The Influence of Enzymatic Hydrolysis of Whey Proteins on the Properties of Gelatin-Whey Composite Hydrogels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Production of Whey Hydrolysates
2.3. Preparation of Hydrogels
2.4. Optical Properties of the Hydrogels
2.5. Swelling Tests
2.6. Thickness of the Films
3. Results and Discussions
3.1. FTIR Analysis of WPI, WPH and Gelatin-Whey Hydrogels
3.2. Optical Properties of the Hydrogels
3.3. Swelling Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sirbu, C.; Cioroianu, T.M.; Cojocaru, I.; Trandafir, V.; Albu, M.G. Fertilizers with Protein Chelated Structures with Biostimulator Role. Rev. Chim 2009, 60, 1135–1140. [Google Scholar]
- Chakravartula, S.S.N.; Soccio, M.; Lotti, N.; Balestra, F.; Dalla Rosa, M.; Siracusa, V. Characterization of Composite Edible Films Based on Pectin/Alginate/Whey Protein Concentrate. Materials 2019, 12, 2454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osman, A.; Goda, H.A.; Abdel-Hamid, M.; Badran, S.M.; Otte, J. Antibacterial Peptides Generated by Alcalase Hydrolysis of Goat Whey. LWT-Food Sci. Technol. 2016, 65, 480–486. [Google Scholar] [CrossRef]
- Cinelli, P.; Schmid, M.; Bugnicourt, E.; Coltelli, M.B.; Lazzeri, A. Recyclability of PET/WPI/PE Multilayer Films by Removal of Whey Protein Isolate-Based Coatings with Enzymatic Detergents. Materials 2016, 9, 473. [Google Scholar] [CrossRef] [Green Version]
- Benkerroum, N. Antimicrobial Peptides Generated from Milk Proteins: A Survey and Prospects for Application in the Food Industry. A Review. Int. J. Dairy Technol. 2010, 63, 320–338. [Google Scholar] [CrossRef]
- Pena-Ramos, E.; Xiong, Y. Antioxidative Activity of Whey Protein Hydrolysates in a Liposomal System. J. Dairy Sci. 2001, 84, 2577–2583. [Google Scholar] [CrossRef]
- Sanabria, J.C.; Urista, C.R.M.; Aguilar, R.E.O.; Illescas, J.; Nava, M. del C.D.; Franco, G.C. Encapsulation of Active Fractions of Whey Proteins with Antioxidant Potential in Pectin-Collagen and Pectin-Gelatin Microparticles. MRS Adv. 2018, 3, 3853–3860. [Google Scholar] [CrossRef]
- Tavares, T.; Monteiro, K.; Possenti, A.; Pintado, M.; Carvalho, J.; Malcata, F.X. Antiulcerogenic Activity of Peptide Concentrates Obtained from Hydrolysis of Whey Proteins by Proteases from Cynara Cardunculus. Int. Dairy J. 2011, 21, 934–939. [Google Scholar] [CrossRef] [Green Version]
- Gauthier, S.F.; Pouliot, Y.; Saint-Sauveur, D. Immunomodulatory Peptides Obtained by the Enzymatic Hydrolysis of Whey Proteins. Int. Dairy J. 2006, 16, 1315–1323. [Google Scholar] [CrossRef]
- Keri Marshall, N.D. Therapeutic Applications of Whey Protein. Altern. Med. Rev. 2004, 9, 136–156. [Google Scholar]
- Madureira, A.R.; Tavares, T.; Gomes, A.M.P.; Pintado, M.E.; Malcata, F.X. Invited Review: Physiological Properties of Bioactive Peptides Obtained from Whey Proteins. J. Dairy Sci. 2010, 93, 437–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Ledesma, B.; Ramos, M.; Gómez-Ruiz, J.Á. Bioactive Components of Ovine and Caprine Cheese Whey. Small Rumin. Res. 2011, 101, 196–204. [Google Scholar] [CrossRef] [Green Version]
- Costa, S.M.; Rogero, S.O.; Lugao, A.B. Transdermal Protein Delivery Systems Obtained from the Hydrogels Membrane Matrix. In Proceedings of the World Polymer Congress—Macro 2006, 41st International Symposium on Macromolecules, Rio de Janeiro, Brazil, 16–21 July 2006. [Google Scholar]
- Mayorova, O.A.; Jolly, B.C.; Verkhovskii, R.A.; Plastun, V.O.; Sindeeva, O.A.; Douglas, T.E. PH-Sensitive Dairy-Derived Hydrogels with a Prolonged Drug Release Profile for Cancer Treatment. Materials 2021, 14, 749. [Google Scholar] [CrossRef]
