The Accuracy of Finishing WEDM of Inconel 718 Turbine Disc Fir Tree Slots
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Experimental Test and Measuring Stands
2.2.1. Workpiece
2.2.2. The Tool
2.2.3. Test Conditions
2.2.4. Test Stand
2.3. Data Analysis Methods
- -
- yi—measured value,
- -
- i—theoretical value calculated from the model,
- -
- —arithmetic mean of measured values,
- -
- n—number of measurements.
3. Results
3.1. Test Results
3.2. Surface Roughness
3.3. Surface Texture and Surface Layer
3.4. Shape Accuracy
4. Conclusions
- A significant influence of peak current Ip and mean gap voltage Um, and thus discharge energy E, on the surface roughness Ra was noted;
- Infeeds above approximately z = 50 μm have a considerable impact on the increase in Ra parameter;
- Pulse off-time toff did not have a notable influence on the surface roughness Ra;
- Higher peak current Ip resulted in the significant increase in profile shape deviations Δr;
- Δr parameter significantly increased for the pulse off-time toff ≈ 20–30 μs, which can indicate higher electrode vibration amplitudę;
- The lowest Δr parameter value was obtained for the infeed of z ≈ 40–60 μm and z ≈ 30 μm, and for the higher mean gap voltage Um (a significant interaction between Um and z parameters);
- The increase in Ip and Um parameters leads to a notable increase in shape accuracy Δd;
- A significant interaction between Ip and toff parameters was noted, leading to the increase in Δd deviations for low values of toff and high values of Ip;
- The infeed slightly affected the deviation Δd;
- Obtaining surface roughness in the Ra = 0.8–1.25 µm is possible even with only the one finishing pass;
- No microcracks were observed for any sample, the thickness of the white layer for sample 2 did not exceed 5 µm;
- The reduction in Ip parameter from 23.5 A to 4 A resulted in the decrease in the thickness of the white layer of approximately 65%;
- A single finishing pass does not allow obtaining the profile shape accuracy Δr within the tolerance of ± 5–25 µm;
- One can obtain the shape accuracy Δd within the ± 5–25 µm in a single finishing pass;
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beranoagirre, A.; Urbikain, G.; Calleja, A.; López de Lacalle, L.N. Hole Making by Electrical Discharge Machining (EDM) of γ-TiAl Intermetallic Alloys. Metals 2018, 8, 1–12. [Google Scholar]
- Płodzień, M.; Tymczyszyn, J.; Habrat, W.; Kręcichwost, P. Analysis of EDM Drilling of Small Diameter Holes. In Industrial Measurements in Machining; Springer: Cham, Switzerland, 2020; pp. 1–8. ISBN 978-3-030-49910-5. [Google Scholar]
- Świercz, R.; Oniszczuk-Świercz, D.; Dąbrowski, L. Electrical discharge machining of difficult to cut materials. Arch. Mech. Eng. 2018, 65, 461–476. [Google Scholar]
- Świercz, R.; Holubek, R. Experimental investigation of influence electrical discharge energy on the surface layer properties after EDM. Weld. Technol. Rev. 2020, 92, 7–13. [Google Scholar] [CrossRef]
- Świercz, R.; Oniszczuk-Świercz, D.; Chmielewski, T. Multi-Response Optimization of Electrical Discharge Machining Using the Desirability Function. Micromachines 2019, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- Świercz, R.; Oniszczuk-Świercz, D. Investigation of the Influence of Reduced Graphene Oxide Flakes in the Dielectric on Surface Characteristics and Material Removal Rate in EDM. Materials 2019, 12, 943. [Google Scholar] [CrossRef]
