Inverted-Type InAlAs/InAs High-Electron-Mobility Transistor with Liquid Phase Oxidized InAlAs as Gate Insulator
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Del Alamo, J.A. Nanometre-scale electronics with III–V compound semiconductors. Nature 2011, 479, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.M.; Liu, S.M.J.; Kao, M.Y.; Ho, P.; Wang, S.C.; Duh, K.H.G.; Fu, S.T.; Chao, P.C. W-band high efficiency InP-based power HEMT with 600 GHz fmax. IEEE Microw. Guided Wave Lett. 1995, 5, 230–232. [Google Scholar] [CrossRef]
- Jo, H.B.; Baek, J.M.; Yun, D.Y.; Son, S.W.; Lee, J.H.; Kim, T.W.; Kim, D.H.; Tsutsumi, T.; Sugiyama, H.; Matsuzaki, H. Lg = 87 nm InAlAs/InGaAs high-electron-mobility transistors with a gm_max of 3 S/mm and fT of 559 GHz. IEEE Electron Device Lett. 2018, 39, 1640–1643. [Google Scholar] [CrossRef]
- Ng, G.I.; Pavlidis, D.; Quillec, M.; Chan, Y.J.; Jaffe, M.D.; Singh, J. Study of the consequence of excess indium in the active channel of InGaAs/InAlAs high electron mobility transistors on device properties. Appl. Phys. Lett. 1988, 52, 728–730. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, K.; Inoue, D.; NaKano, H.; Sawada, M.; Harada, Y.; Nakakado, T. A new high electron mobility transistor (HEMT) structure with a narrow quantum well formed by inserting a few monolayers in the channel. Jpn. J. Appl. Phys. 2018, 30, L166–L169. [Google Scholar] [CrossRef]
- Eugster, C.C.; Broekaert, T.P.E.; Del Alamo, J.A.; Fonstad, C.G. An InAlAs/InAs MODFET. IEEE Electron Device Lett. 1991, 12, 707–709. [Google Scholar] [CrossRef]
- Ko, H.; Takei, K.; Kapadia, R.; Chuang, S.; Fang, H.; Leu, P.W.; Ganapathi, K.; Plis, E.; Kim, H.S.; Chen, S.-Y.; et al. Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors. Nature 2010, 468, 286–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.-H.; Um, D.-S.; Lee, H.; Lim, S.; Chang, J.; Koo, H.C.; Oh, M.-W.; Ko, H.; Kim, H.-J. Gate-controlled spin-orbit interaction in InAs high-electron mobility transistor layers epitaxially transferred onto Si substrates. ACS Nano 2013, 7, 9106–9114. [Google Scholar] [CrossRef] [PubMed]
- Yamada, H.T.; Shigemasa, R.; Fujishiro, H.I.; Nishi, S.; Saito, T. Fabrication of 0.2 μm gate pseudomorphic inverted HEMT by phase-shifting technology. Solid-State Electron. 1995, 38, 1631–1634. [Google Scholar] [CrossRef]
- Akazaki, T.; Takayanagi, H.; Enoki, T. Kink effect in an InAs inserted-channel InAlAs/InGaAs inverted HEMT at low temperature. IEEE Electron Device Lett. 1996, 17, 378–380. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, X.; Tang, C.W.; Lau, K.M. High-performance inverted In0.53Ga0.47As MOSHEMTs on a GaAs substrate with regrown source/drain by MOCVD. IEEE Electron Device Lett. 2012, 33, 1246–1248. [Google Scholar] [CrossRef]
- Minden, H.T. Thermal oxidation of GaAs. J. Electrochem. Soc. 1962, 109, 733. [Google Scholar] [CrossRef]