- Shetty, S.; Hegde, M.N.; Bopanna, T.P. Enamel Remineralization Assessment after Treatment with Three Different Remineralizing Agents Using Surface Microhardness: An in Vitro Study. J. Conserv. Dent. JCD 2014, 17, 49. [Google Scholar] [CrossRef] [Green Version]
- Mazilu, A.; Sarosi, C.; Moldovan, M.; Miuta, F.; Prodan, D.; Antoniac, A.; Prejmerean, C.; Dumitrescu, L.S.; Popescu, V.; Raiciu, A.D.; et al. Preparation and Characterization of Natural Bleaching Gels Used in Cosmetic Dentistry. Materials 2019, 12, 2106. [Google Scholar] [CrossRef] [Green Version]
- De la Fuente, M.; Hemar, Y.; Singh, H. Influence of κ-Carrageenan on the Aggregation Behaviour of Proteins in Heated Whey Protein Isolate Solutions. Food Chem. 2004, 86, 1–9. [Google Scholar] [CrossRef]
- Flett, K.L.; Corredig, M. Whey Protein Aggregate Formation during Heating in the Presence of κ-Carrageenan. Food Chem. 2009, 115, 1479–1485. [Google Scholar] [CrossRef]
- Tan, J.; Joyner, H.S. Characterizing Wear Behaviors of κ-Carrageenan and Whey Protein Gels by Numerical Modeling. J. Food Eng. 2018, 235, 98–105. [Google Scholar] [CrossRef]
- Lam, R.S.; Nickerson, M.T. The Properties of Whey Protein–Carrageenan Mixtures during the Formation of Electrostatic Coupled Biopolymer and Emulsion Gels. Food Res. Int. 2014, 66, 140–149. [Google Scholar] [CrossRef]
- Alavi, F.; Emam-Djomeh, Z.; Yarmand, M.S.; Salami, M.; Momen, S.; Moosavi-Movahedi, A.A. Cold Gelation of Curcumin Loaded Whey Protein Aggregates Mixed with K-Carrageenan: Impact of Gel Microstructure on the Gastrointestinal Fate of Curcumin. Food Hydrocoll. 2018, 85, 267–280. [Google Scholar] [CrossRef]
- Chen, L.; Subirade, M. Alginate–Whey Protein Granular Microspheres as Oral Delivery Vehicles for Bioactive Compounds. Biomaterials 2006, 27, 4646–4654. [Google Scholar] [CrossRef]
- Déat-Lainé, E.; Hoffart, V.; Garrait, G.; Jarrige, J.-F.; Cardot, J.-M.; Subirade, M.; Beyssac, E. Efficacy of Mucoadhesive Hydrogel Microparticles of Whey Protein and Alginate for Oral Insulin Delivery. Pharm. Res. 2013, 30, 721–734. [Google Scholar] [CrossRef] [PubMed]
- Wichchukit, S.; Oztop, M.; McCarthy, M.; McCarthy, K. Whey Protein/Alginate Beads as Carriers of a Bioactive Component. Food Hydrocoll. 2013, 33, 66–73. [Google Scholar] [CrossRef]
- Déat-Lainé, E.; Hoffart, V.; Garrait, G.; Beyssac, E. Whey Protein and Alginate Hydrogel Microparticles for Insulin Intestinal Absorption: Evaluation of Permeability Enhancement Properties on Caco-2 Cells. Int. J. Pharm. 2013, 453, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Déat-Lainé, E.; Hoffart, V.; Cardot, J.-M.; Subirade, M.; Beyssac, E. Development and in Vitro Characterization of Insulin Loaded Whey Protein and Alginate Microparticles. Int. J. Pharm. 2012, 439, 136–144. [Google Scholar] [CrossRef]
- Ozel, B.; Uguz, S.S.; Kilercioglu, M.; Grunin, L.; Oztop, M.H. Effect of Different Polysaccharides on Swelling of Composite Whey Protein Hydrogels: A Low Field (LF) NMR Relaxometry Study. J. Food Process Eng. 2017, 40, e12465. [Google Scholar] [CrossRef]
- Zand-Rajabi, H.; Madadlou, A. Caffeine-Loaded Whey Protein Hydrogels Reinforced with Gellan and Enriched with Calcium Chloride. Int. Dairy J. 2016, 56, 38–44. [Google Scholar] [CrossRef]
- Vahedifar, A.; Madadlou, A.; Salami, M. Calcium and Chitosan-Mediated Clustering of Whey Protein Particles for Tuning Their Colloidal Stability and Flow Behaviour. Int. Dairy J. 2017, 73, 136–143. [Google Scholar] [CrossRef]