- Puri, A.; Bhattacharyya, B. Modelling and analysis of the wire-tool vibration in wire-cut EDM. J. Mater. Process. Technol. 2003, 141, 295–301. [Google Scholar] [CrossRef]
- Ramakrishnan, R.; Karunamoorthy, L. Multi response optimization of wire EDM operations using robust design of experiments. Int. J. Adv. Manuf. Technol. 2006, 29, 105–112. [Google Scholar]
- Rozenek, M. Wire electrical discharge machining of aluminium alloy with high copper content. AIP Conf. Proc. 2018, 1, 020028. [Google Scholar]
- Dąbrowski, L.; Marciniak, M.; Oniszczuk-Świercz, D. Abrasive blast surface finish after the wire electrical discharge machining (WEDM). Mechanik 2015, 8–9, 80–83. [Google Scholar]
- Świercz, R.; Oniszczuk-Świercz, D. Experimental Investigation of Surface Layer Properties of High Thermal Conductivity Tool Steel after Electrical Discharge Machining. Metals 2017, 7, 550. [Google Scholar] [CrossRef]
- Świercz, R.; Oniszczuk-Świercz, D. The Effects of Reduced Graphene Oxide Flakes in the Dielectric on Electrical Discharge Machining. Nanomaterials 2019, 9, 335. [Google Scholar] [CrossRef] [PubMed]
- Klocke, F.; Welling, D.; Dieckmann, J. Comparison of Grinding and Wire EDM Concerning Fatigue Strength and Surface Integrity of Machined Ti6Al4V Components. Procedia Eng. 2011, 19, 184–189. [Google Scholar] [CrossRef]
- Huang, J.; Liao, Y.; Hsue, W. Determination of finish-cutting operation number and machining-parameters setting in wire electrical discharge machining. J. Mater. Process. Technol. 1999, 87, 69–81. [Google Scholar] [CrossRef]
- Ayesta, I.; Izquierdo, B.; Flaño, O.; Sánchez, J.A.; Albizuri, J.; Avilés, R. Influence of the WEDM process on the fatigue behavior of Inconel® 718. Int. J. Fatigue 2016, 92, 220–233. [Google Scholar] [CrossRef]
- Dąbrowski, L.; Oniszczuk, D.; Zawora, J.; Marczak, M. The effect of the hydromechanical parameters in wire electrical discharge machining on the effects of the processing. Inżynieria Masz. 2011, 16, 104–111. [Google Scholar]
- Mouralova, K.; Benes, L.; Prokes, T.; Bednar, J. The Influence of WEDM Parameters Setup on the Occurrence of Defects When Machining Hardox 400 Steel. Materials 2019, 12, 3758. [Google Scholar] [CrossRef]
- Gautier, G.; Priarone, P.C.; Rizutti, S.; Settineri, L.; Tebaldo, V. A Contribution on the Modelling of Wire Electrical Discharge Machining of a γ-TiAl Alloy. Procedia CIRP 2015, 31, 203–208. [Google Scholar] [CrossRef]
- Deb, P.; Dutta, P.; Choudhuri, B.; Deoghare, A.B. Parametric Analysis of WEDM to Optimize Cutting Parameters for Inconel 800. Mater. Today Proc. 2020, 22, 1676–1686. [Google Scholar] [CrossRef]
- Kulkarni, V.N.; Gaitonde, V.N.; Karnik, S.R.; Manjaiah, M.; Davim, J.P. Machinability Analysis and Optimization in Wire EDM of Medical Grade NiTiNOL Memory Alloy. Materials 2020, 13, 2184. [Google Scholar] [CrossRef]
- Mouralova, K.; Benes, L.; Zahradnieck, R.; Bednar, J.; Zadera, A.; Fries, J.; Kana, V. WEDM Used for Machining High Entropy Alloys. Materials 2020, 13, 4823. [Google Scholar] [CrossRef]
- Chaudhari, R.; Vora, J.J.; Patel, V.; Lopez de Lacalle, L.N.; Parikh, D.M. Surface Analyssis of Wire-Electrical-Discharge-Machining-Processed Shape-Memory Alloys. Materials 2020, 13, 530. [Google Scholar] [CrossRef]
