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Abstract: Servicing aircraft engines sometimes requires manufacturing only a single piece of a given
part. Manufacturing a turbine disc using traditional methods is uneconomical. It is necessary to use
a different machining method recommended for small lot production. One of the proposed methods
is WEDM (wire electrical discharge machining). The article presents the results of the research
on finishing WEDM of Inconel 718 turbine disc fir tree slots. The influence of infeed, mean gap
voltage, peak current, pulse off-time, and discharge energy on the shape accuracy, surface roughness,
microcracks, and the white layer thickness were determined. Mathematical models were developed
based on the DoE (Design of Experiment) analysis. The statistical significance of the models was
verified with the ANOVA (Analysis of Variance) test. The machining parameters control methods
that allow achieving the required shape accuracy, surface roughness, and surface layer condition
were presented. The obtained surface roughness was Ra = 0.84 µm, the shape accuracy of the slot in
the normal-to-feed direction was ∆d = 0.009 µm, the profile shape accuracy was ∆r = 0.033 µm, and
the thickness of recast (white) layer was approximately 5 µm.

Keywords: WEDM; finishing machining; Inconel 718; fir tree slot

1. Introduction

Electrical discharge machining (EDM) is an alternative to traditional machining meth-
ods. The method consists of removing the material due to electrical discharges between the
tool and the workpiece. As a result, EDM can be utilized in machining conductive materials
regardless of their hardness [1,2]. EDM is widely used in manufacturing injection molds
and in the automotive industry [3]. The continuous development of this machining method
and innovations in the design of EDM machine tools allow applying the method in the
medical sector and aerospace industry as well [4–6]. Wire electrical discharge machining
(WEDM) is a type of electrical discharge machining in which the tool is an electrode in the
form of a wire. The most commonly used is a brass wire of a diameter of 0.02 to 0.5 mm.
The machining is conducted in a dielectric liquid and consists of removing the material
as a result of melting and evaporation [7–9]. WEDM is a trepan type technology in which
the erosion of the small amount of the machined material allows removing significant
blank volume [10]. The occurrence of microcracks in the surface layer and the formation
of a recast (white) layer [11] on a workpiece surface due to high temperature are notable
shortcomings of the electrical discharge machining [12].

Considering the above, the method has not been commonly used in the manufacturing
of critical machine parts, which include, i.e., an aircraft engine turbine rotor [13]. Depending
on the accuracy and surface roughness, the machining of rotors may be only rough or can
include a few finishing passes [14]. Finishing machining allows applying lower electrical
parameters, which results in a lower discharge energy and reduced heat impact on the
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surface layer. Submerging the workpiece in the dielectric allows for effective cooling in
the machining zone, which leads to stress in the surface layer. Lower discharge energy,
and thus reduced heat impact on the surface layer, lead to lower stress in the layer, and as
a result, to reduction in the microcracks [15,16]. Modern solutions in electrical discharge
machining, as well as the materials with high hardness, allow avoiding microcracks in
the surface layer and minimizing the thickness of the white layer on the surface of the
workpiece. Mouralova et al. [17] investigated the influence of the Hardox 400 steel WEDM
on the occurrence of surface defects. Gautier et al. [18] investigated the impact of pulse
on time, pulse off-time, servo-reference voltage, and wire tension on the surface quality
after WEDM of γ-TiAl. Deb et al. [19] investigated the influence of the peak current,
pulse on time, and pulse off-time on the cutting speed, average surface roughness, total
surface roughness, kerf width, and wire wear in Inconel 800 electrical discharge machining.
Kulkarni et al. [20] investigated the machinability of NiTiNOL alloy in the WEDM process.
Mouralova et al. [21] investigated the possibility of using WEDM for machining High-
Entropy Alloys (HAE). Chaudhari et al. [22,23] investigated the surface quality of Shape
Memory Alloys after WEDM. Kumar et al. [24] investigated the effect of pulse on time,
pulse off-time, and wire tension on the surface roughness and the efficiency of the WEDM of
Stellite alloy. Antar et al. [25] investigated the surface quality of Udimet 720 and Ti6246 alloy
after WEDM with coated and uncoated electrodes. Thus, new possibilities in the machining
of critical parts arise, especially for difficult-to-cut materials such as heat-resistant super
alloys (HRSA), i.e., nickel superalloys [26]. Klocke et al. [27] presented the concept of using
WEDM in manufacturing fir tree slots. Oniszczuk-Świercz et al. [28] investigated the effect
of WEDM process parameters on the surface quality of Inconel 718 using coated brass
wire. Sharma et al. [29,30] investigated the possibility of using WEDM in manufacturing
Inconel 706 aircraft engine parts. Klocke et al. [31] compared the manufacturing of fir
tree slots with the commonly used broaching method and the conceptual WEDM method.
Newton et al. [32] assessed the influence of the WEDM roughing parameters on the recast
(white) layer formation in the Inconel 718 machining. Aspinwall et al. [33] investigated the
surface quality of Inconel 718 alloy after WEDM using the minimum damage generator
technology. Due to the constant increase in aircraft engines performance, which is achieved
while simultaneously reducing exhaust emission and noise (The Advisory Council for
Aeronautics Research in Europe predicts a reduction in COx and NOx emission by 75%
and noise reduction by 65% by 2050), newer materials are used, which are more and
more difficult to machine [34,35]. The latest solutions in the design and control of WEDM
machines allow achieving a surface roughness of 0.2 µm and a heat-affected zone (HAZ)
thickness close to 0 µm [27]. In addition, the implementation of numerically controlled
machine tools (CNC) allows programming any slot shape and does not require any special
tools. On the other hand, one of the most significant disadvantages of the WEDM method
is the long machining time, thus limiting its application mainly to single and small-lot
production [34].

