Effects of Transition Element Additions on the Interfacial Interaction and Electronic Structure of Al(111)/6H-SiC(0001) Interface: A First-Principles Study
Abstract
1. Introduction
2. Details of Calculation Methods
3. Results and Discussion
3.1. Pristine Interfaces
3.2. Doping Interfaces
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, J.; Chauhan, A. Overview of wear performance of aluminium matrix composites reinforced with ceramic materials under the influence of controllable variables. Ceram. Int. 2016, 42, 56–81. [Google Scholar] [CrossRef]
- Kim, C.S.; Cho, K.; Manjili, M.H.; Nezafati, M. Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and Al metal-matrix nano-composites (MMNCs). J. Mater. Sci. 2017, 52, 13319–13349. [Google Scholar] [CrossRef]
- Li, N.; Liu, X.Y. Review: Mechanical behavior of metal/ceramic interfaces in nano layered composites-experiments and modeling. J. Mater. Sci. 2018, 53, 5562–5583. [Google Scholar] [CrossRef]
- Wunderlich, W. The Atomistic Structure of Metal/Ceramic Interfaces Is the Key Issue for Developing Better Properties. Metals 2014, 4, 410–427. [Google Scholar] [CrossRef]
- Fng, X.; Fan, T.; Zhang, D. Work of adhesion in Al/SiC composites with alloying element addition. Metall. Mater. Trans. A 2013, 44, 5192–5201. [Google Scholar] [CrossRef]
- Shen, P.; Wang, Y.; Ren, L.; Li, S.; Liu, Y.; Jiang, Q. Influence of SiC surface polarity on the wettability and reactivity in an Al/SiC system. Appl. Surf. Sci. 2015, 355, 930–938. [Google Scholar] [CrossRef]
- Mousavian, R.T.; Khosroshahi, R.A.; Yazdani, S.; Brabazon, D.; Boostani, A.F. Fabrication of aluminum matrix composites reinforced with nano- to micrometer-sized SiC particles. Mater. Des. 2016, 89, 58–70. [Google Scholar] [CrossRef]
- Laurent, V.; Rado, C.; Eustathopoulos, N. Wetting kinetics and bonding of Al and Al alloys on α-SiC. Mater. Sci. Eng. A 1996, 205, 1–8. [Google Scholar] [CrossRef]
- Hashim, J.; Looney, L.; Hashmi, M.S.J. The enhancement of wettability of SiC particles in cast aluminium matrix composites. J. Mater. Process. Technol. 2001, 119, 329–335. [Google Scholar] [CrossRef]
- Cong, X.S.; Shen, P.; Wang, Y.; Jiang, Q. Wetting of polycrystalline SiC by molten Al and Al−Si alloys. Appl. Surf. Sci. 2014, 317, 140–146. [Google Scholar] [CrossRef]
- Tong, H.; Qiu, F.; Zuo, R.; Shen, P.; Cong, X.; Liu, J.; Yang, H.; Jiang, Q. The effect and mechanism of alloying elements on Al/SiC interfacial reaction in Al melt. Appl. Surf. Sci. 2020, 501, 144265. [Google Scholar] [CrossRef]
- Liu, L.M.; Wang, S.Q.; Ye, H.Q. First-principles study of the effect of hydrogen on the metal–ceramic interface. J. Phys. Condens. Matter 2005, 17, 5335–5348. [Google Scholar] [CrossRef]
- Wang, B.; Dai, J.; Wu, X.; Song, Y.; Yang, R. First-principles study of the bonding characteristics of TiAl(111)/Al2O3(0001) interface. Intermetallics 2015, 60, 58–65. [Google Scholar] [CrossRef]
- Sun, T.; Wu, X.; Wang, R.; Li, W.; Liu, Q. First-principles study on the adhesive properties of Al/TiC interfaces: Revisited. Comput. Mater. Sci. 2017, 126, 108–120. [Google Scholar] [CrossRef]
- Miraz, A.S.M.; Williams, E.; Meng, W.J.; Ramachandran, B.R.; Wick, C.D. Improvement of Ti/TiN interfacial shear strength by doping—A first principles density functional theory study. Appl. Surf. Sci. 2020, 517, 146185. [Google Scholar] [CrossRef]
- Dong, N.; Zhang, C.; Liu, H.; Fan, G.; Fang, X.; Han, P. Effects of different alloying additives X (X = Si, Al, V, Ti, Mo, W, Nb, Y) on the adhesive behavior of Fe/Cr2O3 interfaces: A first-principles study. Comput. Mater. Sci. 2015, 109, 293–299. [Google Scholar] [CrossRef]
- Sun, T.; Wu, X.; Li, W.; Wang, R. The mechanical and electronic properties of Al/TiC interfaces alloyed by Mg, Zn, Cu, Fe and Ti: First-principles study. Phys. Scr. 2015, 90, 035701. [Google Scholar] [CrossRef]
- Peng, C.; Liang, S.; Huang, F.; Zeng, L.; Zhou, L.; Ran, X. Influence of Au, Cu, Pd added in Ag alloy on stability and electronic structure of Ag/Al interface by first-principles calculations. Mater. Today Commun. 2020, 22, 100670. [Google Scholar]
- Li, S.; Arsenault, R.J.; Jena, P. Quantum chemical study of adhesion at the SiC/Al interface. J. Appl. Phys. 1988, 64, 6246–6253. [Google Scholar] [CrossRef]