- Chaudhari, R.; Vora, J.J.; Patel, V.; Lopez de Lacalle, L.N.; Parikh, D.M. Effect of WEDM Process Parameters on Surface Morphology of Nitinol Shape Memory Alloy. Materials 2020, 13, 4943. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.U.; Manikandan, N.; Binoj, J.S.; Thejasree, P.; Shajahan, S.; Arulkirubakaran, D. Multi objective optimization of wire-electrical discharge machining of stellite using Taguchi–Grey approach. Mater. Today Proc. 2020, 1–7. [Google Scholar] [CrossRef]
- Antar, M.; Soo, S.; Aspinwall, D.; E Jones, D.; A Perez, R. Productivity and Workpiece Surface Integrity When WEDM Aerospace Alloys Using Coated Wires. Procedia Eng. 2011, 19, 3–8. [Google Scholar] [CrossRef]
- Świercz, R.; Oniszczuk-Świercz, D.; Nowicki, R. Wire electrical discharge machining nickel super alloy. Mechanik 2018, 3, 220–222. [Google Scholar] [CrossRef][Green Version]
- Klocke, F.; Welling, D.; Klink, A.; Veselovac, D.; Nothe, T.; Perez, R. Evaluation of Advanced Wire-EDM Capabilities for the Manufacture of Fir Tree Slots in Inconel 718. Procedia CIRP 2014, 14, 430–435. [Google Scholar] [CrossRef]
- Oniszczuk-Świercz, D.; Świercz, R.; Nowicki, R.; Kopytkowski, A.; Dąbrowski, L. Investigation of the Influence of Process Parameters of Wire Electrical Discharge Machining Using Coated Brass on the Surface Roughness of Inconel 718. AIP Conf. Proc. 2017, 1, 020020. [Google Scholar]
- Sharma, P.; Chakradhar, D.; Narendranath, S. Evaluation of WEDM performance characteristics of Inconel 706 for turbine disk application. Mater. Des. 2015, 88, 558–566. [Google Scholar] [CrossRef]
- Sharma, P.; Chakradhar, D.; Narendranath, S. Effect of Wire Material on Productivity and Surface Integrity of WEDM-Processed Inconel 706 for Aircraft Application. J. Mater. Eng. Perform. 2016, 25, 3672–3681. [Google Scholar] [CrossRef]
- Klocke, F.; Welling, D.; Dieckmann, J.; Veselovac, D.; Perez, R. Developments in Wire-EDM for the Manufacturing of Fir Tree Slots in Turbine Discs Made of Inconel 718. Key Eng. Mater. 2012, 504–506, 1177–1182. [Google Scholar] [CrossRef]
- Newton, T.R.; Melkote, S.N.; Watkins, T.R.; Trejo, R.M.; Reister, L. Investigation of the effect of process parameters on the formation and characteristics of recast layer in wire-EDM of Inconel 718. Mater. Sci. Eng. A 2009, 513–514, 208–215. [Google Scholar] [CrossRef]
- Aspinwall, D.; Soo, S.; Berrisford, A.; Walder, G. Workpiece surface roughness and integrity after WEDM of Ti–6Al–4V and Inconel 718 using minimum damage generator technology. CIRP Ann.-Manuf. Technol. 2008, 57, 187–190. [Google Scholar] [CrossRef]
- Klocke, F.; Klink, A.; Veselovac, D.; Aspinwall, D.K.; Soo, S.L.; Schmidt, M.; Schilp, J.; Levy, G.; Kruth, J.-P. Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes. CIRP Ann.-Manuf. Technol. 2014, 63, 703–726. [Google Scholar] [CrossRef]
- Nowicki, R.; Świercz, R.; Kopytowski, A.; Vagaská, A. Surface texture of Inconel 718 after electrical discharge machining assisted with ultrasonic vibration of a tool electrode. Weld. Technol. Rev. 2019, 91, 7–11. [Google Scholar] [CrossRef]
- Turbine Engine Solutions, Inc. Available online: http://www.turbineenginesolutions.com/ (accessed on 13 December 2020).
- Burek, J.; Buk, J.; Płodzień, M.; Sałata, M. Automatic programming of 4-axis Wire EDM CNC machine supported by dedicated programming module. Mechanik 2016, 3, 216–217. [Google Scholar] [CrossRef][Green Version]
- Świercz, R.; Oniszczuk-Świercz, D. Adaptive control systems in modern machines WEDM. Mechanik 2015, 12, 57–62. [Google Scholar] [CrossRef][Green Version]