In assembled turbine discs, the blades are attached to the disc with fir tree slots (Figure 1).
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Figure 1. The surface of the fir tree slot [36]. Figure 1. The surface of the fir tree slot [36].

Currently, the most common method of machining the fir tree slots in turbine discs
is broaching. Due to the complex shape of the tool as well as the difficulty in its design
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and manufacturing, the method is expensive and time-consuming. Therefore, alternative
methods of machining the fir tree slots in the turbine discs are sought. Wire electrical
discharge machining is one of the proposed methods. The method consists of a rough and
finishing stage. High shape and dimensional accuracy and surface quality are achieved in
finishing passes of an electrode [31]. The basic hydromechanical and geometric WEDM
parameters are presented in Figure 2.
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Figure 2. Hydromechanical and geometric parameter of wire electrical discharge machining (WEDM)
process: (a) Ws—wire running speed, Wt—wire tension, vf—wire feed rate, Fr—dielectric flow rate,
ø—wire diameter, h—work piece’s height, s—spark gap, (b) z—infeed.

An important finishing machining parameter is the infeed of the electrode, which
is the distance between the path of the electrode in roughing and finishing machining.
The parameter significantly affects the shape accuracy, while the surface quality is largely
influenced by the electrical parameters [37,38].

The research conducted so far has focused mainly on the roughing machining of
Inconel 718 [8,39,40]. The studies of the finishing machining of Inconel 718 pertained to
discharge energy, machining efficiency, and the effect of a single parameter [33,35,41]. The
following article presents the results of the research on the influence of many parameters,
such as electrode infeed, mean gap voltage, peak current, pulse off-time, and discharge
energy on the surface quality and shape accuracy of Inconel 718 fir tree slots in turbine discs.

2. Materials and Methods
2.1. Experimental Material

Inconel 718 is a nickel-based alloy from the HRSA and HSTR (high-strength, thermal-
resistant) superalloy group (Shanghai LANZHU super alloy Material Co., Ltd., Shanghai,
China). Due to its properties, such as high strength, high temperature creep resistance,
oxidation, and corrosion resistance, Inconel 718 has been used for parts that undergo high
loads and high temperatures [42–44]. Table 1 presents the properties of Inconel 718 alloy.

Table 1. Properties of the annealed Inconel 718 alloy [32].

