169. [Google Scholar] [CrossRef]
- Hatzikiriakos, S.G.; Moradi, S.; Kamal, S. Superhydrophobic Laser-Ablated Stainless Steel Substrates Exhibiting Cassie–Baxter Stable State. Surf. Innov. 2015, 3, 151–163. [Google Scholar] [CrossRef]
- Lu, J.; Rao, M.P.; MacDonald, N.C.; Khang, D.; Webster, T.J. Improved Endothelial Cell Adhesion and Proliferation on Patterned Titanium Surfaces with Rationally Designed, Micrometer to Nanometer Features. Acta Biomater. 2008, 4, 192–201. [Google Scholar] [CrossRef] [PubMed]
- McFadden, E.P.; Stabile, E.; Regar, E.; Cheneau, E.; Ong, A.T.; Kinnaird, T.; Suddath, W.O.; Weissman, N.J.; Torguson, R.; Kent, K.M.; et al. Late Thrombosis in Drug-Eluting Coronary Stents after Discontinuation of Antiplatelet Therapy. Lancet 2004, 364, 1519–1521. [Google Scholar] [CrossRef]
- Bark, D.L.; Vahabi, H.; Bui, H.; Movafaghi, S.; Moore, B.; Kota, A.K.; Popat, K.; Dasi, L.P. Hemodynamic Performance and Thrombogenic Properties of a Superhydrophobic Bileaflet Mechanical Heart Valve. Ann. Biomed. Eng. 2017, 45, 452–463. [Google Scholar] [CrossRef] [Green Version]
- Linde, T.; Clauser, J.; Meuris, B.; Steinseifer, U. Assessing the Thrombogenic Potential of Heart Valve Prostheses: An Approach for a Standardized In-Vitro Method. Cardiovasc. Eng. Tech. 2019, 10, 216–224. [Google Scholar] [CrossRef]
- Tillman, B.; Gailani, D. Inhibition of Factors XI and XII for Prevention of Thrombosis Induced by Artificial Surfaces. Semin. Thromb. Hemost. 2018, 44, 060–069. [Google Scholar] [CrossRef]
- Woźniak, A.; Bialas, O.; Adamiak, M. Improvement of the Properties of Ti6Al7Nb Titanium Alloy in Terms of the Type of Surface Modification. Arch. Metall. Mater. 2020, 65, 759–765. [Google Scholar] [CrossRef]
- Nguyen, V.; Yan, L.; Si, J.; Hou, X. Femtosecond Laser-Induced Size Reduction of Carbon Nanodots in Solution: Effect of Laser Fluence, Spot Size, and Irradiation Time. J. Appl. Phys. 2015, 117, 084304. [Google Scholar] [CrossRef]
- Li, H.M.; Fouracre, R.A.; Given, M.J.; Banford, H.M.; Wysocki, S.; Karolczak, S. The Effects on Polyetheretherketone and Polyethersulfone of Electron and γ Irradiation. IEEE Trans. Dielect. Electr. Insul. 1999, 6, 295–303. [Google Scholar] [CrossRef]
- Riveiro, A.; Soto, R.; Comesaña, R.; Boutinguiza, M.; del Val, J.; Quintero, F.; Lusquiños, F.; Pou, J. Laser Surface Modification of PEEK. Appl. Surf. Sci. 2012, 258, 9437–9442. [Google Scholar] [CrossRef]
- Panayotov, I.V.; Orti, V.; Cuisinier, F.; Yachouh, J. Polyetheretherketone (PEEK) for Medical Applications. J. Mater. Sci. Mater. Med. 2016, 27, 118. [Google Scholar] [CrossRef]
- Bialas, O.; Żmudzki, J. FEA of Displacements and Stresses of Aortic Heart Valve Leaflets during the Opening Phase. J. Achiev. Mater. Manuf. Eng. 2019, 92. [Google Scholar] [CrossRef]
- Kucinska-Lipka, J.; Gubanska, I.; Janik, H. Polyurethanes Modified with Natural Polymers for Medical Application. Part I. Polyurethane/Chitosan and Polyurethane/Collagen. Polimery 2013, 58, 678–684. [Google Scholar] [CrossRef]
- Bernacca, G.M.; Mackay, T.G.; Wilkinson, R.; Wheatley, D.J. Polyurethane Heart Valves: Fatigue Failure, Calcification, and Polyurethane Structure. J. Biomed. Mater. Res. 1997, 34, 371–379. [Google Scholar] [CrossRef]
- Bialas, O.; Żmudzki, J.; Adamiak, M. Advanced Polymeric Materials for Reconstructive Treatment after the Intra-Oral Tumor Resections. Int. J. Mod. Manuf. Technol. 2020, 12, 9–16. [Google Scholar]