- Jeelani, S.; Collins, M. Effect of electric discharge machining on the fatigue life of Inconel 718. Int. J. Fatigue 1988, 10, 121–125. [Google Scholar] [CrossRef]
- Liao, Y.; Huang, J.; Chen, Y. A study to achieve a fine surface finish in Wire-EDM. J. Mater. Process. Technol. 2004, 149, 165–171. [Google Scholar] [CrossRef]
- Li, L.; Guo, Y.; Wei, X.; Li, W. Surface Integrity Characteristics in Wire-EDM of Inconel 718 at Different Discharge Energy. Procedia CIRP 2013, 6, 220–225. [Google Scholar] [CrossRef]
- Godzimirski, J. Nowe technologie lotniczych silników turbinowych. Pr. Inst. Lotnictwa 2011, 213, 22–36. [Google Scholar]
- Wang, F.; Liu, Y.; Shen, Y.; Ji, R.; Tang, Z.; Zhang, Y. Machining Performance of Inconel 718 Using High Current Density Electrical Discharge Milling. Mater. Manuf. Process. 2013, 28, 1147–1152. [Google Scholar] [CrossRef]
- Zalecki, W.; Łapczyński, Z.; Rońda, J.; Gnot, A. High temperature properties of Inconel 625 and Inconel 718 alloys. Prace IMŻ 2013, 3, 35–41. [Google Scholar]
- Li, L.; Li, Z.Y.; Wei, X.T.; Cheng, X. Machining Characteristics of Inconel 718 by Sinking-EDM and Wire-EDM. Mater. Manuf. Process. 2015, 30, 968–973. [Google Scholar] [CrossRef]
- Dul, I. Application and processing of nickel alloys in the aircraft industry. Przegląd Spaw. 2009, 7–8, 67–71. [Google Scholar]
- Burek, J.; Babiarz, R.; Płodzień, M.; Buk, J. The influence of electrode infeed in finishing wire electrical discharge machining process on disks fir tree slot accuracy. Mechanik 2018, 10, 915–917. [Google Scholar] [CrossRef]
- Oniszczuk-Świercz, D.; Świercz, R.; Dąbrowski, L.; Marczak, M. Surface layer of Inconel 718 after WEDM proces. Mechanik 2015, 4, 71–74. [Google Scholar]
- Huang, Y.; Ming, W.; Guo, J.; Zhang, Z.; Liu, G.; Li, M.; Zhang, G. Optimization of cutting conditions of YG15 on rough and finish cutting in WEDM based on statistical analyses. Int. J. Adv. Manuf. Technol. 2013, 69, 993–1008. [Google Scholar] [CrossRef]
- Oniszczuk, D. Określnie Wpływu Zjawisk Fizycznych na Cechy Geometryczne Przedmiotu po Obróbce Elektroerozyjnej WEDM. Ph.D. Thesis, Warsaw University of Technology, Warszawa, Poland, 2013. [Google Scholar]
- Mańczak, K. Technika Planowania Eksperymentu; Wydawnictwa Naukowo-Techniczne: Warszawa, Poland, 1976. [Google Scholar]
- Korzyński, M. Metodyka Eksperymentu. Planowanie, Realizacja i Statystyczne Opracowanie Wyników Eksperymentów Technologicznych; Wydawnictwa Naukowo-Techniczne: Warszawa, Poland, 2017; ISBN 978-83-01-19318-8. [Google Scholar]
Property | Value |
---|---|
Density | 8.19 g/cm3 |
Thermal conductivity | 11.2 W/(m·K) |
Electrical resistivity | 127 μΩ·cm |
Elastic modulus | 200 GPa |
Yield strength | 150 ksi |
Tensile strength | 180 ksi |
Tensile strength (1200 °F) | 140 ksi |
Hardness | 89 HRB |
Alloy | Mass Percent (Mass%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | Si | Mn | Cr | Mo | Ni | Co | Ti | Al | Nb + T | P | S | Fe | Cu | |
Inconel 718 | Max 0.08 | Max 0.35 | Max 0.35 | 17.0–21.0 | 2.8–3.3 | 50.0–55.0 | 0.04 | 0.65–1.15 | 0.2–0.8 | 4.75–5.5 | Max 0.015 | Max 0.015 | 18.5 | Max 0.3 |
Technological Parameter | Value |
---|---|
Wire running speed Ws, notch | 12 |
Wire tension Wt, N | 19 |
Wire feedrate vf, mm/min | 3.3 |
Dielectric flow rate Fr, L/min | 1.4 |
Technological Parameter | Number of Notches |
---|---|
Peak current Ip | 13 |