- Kohyama, M. Ab initio calculations for SiC–Al interfaces: Tests of electronic-minimization techniques. Model. Simul. Mater. Sci. Eng. 1996, 4, 397–408. [Google Scholar] [CrossRef]
- Tanaka, S.; Kohyama, M. Ab initio study of 3C-SiC/M (M = Ti or Al) nano-hetero interfaces. Appl. Surf. Sci. 2003, 216, 471–477. [Google Scholar] [CrossRef]
- Wu, Q.; Xie, J.; Wang, C.; Li, L.; Wang, A.; Mao, A. First-principles study of the structure properties of Al(111)/6H-SiC(0001) interfaces. Surf. Sci. 2018, 670, 1–7. [Google Scholar]
- Wang, C.; Chen, W.; Jia, Y.; Xie, J. Calculating Study on Properties of Al (111)/6H-SiC (0001) Interfaces. Metals 2020, 10, 1197. [Google Scholar] [CrossRef]
- Wu, Q.; Xie, J.; Wang, A.; Ma, D.; Wang, C. First-principle calculations on the structure of 6H-SiC/Al interface. Mater. Res. Express 2019, 6, 065015. [Google Scholar]
- Wang, C.; Chang, D.; Jia, Y.; Xie, J. Electronic and mechanical properties of Al (100)/6H–SiC (0001) interfaces: A first-principles study. Mater. Res. Express 2019, 6, 126316. [Google Scholar] [CrossRef]
- Xu, X.; Wang, H.; Zha, M.; Wang, C.; Yang, Z.; Jiang, Q. Effects of Ti, Si, Mg and Cu additions on interfacial properties and electronic structure of Al(111)/4H-SiC(0001) interface: A first-principles study. Appl. Surf. Sci. 2018, 437, 103–109. [Google Scholar] [CrossRef]
- Liu, B.; Yang, J. Mg on adhesion of Al(111)/3C-SiC(111) interfaces from first principles study. J. Alloys Compd. 2019, 791, 530–539. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar]
- Kresse, G.; Furthmiiller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillonin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360. [Google Scholar] [CrossRef]
Interfaces | Doping Elements | C-Al (Å) | C-X (Å) | Doping Elements | C-Al (Å) | C-X (Å) | ||
---|---|---|---|---|---|---|---|---|
C-terminated | Sc | 2.03 | 2.12 | 3.14 | Y | 2.06 | 2.25 | 3.18 |
Ti | 2.01 | 2.07 | 3.64 | Zr | 2.03 | 2.22 | 3.39 | |
V | 1.99 | 2.05 | 3.72 | Nb | 2 | 2.2 | 3.47 | |
Cr | 1.98 | 2.04 | 3.78 | Mo | 1.98 | 2.18 | 3.63 | |
Mn | 1.97 | 2.02 | 3.84 | Tc | 1.97 | 2.17 | 3.83 | |
Fe | 1.96 | 2.01 | 3.9 | Ru | 1.96 | 2.16 | 3.91 | |
Co | 1.95 | 2 | 3.99 | Rh | 1.96 | 2.17 | 3.85 | |
Ni | 1.96 | 2.02 | 3.92 | Pd | 1.97 | 2.18 | 3.73 | |
Cu | 1.97 | 2.03 | 3.84 | Ag | 1.98 | 2.2 | 3.62 | |
Zn | 1.98 | 2.04 | 3.79 | Cd | 1.99 | 2.21 | 3.5 | |
Free | 1.99 | - | 3.9 | - | - | - | - |
Interfaces | Doping Elements | Si-Al (Å) | Si-X (Å) | Doping Elements | Si-Al (Å) | Si-X (Å) | ||
---|---|---|---|---|---|---|---|---|
Si-terminated | Sc | 2.6 | 2.68 | 2.51 | Y | 2.62 | 2.78 | 2.49 |
Ti | 2.56 | 2.63 | 2.66 | Zr | 2.59 | 2.72 | 2.55 | |
V | 2.53 | 2.6 | 2.8 | Nb | 2.55 | 2.68 | 2.66 | |
Cr | 2.52 | 2.56 | 2.88 | Mo | 2.52 | 2.65 | 2.85 | |
Mn | 2.51 | 2.53 | 3.05 | Tc | 2.5 | 2.61 | 3.03 | |
Fe | 2.49 | 2.51 | 3.21 | Ru | 2.49 | 2.58 | 3.13 | |
Co | 2.46 | 2.48 | 3.2 | Rh | 2.48 | 2.55 | 3.14 | |
Ni | 2.47 | 2.5 | 3.17 | Pd | 2.49 | 2.54 | 3.08 | |
Cu | 2.5 | 2.53 | 3.07 | Ag | 2.52 | 2.55 | 2.97 | |
Zn | 2.52 | 2.58 | 3.03 | Cd | 2.54 | 2.57 | 2.8 | |
Free | 2.53 | - | 2.93 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Chen, W.; Xie, J. Effects of Transition Element Additions on the Interfacial Interaction and Electronic Structure of Al(111)/6H-SiC(0001) Interface: A First-Principles Study. Materials 2021, 14, 630. https://doi.org/10.3390/ma14030630
Wang C, Chen W, Xie J. Effects of Transition Element Additions on the Interfacial Interaction and Electronic Structure of Al(111)/6H-SiC(0001) Interface: A First-Principles Study. Materials. 2021; 14(3):630. https://doi.org/10.3390/ma14030630
Chicago/Turabian StyleWang, Changqing, Weiguang Chen, and Jingpei Xie. 2021. "Effects of Transition Element Additions on the Interfacial Interaction and Electronic Structure of Al(111)/6H-SiC(0001) Interface: A First-Principles Study" Materials 14, no. 3: 630. https://doi.org/10.3390/ma14030630
APA StyleWang, C., Chen, W., & Xie, J. (2021). Effects of Transition Element Additions on the Interfacial Interaction and Electronic Structure of Al(111)/6H-SiC(0001) Interface: A First-Principles Study. Materials, 14(3), 630. https://doi.org/10.3390/ma14030630