- Mahan, M.M.; Doiron, A.L. Gold Nanoparticles as X-ray, CT, and Multimodal Imaging Contrast Agents: Formulation, Targeting, and Methodology. J. Nanomater. 2018, 2018, 1–15. [Google Scholar] [CrossRef]
- Fan, J.H.; Hung, W.I.; Li, W.T.; Yeh, J.M. Biocompatibility Study of Gold Nanoparticles to Human Cells. In 13th International Conference on Biomedical Engineering; Lim, C.T., Goh, J.C.H., Eds.; IFMBE Proceedings; Springer: Berlin/Heidelberg, Germany, 2009; Volume 23, pp. 870–873. ISBN 978-3-540-92840-9. [Google Scholar]
- Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R.R.; Sastry, M. Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview. Langmuir 2005, 21, 10644–10654. [Google Scholar] [CrossRef]
- Torres-Ayala, S.C.; Santacana-Laffitte, G.; Maldonado, J. Radiography of Cardiac Conduction Devices: A Pictorial Review of Pacemakers and Implantable Cardioverter Defibrillators. J. Clin. Imaging Sci. 2014, 4, 74. [Google Scholar] [CrossRef]
- Mathew, R.P.; Alexander, T.; Patel, V.; Low, G. Chest Radiographs of Cardiac Devices (Part 1): Cardiovascular Implantable Electronic Devices, Cardiac Valve Prostheses and Amplatzer Occluder Devices. S. Afr. J. Radiol. 2019, 23. [Google Scholar] [CrossRef] [Green Version]
- Brixey, A.G.; Fuss, C. Innovative Cardiac Devices on Chest Imaging: An Update. J. Thorac. Imaging 2017, 32, 343–357. [Google Scholar] [CrossRef]
- Gu, X.; Xu, Z.; Gu, L.; Xu, H.; Han, F.; Chen, B.; Pan, X. Preparation and Antibacterial Properties of Gold Nanoparticles: A Review. Environ. Chem. Lett. 2020. [Google Scholar] [CrossRef]
- Available online: https://www.ensingerplastics.com/en/shapes/high-performance-plastics/peek (accessed on 3 January 2021).
- PN EN ISO 10993-1:2010: Biological Evaluation of Medical Devices—Part 1: Evaluation and Testing within a Risk Management Process; PN EN ISO: Brussels, Belgium, 2015.
- Voyiadjis, G.Z.; Samadi-Dooki, A.; Malekmotiei, L. Nanoindentation of High Performance Semicrystalline Polymers: A Case Study on PEEK. Polym. Test. 2017, 61, 57–64. [Google Scholar] [CrossRef]
- Available online: https://www.leica-microsystems.com/ (accessed on 3 January 2021).
- Pache, J.Ü.; Kastrati, A.; Mehilli, J.; Schühlen, H.; Dotzer, F.; Hausleiter, J.Ü; Fleckenstein, M.; Neumann, F.-J.; Sattelberger, U.; Schmitt, C.; et al. Intracoronary Stenting and Angiographic Results: Strut Thickness Effect on Restenosis Outcome (ISAR-STEREO-2) Trial. J. Am. Coll. Cardiol. 2003, 41, 1283–1288. [Google Scholar] [CrossRef] [Green Version]
- Schille, J.; Schneider, L.; Mauersberger, S.; Szokup, S.; Höhn, S.; Pötschke, J.; Reiß, F.; Leidich, E.; Löschner, U. High-Rate Laser Surface Texturing for Advanced Tribological Functionality. Lubricants 2020, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Inasawa, S.; Sugiyama, M.; Yamaguchi, Y. Bimodal Size Distribution of Gold Nanoparticles under Picosecond Laser Pulses. J. Phys. Chem. B 2005, 109, 9404–9410. [Google Scholar] [CrossRef]
- Hashimoto, S.; Werner, D.; Uwada, T. Studies on the Interaction of Pulsed Lasers with Plasmonic Gold Nanoparticles toward Light Manipulation, Heat Management, and Nanofabrication. J. Photochem. Photobiol. C: Photochem. Rev. 2012, 13, 28–54. [Google Scholar] [CrossRef]
- Pyatenko, A.; Yamaguchi, M.; Suzuki, M. Mechanisms of Size Reduction of Colloidal Silver and Gold Nanoparticles Irradiated by Nd:YAG Laser. J. Phys. Chem. C 2009, 113, 9078–9085. [Google Scholar] [CrossRef]