Property Value

Density 8.19 g/cm3

Thermal conductivity 11.2 W/(m·K)
Electrical resistivity 127 µΩ·cm

Elastic modulus 200 GPa
Yield strength 150 ksi

Tensile strength 180 ksi
Tensile strength (1200 ◦F) 140 ksi

Hardness 89 HRB
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Inconel parts make up approximately 50% of the mass of the aircraft engine, and it
is being predicted that this value will increase. Inconel 718 is commonly used in man-
ufacturing turbine discs, blades, combustion chambers, and gas turbines in the power
industry [45]. The chemical composition of Inconel 718 is shown in Table 2.

Table 2. Chemical composition of Inconel 718 [46].

Alloy Mass Percent (Mass%)
C Si Mn Cr Mo Ni Co Ti Al Nb + T P S Fe Cu

Inconel
718

Max
0.08

Max
0.35

Max
0.35

17.0–
21.0

2.8–
3.3

50.0–
55.0 0.04 0.65–

1.15
0.2–
0.8 4.75–5.5 Max

0.015
Max
0.015 18.5 Max

0.3

2.2. Experimental Test and Measuring Stands

The test stand was built based on the Mitsubishi FA10S wire electrical discharge
machine (Mitsubishi Electric Corporation, Tokyo, Kantō region, Japan). The machine tool
was controlled by the Mitsubishi W31 Advance CNC control system (Mitsubishi Electric
Corporation, Tokyo, Kantō region, Japan). The machine tool was powered by regenerative
transistor pulse type using parameter notches, where a “notch” represents the unit for the
actual value of a given parameter.

2.2.1. Workpiece

The machined surface was the side of the fir tree slot, 30 mm wide. The dimensions
of the slot profile are shown in Figure 3. The required surface roughness of the machined
slots should be in the range of Ra = 0.8–1.25 µm, whereas the shape accuracy in the range
of ± 5–25 µm.
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2.2.2. The Tool

For the experimental tests, a wire electrode with a diameter of 0.25 mm made of brass
with a tensile strength of 900 N/mm2 was used. The adopted type of electrode is commonly
used in the machine industry and is suitable for both rough and finishing machining.

2.2.3. Test Conditions

Rough machining of the fir tree slot had been conducted in the same WEDM process,
right before the finishing pass was made. The roughing parameters were selected for cutting
steel according to the recommendations of the machine tool manufacture, modifying them
according to the research carried out in the works [47,48]. Table 3 presents the constant
machining parameters adopted in the experimental tests.

Table 3. Values of constant parameters adopted for the machining.

Technological Parameter Value

Wire running speed Ws, notch 12
Wire tension Wt, N 19

Wire feedrate vf, mm/min 3.3
Dielectric flow rate Fr, L/min 1.4
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During the initial stage of the experimental tests, in order to determine the range of the
Ip, Um and toff parameter notches (for used MP power supply) for which the machining was
possible, machining tests were performed. The values of the available parameter notches
are presented in Table 4.

Table 4. Available notches for tested parameters.

Technological Parameter Number of Notches

Peak current Ip 13
Mean gap voltage Um 65

Pulse off-time toff 2

The minimum and maximum value of infeed were determined based on the previous
research of the authors. The initial range of the infeed values calculated according to [49]
was adapted in tests to find the minimum value allowing for the electric discharge between
the wire electrode and the workpiece, and the maximum value allowing for the machining
without short circuits or breaking the wire. Thus, the infeed range for finishing machining
was z = 30–70 µm.