- Coleman, D.J.; Shaw, D.W.; Dobrott, R.D. On the mechanism of GaAs anodization. J. Electrochem. Soc. 1977, 124, 239–241. [Google Scholar] [CrossRef]
- Bertrand, P.A. The photochemical oxidation of GaAs. Photochem. Oxid. Gaas. 1985, 132, 973–976. [Google Scholar] [CrossRef]
- Ren, F.; Kuo, J.M.; Hong, M.; Hobson, W.S.; Lothian, J.R.; Lin, J.; Tsai, H.S.; Mannaerts, J.P.; Kwo, J.; Chu, S.N.G.; et al. Ga2O3(Gd2O3)/InGaAs enhancement-mode n-channel MOSFETs. IEEE Electron Device Lett. 1998, 19, 309–311. [Google Scholar] [CrossRef]
- Ye, P.; Wilk, G.; Kwo, J.; Yang, B.; Gossmann, H.-J.; Frei, M.; Chu, S.; Mannaerts, J.; Sergent, M.; Hong, M.; et al. GaAs MOSFET with oxide gate dielectric grown by atomic layer deposition. IEEE Electron Device Lett. 2003, 24, 209–211. [Google Scholar] [CrossRef] [Green Version]
- Paul, N.C.; Nakamura, K.; Seto, H.; Iiyama, K.; Takamiya, S. Oxidation of InAlAs and its application to gate in-sulator of InAlAs/InGaAs metal oxide semiconductor high electron mobility transistor. Jpn. J. Appl. Phys. 2005, 44, 1174–1180. [Google Scholar] [CrossRef]
- Bae, S.J.; Kim, J.M.; Park, C.Y.; Lee, Y.T. Characteristics of InAlAs/InP and InAlP/GaAs native oxides. Solid-State Electron. 2006, 50, 1625–1628. [Google Scholar] [CrossRef]
- Wang, H.-H.; Huang, C.-J.; Wang, Y.-H.; Houng, M.-P. Liquid phase chemical-enhanced oxidation for GaAs operated near room temperature. Jpn. J. Appl. Phys. 1998, 37, L67–L70. [Google Scholar] [CrossRef]
- Lee, K.-W.; Lee, K.-L.; Lin, X.-Z.; Tu, C.-H.; Wang, Y.-H. Improvement of impact ionization effect and subthreshold current in InAlAs/InGaAs metal–oxide–semiconductor metamorphic HEMT with a liquid-phase oxidized InAlAs as gate insulator. IEEE Trans. Electron Devices 2007, 54, 418–424. [Google Scholar] [CrossRef]
- Lee, K.-W.; Lin, K.-L.; Lin, H.-C.; Tu, C.-H.; Hu, C.-C.; Wang, Y.-H. Near-room-temperature selective oxidation on InAlAs and application to In0.52Al0.48As/In0.53Ga0.47As metamorphic HEMTs. J. Electrochem. Soc. 2007, 154, H957–H961. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-W.; Lin, H.-C.; Lee, K.-L.; Hsieh, C.-H.; Wang, Y.-H. Comprehensive study of InAlAs/InGaAs metamorphic high electron mobility transistor with oxidized InAlAs gate. J. Electrochem. Soc. 2009, 156, H925–H929. [Google Scholar] [CrossRef]
- Hill, R.J.W.; Droopad, R.; Moran, D.A.J.; Li, X.; Zhou, H.; Macintyre, D.; Thoms, S.; Ignatova, O.; Asenov, A.; Ra-jagopalan, K.; et al. 1 μm gate length, In0.75Ga0.25As channel, thin body n-MOSFET on InP substrate with transconductance of 737 μS/μm. Electron. Lett. 2008, 44, 498–500. [Google Scholar] [CrossRef] [Green Version]
- Duh, K.; Chao, P.-C.; Smith, P.; Lester, L.; Lee, B.; Ballingall, J.; Kao, M.-Y. High-performance Ka-band and V-band HEMT low-noise amplifiers. IEEE Trans. Microw. Theory Tech. 1988, 36, 1598–1603. [Google Scholar] [CrossRef]