- Seuss, S.; Heinloth, M.; Boccaccini, A.R. Development of Bioactive Composite Coatings Based on Combination of PEEK, Bioactive Glass and Ag Nanoparticles with Antibacterial Properties. Surf. Coat. Technol. 2016, 301, 100–105. [Google Scholar] [CrossRef]
- Rodrigues, C.J.; Bobb, J.A.; John, M.G.; Fisenko, S.P.; El-Shall, M.S.; Tibbetts, K.M. Nucleation and Growth of Gold Nanoparticles Initiated by Nanosecond and Femtosecond Laser Irradiation of Aqueous [AuCl4]−. Phys. Chem. Chem. Phys. 2018, 20, 28465–28475. [Google Scholar] [CrossRef]
- Mescola, A.; Canale, C.; Fragouli, D.; Athanassiou, A. Controlled Formation of Gold Nanostructures on Biopolymer Films upon Electromagnetic Radiation. Nanotechnology 2017, 28, 415601. [Google Scholar] [CrossRef]
- Ma, R.; Tang, T. Current Strategies to Improve the Bioactivity of PEEK. IJMS 2014, 15, 5426–5445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, M. Gold Nanoparticles: Various Methods of Synthesis and Antibacterial Applications. Front. Biosci. 2014, 19, 1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaezi, M.; Yang, S. A Novel Bioactive PEEK/HA Composite with Controlled 3D Interconnected HA Network. Int. J. Bioprinting 2015, 1, 66–76. [Google Scholar] [CrossRef]
- Popovtzer, R.; Agrawal, A.; Kotov, N.A.; Popovtzer, A.; Balter, J.; Carey, T.E.; Kopelman, R. Targeted Gold Nanoparticles Enable Molecular CT Imaging of Cancer. Nano. Lett. 2008, 8, 4593–4596. [Google Scholar] [CrossRef] [Green Version]
- Cormode, D.P.; Naha, P.C.; Fayad, Z.A. Nanoparticle Contrast Agents for Computed Tomography: A Focus on Micelles: NANOPARTICLE CONTRAST AGENTS FOR CT. Contrast Media Mol. Imaging 2014, 9, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, S.M.; Devine, J.N. PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants. Biomaterials 2007, 28, 4845–4869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
PEEK Properties | Value |
---|---|
Long-term heat resistance | 260 °C |
Short-term heat resistance | 300 °C |
Glass transition point | 150 °C |
Melting point | 341 °C |
Thermal deformation temperature HDT-A | 162 °C |
Flame resistance: | UL94 V0 |
Medical standard | ISO 10993 [30] |
Name | Surface Treatment |
---|---|
4.5 mW | Polished; Au coated; laser treated with 4.5 mW |
15 mW | Polished; Au coated; laser treated with 15 mW |
16 mW | Polished; Au coated; laser treated with 16 mW |
Cutting/Etching Speed | Frequency | Laser Power | Beam Width | M2 |
---|---|---|---|---|
- | - | 4.5 mW | - | - |
1 mm/s|10 mm/s | 10 Hz|400 Hz | 15 mW | ~30 µm | <1.2 |
- | - | 16 mW | - | - |
Sample Name | Average Au% in Single Microscopic View |
---|---|
4.5 mW | 0.67 ± 0.09 |
15 mW | 0.70 ± 0.10 |
16 mW | 0.91 ± 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bialas, O.; Lis, M.; Woźniak, A.; Adamiak, M. Laser Superficial Fusion of Gold Nanoparticles with PEEK Polymer for Cardiovascular Application. Materials 2021, 14, 971. https://doi.org/10.3390/ma14040971
Bialas O, Lis M, Woźniak A, Adamiak M. Laser Superficial Fusion of Gold Nanoparticles with PEEK Polymer for Cardiovascular Application. Materials. 2021; 14(4):971. https://doi.org/10.3390/ma14040971
Chicago/Turabian StyleBialas, Oktawian, Mateusz Lis, Anna Woźniak, and Marcin Adamiak. 2021. "Laser Superficial Fusion of Gold Nanoparticles with PEEK Polymer for Cardiovascular Application" Materials 14, no. 4: 971. https://doi.org/10.3390/ma14040971
APA StyleBialas, O., Lis, M., Woźniak, A., & Adamiak, M. (2021). Laser Superficial Fusion of Gold Nanoparticles with PEEK Polymer for Cardiovascular Application. Materials, 14(4), 971. https://doi.org/10.3390/ma14040971