2.2.4. Test Stand

The test stand is presented in Figure 4. The voltage was measured with a Rigol
RP1300H voltage probe (RIGOL Technologies, Beijing, China), and the current was mea-
sured with the use of a Pearson 2878 sensor (Pearson Electronics, Palo Alto, California,
USA). The sensors were connected to a Rigol DS1074Z oscilloscope (RIGOL Technologies,
Beijing, China). The measuring system allowed for recording voltage and current wave-
forms. The voltage was measured with the sensor with a measuring range of 400 V. The
current was measured with a sensor based on the Hall phenomenon with the sensitivity of
0.1 V/A. The signals from the probe and sensor were recorded with the oscilloscope with a
sampling frequency of 100 MHz and a recording time of 600 µs. The data were saved in
flash memory and analyzed with the use of a computer.
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The measurements of the shape accuracy of the fir tree slots were conducted with
a Mahr XC20 conturograph (Mahr-Gruppe, Göttingen, Lower Saxony, Germany). The
measurements of the profile accuracy ∆r were performed three times over the entire height
of the sample: in the upper, middle, and lower sections (Figure 5a). The number of
measuring points amounted to approximately 30,000. The measurements of the accuracy
in the normal-to-profile (feed) direction ∆d were performed on the flat surface as well as
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on the internal and external radii (Figure 5b). The number of measuring points amounted
to approximately 28,000.
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Surface roughness measurements were conducted on 1.4302 mm × 1.085 mm scan
areas with a vertical resolution of 170.76 µm (Figure 6).
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The area in the middle of the workpiece height was assumed due to the concentration
of contaminants occurring in this zone during machining, and therefore, the worst ma-
chining conditions resulting in the highest roughness parameters [50]. The measurements
were conducted with the use of an Infinite Focus G4 Alicona focus-variation microscope
(Alicona Imaging GmbH, Raaba-Grambach, Styria, Austria).

2.3. Data Analysis Methods

The aim of the statistical analysis of the results was to obtain the regression models.
The significance of the equation’s coefficients was determined with the Student’s t-test.
The significance level was assumed at α = 0.05, and that value was used to test the null
hypothesis H0. If the calculated value of the probability p was lower than the adopted
α value, then the H1 hypothesis was assumed; otherwise, the null hypothesis H0 was
assumed. To determine the goodness of fit of the models to the experimental data, the
coefficients of determination R2 and R2 were calculated as follows:

R2 =
∑n

i = 1(yi − yi)
2

∑n
i = 1

(
yi − y′i

)2 (1)

where

- yi—measured value,
- yi—theoretical value calculated from the model,
- y′t—arithmetic mean of measured values,
- n—number of measurements.



Materials 2021, 14, 562 7 of 19

R2
=

∑n
i=1(yi − yi)

2(n− 1)

∑n
i=1
(
yi − y′i

)2
(n−m)

(2)

where
- m—number of interactions in a regression model.
The values of the coefficients of determination are in the 〈0,1〉 range, where the higher

the value, the better the fit of the model to the experimental data.
The normality of the residual distribution was also tested using the Shapiro–Wilk

test. For the determined probability (p > 0.05), the residuals are normally distributed. The
statistical significance of the model was determined with the ANOVA test. All the statistical
analyses were conducted using the JMP 12 software (SAS, Marlow, Buckinghamshire,
United Kingdom) [51,52].

The statistical analysis of the experimental results was performed based on fitting
the response surface models to the assumed input machining parameters. The works of
authors [47] indicate the need to verify the influence of the infeed in the third power (z3).
The response equation can be presented as a polynomial function in the general form:

y = β0 + β1 Ic + β2Uc + β3to f f + β4z + β11 I2
c + β22U2

c + β33t2
o f f

+ β44z2 + β12 IcUc + β13 Icto f f + β14 Icz + β23Ucto f f
+ β24Ucz + β34to f f z + β444z3

(3)

where β—coefficients of the equation.
Complementing the research on the influence of electrical parameters, an analysis of

the impact of the discharge energy E on the surface roughness and the condition of the
surface layer was carried out, the discharge energy was calculated as follows:

E =
∫ ton

0
Ip(t)·Um(t) dt (4)

where ton—pulse on time.
The statistical analysis was performed based on fitting the response surface models as

well, whereas the response surface equation can be presented as a polynomial function in
the general form:

y = β0 + β1E + β2z + β11E2 + β22z2 + β12Ez + β222z3 (5)

The determined ranges of parameters (Table 3) allow for developing the Design
of Experiment (DoE). A four-parameter custom design was adopted with the use of a
dedicated JMP 12 software. Table 5 presents the design of experiment.