Mean gap voltage Um | 65 |
Pulse off-time toff | 2 |
Number of Sample | Ic | toff | Um | z | E | |||
---|---|---|---|---|---|---|---|---|
Notch | A | Notch | µs | Notch | V | µm | mJ | |
1 | 16 | 28.28 | 2 | 24.55 | 65 | 29.35 | 50 | 0.958 |
2 | 4 | 3.91 | 1 | 14.17 | 65 | 33.64 | 59 | 0.043 |
3 | 16 | 27.97 | 1 | 20.38 | 65 | 33.07 | 30 | 0.927 |
4 | 16 | 28.08 | 2 | 23.27 | 1 | 13.79 | 70 | 0.383 |
5 | 4 | 4.25 | 2 | 12.47 | 65 | 34.35 | 30 | 0.051 |
6 | 10 | 10.97 | 2 | 18.47 | 1 | 20.99 | 59 | 0.107 |
7 | 16 | 28.28 | 1 | 20.47 | 1 | 12.19 | 38 | 0.344 |
8 | 4 | 3.51 | 2 | 14.55 | 1 | 15.47 | 41 | 0.015 |
9 | 4 | 5.46 | 1 | 9.911 | 1 | 17.69 | 70 | 0.031 |
10 | 4 | 3.45 | 1 | 14.74 | 65 | 35.67 | 41 | 0.034 |
11 | 4 | 3.94 | 2 | 16.62 | 65 | 35.64 | 70 | 0.033 |
12 | 16 | 23.51 | 1 | 25.54 | 65 | 36.02 | 70 | 0.698 |
13 | 16 | 27.76 | 1 | 26.3 | 1 | 12.73 | 63 | 0.343 |
14 | 4 | 4.33 | 1 | 16.1 | 1 | 12.97 | 30 | 0.018 |
15 | 4 | 13.36 | 1 | 17.91 | 1 | 23.06 | 30 | 0.157 |
16 | 16 | 29.14 | 2 | 26.4 | 1 | 23.87 | 30 | 0.761 |
17 | 4 | 4.03 | 2 | 16.28 | 32 | 14.62 | 59 | 0.018 |
18 | 10 | 13.83 | 1 | 22.38 | 32 | 23.76 | 70 | 0.165 |
Number of Sample | Ip | toff | Um | z | E | Ra | Δr | Δd | |
---|---|---|---|---|---|---|---|---|---|
A | µs | V | µm | mJ | µm | µm | µm | ||
1 | 28.28 | 24.55 | 29.35 | 50 | 0.958 | 3.304 | 0.042 | 0.015 | |
2 | 3.91 | 14.17 | 33.64 | 59 | 0.043 | 0.837 | 0.037 | 0.015 | |
3 | 27.97 | 20.38 | 33.07 | 30 | 0.927 | 2.91 | 0.04 | 0.02 | |
4 | 28.08 | 23.27 | 13.79 | 70 | 0.383 | 2.777 | 0.045 | 0.009 | |
5 | 4.25 | 12.47 | 34.35 | 30 | 0.051 | 1.776 | 0.033 | 0.016 | |
6 | 10.97 | 18.47 | 20.99 | 59 | 0.107 | 1.753 | 0.042 | 0.014 | |
7 | 28.28 | 20.47 | 12.19 | 38 | 0.344 | 1.571 | 0.044 | 0.013 | |
8 | 3.51 | 14.55 | 15.47 | 41 | 0.015 | 1.747 | 0.042 | 0.012 | |
9 | 5.46 | 9.911 | 17.69 | 70 | 0.031 | 1.604 | 0.037 | 0.009 | |
10 | 3.45 | 14.74 | 35.67 | 41 | 0.034 | 0.849 | 0.035 | 0.014 | |
11 | 3.94 | 16.62 | 35.64 | 70 | 0.033 | 0.897 | 0.048 | 0.011 | |
12 | 23.51 | 25.54 | 36.02 | 70 | 0.698 | 4.853 | 0.047 | 0.012 | |
13 | 27.76 | 26.3 | 12.73 | 63 | 0.343 | 2.574 | 0.045 | 0.014 | |
14 | 4.33 | 16.1 | 12.97 | 30 | 0.018 | 3.032 | 0.043 | 0.014 | |
15 | 13.36 | 17.91 | 23.06 | 30 | 0.157 | 2.524 | 0.046 | 0.013 | |
16 | 29.14 | 26.4 | 23.87 | 30 | 0.761 | 2.064 | 0.051 | 0.016 | |
17 | 4.03 | 16.28 | 14.62 | 59 | 0.018 | 0.923 | 0.036 | 0.01 | |
18 | 13.83 | 22.38 | 23.76 | 70 | 0.165 | 2.038 | 0.042 | 0.012 |
Publisher’sNote: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burek, J.; Babiarz, R.; Buk, J.; Sułkowicz, P.; Krupa, K. The Accuracy of Finishing WEDM of Inconel 718 Turbine Disc Fir Tree Slots. Materials 2021, 14, 562. https://doi.org/10.3390/ma14030562
Burek J, Babiarz R, Buk J, Sułkowicz P, Krupa K. The Accuracy of Finishing WEDM of Inconel 718 Turbine Disc Fir Tree Slots. Materials. 2021; 14(3):562. https://doi.org/10.3390/ma14030562
Chicago/Turabian StyleBurek, Jan, Robert Babiarz, Jarosław Buk, Paweł Sułkowicz, and Krzysztof Krupa. 2021. "The Accuracy of Finishing WEDM of Inconel 718 Turbine Disc Fir Tree Slots" Materials 14, no. 3: 562. https://doi.org/10.3390/ma14030562
APA StyleBurek, J., Babiarz, R., Buk, J., Sułkowicz, P., & Krupa, K. (2021). The Accuracy of Finishing WEDM of Inconel 718 Turbine Disc Fir Tree Slots. Materials, 14(3), 562. https://doi.org/10.3390/ma14030562