- Hamaizia, Z.; Sengouga, N.; Missous, M.; Yagoub, M. A 0.4dB noise figure wideband low-noise amplifier using a novel InGaAs/InAlAs/InP device. Mater. Sci. Semicond. Process. 2011, 14, 89–93. [Google Scholar] [CrossRef]
- Fukui, H. Optimal noise figure of microwave GaAs MESFET’s. IEEE Trans. Electron Devices 1979, 26, 1032–1037. [Google Scholar] [CrossRef]
- Hartnagel, H.L.; Katilius, R.; Matulionis, A. Microwave Noise in Semiconductor Devices; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Huang, H.-K.; Wang, C.-S.; Chang, C.-P.; Wang, Y.-H.; Wu, C.-L.; Chang, C.-S. Noise characteristics of InGaP-gated PHEMTs under high current and thermal accelerated stresses. IEEE Trans. Electron Devices 2005, 52, 1706–1712. [Google Scholar] [CrossRef]
- Marsh, P.; Pavlidis, D.; Hong, K. InGaAs-Schottky contacts made by in situ plated and evaporated Pt—an analysis based on DC and noise characteristics. IEEE Trans. Electron Devices 1998, 45, 349–360. [Google Scholar] [CrossRef]
Gate Oxide | With | Without |
---|---|---|
Maximum IDS (mA/mm) at VDS = 1.5 V | 509 | 441 |
Peak gm (mS/mm) at VDS = 1.5 V | 327 | 243 |
Turn-on voltage (V) | 3.98 | 1.54 |
Reverse gate-to-drain breakdown voltage (V) | −4.6 | −2.5 |
Minimum noise figure NFmin at 1.2 GHz (dB) | 5.88 | 9.44 |
Associated gain at 1.2 GHz (dB) | 15.67 | 9.74 |
Type | Inverted-Type (This Work) | Normal-Type Ref. [20] | Normal-Type Ref. [22] |
---|---|---|---|
Substrate | InP | GaAs | GaAs |
Channel | In0.53Ga0.47As/ InAs/In0.53Ga0.47As | In0.53Ga0.47As | In0.53Ga0.47As |
Hall mobility (cm2/Vs)/sheet carrier concentration (cm−2) @ 300 K | 14,262/2.07 × 1012 | 7000/2 × 1012 | 7000/2 × 1012 |
Gate length (μm) | 1 | 0.65 | 0.65 |
0.65 | |||
Maximum IDS (mA/mm) | 509 | 252 | 424 |
Peak gm (mS/mm) | 327 | 226 | 254 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-M.; Lin, H.-C.; Lee, K.-W.; Wang, Y.-H. Inverted-Type InAlAs/InAs High-Electron-Mobility Transistor with Liquid Phase Oxidized InAlAs as Gate Insulator. Materials 2021, 14, 970. https://doi.org/10.3390/ma14040970
Chen Y-M, Lin H-C, Lee K-W, Wang Y-H. Inverted-Type InAlAs/InAs High-Electron-Mobility Transistor with Liquid Phase Oxidized InAlAs as Gate Insulator. Materials. 2021; 14(4):970. https://doi.org/10.3390/ma14040970
Chicago/Turabian StyleChen, Yuan-Ming, Hsien-Cheng Lin, Kuan-Wei Lee, and Yeong-Her Wang. 2021. "Inverted-Type InAlAs/InAs High-Electron-Mobility Transistor with Liquid Phase Oxidized InAlAs as Gate Insulator" Materials 14, no. 4: 970. https://doi.org/10.3390/ma14040970
APA StyleChen, Y.-M., Lin, H.-C., Lee, K.-W., & Wang, Y.-H. (2021). Inverted-Type InAlAs/InAs High-Electron-Mobility Transistor with Liquid Phase Oxidized InAlAs as Gate Insulator. Materials, 14(4), 970. https://doi.org/10.3390/ma14040970