Table 5. The design of experiment according to notches and corresponding to them tested parameters.

Number of Sample
Ic toff Um z E

Notch A Notch µs Notch V µm mJ

1 16 28.28 2 24.55 65 29.35 50 0.958
2 4 3.91 1 14.17 65 33.64 59 0.043

3 16 27.97 1 20.38 65 33.07 30 0.927
4 16 28.08 2 23.27 1 13.79 70 0.383

5 4 4.25 2 12.47 65 34.35 30 0.051
6 10 10.97 2 18.47 1 20.99 59 0.107

7 16 28.28 1 20.47 1 12.19 38 0.344
8 4 3.51 2 14.55 1 15.47 41 0.015

9 4 5.46 1 9.911 1 17.69 70 0.031
10 4 3.45 1 14.74 65 35.67 41 0.034
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Table 5. Cont.

Number of Sample
Ic toff Um z E

Notch A Notch µs Notch V µm mJ

11 4 3.94 2 16.62 65 35.64 70 0.033
12 16 23.51 1 25.54 65 36.02 70 0.698

13 16 27.76 1 26.3 1 12.73 63 0.343
14 4 4.33 1 16.1 1 12.97 30 0.018

15 4 13.36 1 17.91 1 23.06 30 0.157
16 16 29.14 2 26.4 1 23.87 30 0.761

17 4 4.03 2 16.28 32 14.62 59 0.018
18 10 13.83 1 22.38 32 23.76 70 0.165

3. Results
3.1. Test Results

The results of the measurement of the Ra surface roughness and profile shape accuracy
∆r, as well as the shape accuracy in the normal-to-feed direction ∆d, are presented in Table 6.

Table 6. The results of the measurement of the Ra surface roughness, profile shape accuracy ∆r, and
the shape accuracy ∆d.

Number of Sample
Ip toff Um z E Ra ∆r ∆d

A µs V µm mJ µm µm µm

1 28.28 24.55 29.35 50 0.958 3.304 0.042 0.015
2 3.91 14.17 33.64 59 0.043 0.837 0.037 0.015

3 27.97 20.38 33.07 30 0.927 2.91 0.04 0.02
4 28.08 23.27 13.79 70 0.383 2.777 0.045 0.009

5 4.25 12.47 34.35 30 0.051 1.776 0.033 0.016
6 10.97 18.47 20.99 59 0.107 1.753 0.042 0.014

7 28.28 20.47 12.19 38 0.344 1.571 0.044 0.013
8 3.51 14.55 15.47 41 0.015 1.747 0.042 0.012

9 5.46 9.911 17.69 70 0.031 1.604 0.037 0.009
10 3.45 14.74 35.67 41 0.034 0.849 0.035 0.014

11 3.94 16.62 35.64 70 0.033 0.897 0.048 0.011
12 23.51 25.54 36.02 70 0.698 4.853 0.047 0.012

13 27.76 26.3 12.73 63 0.343 2.574 0.045 0.014
14 4.33 16.1 12.97 30 0.018 3.032 0.043 0.014

15 13.36 17.91 23.06 30 0.157 2.524 0.046 0.013
16 29.14 26.4 23.87 30 0.761 2.064 0.051 0.016

17 4.03 16.28 14.62 59 0.018 0.923 0.036 0.01
18 13.83 22.38 23.76 70 0.165 2.038 0.042 0.012

3.2. Surface Roughness

The quality of the machined surface depends mainly on the electrical parameters. The
tests of the influence of electrical parameters were supplemented with the analysis of the
impact of the discharge energy E on the surface roughness and surface layer condition. In
order to determine the influence of the set electrical parameters on the surface roughness
parameter Ra, a mathematical model was developed, based on the analysis of linear main
effects, effects of two-way interaction, and a variable square effect in case of the infeed
according to Equation (3).

The regression equation for the Ra surface roughness output can be presented as follows:

Ra = 1.546 + 0.67Ip + 0.98IpUm + 0.399Ipz + 0.887Umz + 0.534z3 (6)
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In order to determine the goodness of fit of the model to the experimental data, the
coefficient of determination R2 and the adjusted coefficient of determination R2 were
calculated according to Equations (1) and (2). The coefficient of determination was equal
to R2 = 0.96, whereas the adjusted coefficient of determination was equal to R2 = 0.95.
The values of the coefficients indicate a very good fit of the model to the experimental
data. The obtained probability value p = 0.4863 for the Shapiro–Wilk normality test
suggests that the residuals were normally distributed. The verification of the statistical
significance was conducted by one-way analysis of variance ANOVA. The probability
p was equal to p = 1.677 × 10−8, which confirms the statistical significance of the model
expressed by Formula (6). The graphic interpretation of the developed model is presented
in Figures 7 and 8.
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Figure 8. The relation between the surface roughness Ra, peak current Ip, and infeed z, with constant
mean gap voltage Um = 15.9 V.

The peak current Ip had the greatest impact on the surface roughness Ra. One can
observe a significant interaction between the Ip and Um parameters. The higher the Ip
value, the influence of the Um on the Ra surface roughness increases. In the case of the
infeed, the value of approximately z = 40 µm resulted in the lowest surface roughness Ra.
The pulse off-time toff does not significantly affect the value of the Ra surface roughness
parameter. The measured surface roughness of Ra = 0.84–4.85 µm includes the roughness
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of Ra = 1.8–2.1 µm predicted by the machine tool manufacturer. However, it is possible to
achieve a surface roughness Ra below 1 µm in the first finishing pass.

The analysis of the discharge energy E while varying the infeed z allowed obtaining,
based on Equation (5), the regression equation for the output variable of the surface
roughness Ra in the form:

Ra = 0.925 + 2.552E + 0.853z2 + 2.475Ez (7)

The coefficient of determination was equal to R2 = 0.96, whereas the adjusted coef-
ficient of determination was equal to R2 = 0.83. The values of the coefficients indicate a
good fit of the model to the experimental data. The obtained probability value p = 0.5151
for the Shapiro–Wilk normality test allow concluding that the residuals were normally
distributed. The verification of the statistical significance was performed by one-way
analysis of variance ANOVA. The probability p was equal to p = 3.704 × 10−6, which
indicates the statistical significance of the model expressed by Equation (7). The graphic
interpretation of the developed model is presented in Figure 9.
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The high variation in the Ip parameter, compared to mean gap voltage and pulse on
time, has a significant impact on the discharge energy E value; thus, the influence of the
energy on the surface roughness is similar to that of the peak current (Figure 7).

3.3. Surface Texture and Surface Layer

The results of the measurements of the surface texture and the surface layer for the
test sample, for which the lowest (sample 2) and the highest (sample 12) surface roughness
Ra were obtained, are presented in Figures 10 and 11.

The surface topography of both samples was random and isotropic. The skewness for
sample 2 was equal to Ssk = 9.25, and for sample 12, it was equal to Ssk = 1.39. The lower
the value, the more rounded the peaks. A positive value indicates sharp peaks, which is
disadvantageous in terms of surface interaction. The kurtosis for sample 2 was equal to
Sku = 3.06, and for sample 12, it was equal to Sku = 5.91. The value close to 3 proves that the
distribution of ordinates corresponds to the normal distribution, which in turn indicates
an even distribution of peaks and valleys. In the case of the sample 12, significantly more
valleys than peaks were registered. The root mean square roughness for sample 2 was
equal to Sq = 0.98 µm, and for sample 12, it was equal to Sq = 5 µm. The maximum peak
height and the maximum valley depth were equal respectively for sample 2 to Sp = 7.61 µm
and Sv = 4.44 µm, and for sample 12 to Sp = 29.6 µm and Sv = 14.02 µm. The summit
density for sample 2 was equal to Sds = 2798 pks/mm2, and for sample 12, it was equal to
Sds = 1521 pks/mm2. The slight difference in the St and Sz parameters for both samples, in
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the range of 0.8–1.2 µm, indicates that not many random peaks and valleys occurred, which
in turn proved that the machining was characterized by the stability of electrical discharges.
Due to the surface interaction, the bearing area curves (Abbot–Firestone curves) were
calculated as well for the machined sample 2 (Figure 10b) and for sample 12 (Figure 11b).
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In order to assess the abrasion resistance, the reduced peak height parameter was
adopted, which was equal respectively for sample 2 and 12 to Spk = 1.34 µm and to
Spk = 9.92. Moreover, the lubrication fluid retention ability is described by the reduced
valley depth parameter, which for samples 2 and 12 was equal respectively to Svk = 0.92 µm
and Svk = 2.34 µm. The effective roughness depth is described by the core roughness height
and was equal to Sk = 2.42 for sample 2 and to Sk = 9.51 for sample 12. The peak material
component for sample 2 was equal to Sr1 = 10.76%, and for sample 12 to Sr1 = 17.71%, while
the valley material component was equal to Sr2 = 90.15 for sample 2 and to Sr2 = 93.41 for
sample 12.

A negative phenomenon occurring during electrical discharge machining is the forma-
tion of a white layer in the surface layer of a workpiece. Figure 12 presents the thickness of
a white layer formed on the samples 2 (Figure 12a) and 12 (Figure 12b).
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Figure 12. Surface layer: (a) sample 2, (b) sample 12.

For sample 12, the white layer is irregular and is characterized by high thickness
variation. On the other hand, for sample 2, the changes in height were minimal, in the
range of ± 1 µm. Higher peak current Ip contributed to significant local disturbances in
the erosion of the material, which resulted in the deposition of an increased amount of the
eroded material, which in turn led to an increase in the thickness of the white layer up to
12–14 µm.

In addition, Figure 13 presents the topography of the sample 9 surface, which was the
only one to bear the rarely occurring machining marks (visible in the direction of the wire
running). The marks may be the result of regular electrode oscillations due to the selected
electrical parameters and infeed.
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3.4. Shape Accuracy

The regression equation for the output variable of the shape accuracy ∆r, based on
Equation (3), can be presented as follows:

∆r = −0.052 − 0.029Ip + 0.006to f f − 0.003I2
p + 0.001Ipto f f − 0.00009t2

o f f − 0.0001Umto f f

− 0.001Ipz + 0.009Umz + 0.005z2 + 0.005z3 (8)

The coefficient of determination was equal to R2 = 0.95, and the adjusted coefficient of
determination was equal to R2 = 0.88. The values of the coefficients indicate a good fit of the
model to the registered data. The obtained probability value p = 0.0631 for the Shapiro–Wilk
normality test allows concluding that the residuals were normally distributed. The verifica-
tion of the statistical significance was conducted by one-way analysis of variance ANOVA.
The probability p was equal to p = 0.001153, which confirms the statistical significance of
the model expressed by Equation (8). The graphic interpretation of the developed model is
shown in Figures 14–16.
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Figure 16. The relation between the shape accuracy ∆r, mean gap voltage Um, and infeed z with
constant peak current Ip = 28.6 A and pulse off-time toff = 17.2 µs.

In the case of the infeed, the value for which the shape deviation of the profile ∆r
was minimal proved to be approximately z = 50–60 µm. The highest profile deviation was
achieved for the pulse off-time of approximately toff = 25 µs. The lowest value of the shape
deviation of the profile was equal to ∆r = 32 µm. Figure 17 presents the distribution of the
shape deviation of the profile ∆r at different heights of the workpiece for sample with the
highest deviations (sample 16) and the lowest (sample 5).
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Figure 17. The distribution of the shape deviation of the profile ∆r for sample 16 (the highest
deviation) and for sample 5 (the lowest deviation), scale ×60.

A significant reduction in the deviations of the flat surfaces and outer radii has been
achieved. In the area of internal radii, a slight decrease in the deviation values was noted.

The regression equation for the output variable of the shape accuracy in the normal-
to-feed direction ∆d, based on Formula (3), can be expressed as follows:

∆d = 0.054 + 0.01Ip − 0.002to f f + 0.054Um − 0.0002Ipto f f + 0.00002to f f + 0.007IpUm
− 0.002Umto f f + 0.005Umz − 0.002z2 (9)

The coefficient of determination was equal to R2 = 0.95, whereas the adjusted coeffi-
cient of determination was equal to R2 = 0.90. The values of the coefficients indicate a very
good fit of the model to the registered data. The obtained probability value p = 0.0809 for
the Shapiro–Wilk normality test suggests that the residuals were normally distributed. The
verification of the statistical significance was conducted by one-way analysis of variance
ANOVA. The probability p was equal to p = 0.000252, which confirms the statistical signifi-
cance of the model expressed by Equation (9). The graphic interpretation of the developed
model is presented in Figures 18–20.
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One can observe a significant interaction between the toff and Um parameters. For
the infeed of approximately z = 50 µm, the highest value of the deviation was recorded,
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contrary to the shape deviation of the profile ∆r. The lowest recorded value of the shape
deviation in the normal-to-feed direction was equal to ∆d = 9 µm. Figure 21 presents the
distribution of shape deviations ∆d on the flat surface as well as on the internal and external
radii for sample with the highest (sample 3) and the lowest (sample 4) deviations.
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(the highest deviation) and for sample 4 (the lowest deviation), scale ×100.

One can observe that the distribution of the deviations corresponds with the character-
istic deflection of the electrode. For sample 4, a significant reduction in the deviations was
achieved, and the influence of the electrode’s deflection on the accuracy of the machining
was minimized.

4. Conclusions

Due to economical reasons, manufacturing fir tree slots using traditional machining
methods is justified only in large-scale or mass production. However, aircraft engine
servicing requires the replacement of single parts, which makes traditional machining
unprofitable. The conducted research indicates that the requirements of the industry
pertaining to the surface roughness and shape accuracy in the normal-to-feed direction can
be met, and the distribution of the deviations on the fir tree slot, except for the inside radii,
can be significantly reduced.

The results of the conducted experimental tests allow formulating the following conclu-
sions:

• A significant influence of peak current Ip and mean gap voltage Um, and thus discharge
energy E, on the surface roughness Ra was noted;

• Infeeds above approximately z = 50 µm have a considerable impact on the increase in
Ra parameter;

• Pulse off-time toff did not have a notable influence on the surface roughness Ra;
• Higher peak current Ip resulted in the significant increase in profile shape deviations

∆r;
• ∆r parameter significantly increased for the pulse off-time toff ≈ 20–30 µs, which can

indicate higher electrode vibration amplitudę;
• The lowest ∆r parameter value was obtained for the infeed of z ≈ 40–60 µm and

z ≈ 30 µm, and for the higher mean gap voltage Um (a significant interaction between
Um and z parameters);

• The increase in Ip and Um parameters leads to a notable increase in shape accuracy ∆d;
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• A significant interaction between Ip and toff parameters was noted, leading to the
increase in ∆d deviations for low values of toff and high values of Ip;

• The infeed slightly affected the deviation ∆d;
• Obtaining surface roughness in the Ra = 0.8–1.25 µm is possible even with only the

one finishing pass;
• No microcracks were observed for any sample, the thickness of the white layer for

sample 2 did not exceed 5 µm;
• The reduction in Ip parameter from 23.5 A to 4 A resulted in the decrease in the

thickness of the white layer of approximately 65%;
• A single finishing pass does not allow obtaining the profile shape accuracy ∆r within

the tolerance of ± 5–25 µm;
• One can obtain the shape accuracy ∆d within the ± 5–25 µm in a single finishing pass;

The presented mathematical models can be the basis for the selection of electrical
parameters and infeed in finishing WEDM for various slots geometry as well as for other
Inconel 718 parts containing external and internal radii of approximately 20 to 40 mm.

Electrical discharge machining can meet some of the requirements in Ra surface
roughness, surface layer, and shape accuracy ∆d. Thus, further research is needed, which
should focus on the application of the successive finishing passes with the use of power
supplies allowing for the machining with lower discharge energy, the main purpose of
which should be to increase the profile shape accuracy ∆r and to lower the thickness of the
white layer.
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