- Kang, N.; Hua, J.; Gao, L.; Zhang, B.; Pang, J. The Interplay between Whey Protein Fibrils with Carbon Nanotubes or Carbon Nano-Onions. Materials 2021, 14, 608. [Google Scholar] [CrossRef]
- Chalermthai, B.; Chan, W.Y.; Bastidas-Oyanedel, J.-R.; Taher, H.; Olsen, B.D.; Schmidt, J.E. Preparation and Characterization of Whey Protein-Based Polymers Produced from Residual Dairy Streams. Polymers 2019, 11, 722. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Liu, N.; Guo, M. Use of Whey Protein as a Natural Polymer for Tissue Adhesive: Preliminary Formulation and Evaluation in Vitro. Polymers 2018, 10, 843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egan, T.; Jacquier, J.-C.; Rosenberg, Y.; Rosenberg, M. Cold-Set Whey Protein Microgels for the Stable Immobilization of Lipids. Food Hydrocoll. 2013, 31, 317–324. [Google Scholar] [CrossRef]
- Doherty, S.; Gee, V.; Ross, R.; Stanton, C.; Fitzgerald, G.; Brodkorb, A. Development and Characterisation of Whey Protein Micro-Beads as Potential Matrices for Probiotic Protection. Food Hydrocoll. 2011, 25, 1604–1617. [Google Scholar] [CrossRef]
- Mohammadian, M.; Madadlou, A. Cold-Set Hydrogels Made of Whey Protein Nanofibrils with Different Divalent Cations. Int. J. Biol. Macromol. 2016, 89, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, K.R.; Cavallieri, Â.L.F.; Da Cunha, R.L. Cold-set Whey Protein Gels Induced by Calcium or Sodium Salt Addition. Int. J. Food Sci. Technol. 2010, 45, 348–357. [Google Scholar] [CrossRef]
- Pereira, R.N.; Rodrigues, R.M.; Altinok, E.; Ramos, Ó.L.; Malcata, F.X.; Maresca, P.; Ferrari, G.; Teixeira, J.A.; Vicente, A.A. Development of Iron-Rich Whey Protein Hydrogels Following Application of Ohmic Heating–Effects of Moderate Electric Fields. Food Res. Int. 2017, 99, 435–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, A.; De Jong, G. Enhancing the in Vitro Fe 2+ Bio-Accessibility Using Ascorbate and Cold-Set Whey Protein Gel Particles. Dairy Sci. Technol. 2012, 92, 133–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, M.V.; Delgado, J.; Goncalves, M. Impact of Mg2+ and Tara Gum Concentrations on Flow and Textural Properties of WPI Solutions and Cold-Set Gels. Int. J. Food Prop. 2010, 13, 972–982. [Google Scholar] [CrossRef] [Green Version]
- Farjami, T.; Madadlou, A.; Labbafi, M. Characteristics of the Bulk Hydrogels Made of the Citric Acid Cross-Linked Whey Protein Microgels. Food Hydrocoll. 2015, 50, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Zand-Rajabi, H.; Madadlou, A. Citric Acid Cross-Linking of Heat-Set Whey Protein Hydrogel Influences Its Textural Attributes and Caffeine Uptake and Release Behaviour. Int. Dairy J. 2016, 61, 142–147. [Google Scholar] [CrossRef]
- Svanberg, L.; Wassén, S.; Gustinelli, G.; Öhgren, C. Design of Microcapsules with Bilberry Seed Oil, Cold-Set Whey Protein Hydrogels and Anthocyanins: Effect of PH and Formulation on Structure Formation Kinetics and Resulting Microstructure during Purification Processing and Storage. Food Chem. 2019, 280, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, X.; Zhu, Y.; Bora, A.F.M.; Zhao, Y.; Du, L.; Li, D.; Bi, W. Effect of Microencapsulation with Maillard Reaction Products of Whey Proteins and Isomaltooligosaccharide on the Survival of Lactobacillus Rhamnosus. LWT 2016, 73, 37–43. [Google Scholar] [CrossRef]
- Aderibigbe, B.; Ndwabu, S. Evaluation of Whey Protein Isolate-Graft-Carbopol-Polyacrylamide PH-Sensitive Composites for Controlled Release of Pamidronate. Polym. Bull. 2017, 74, 5129–5144. [Google Scholar] [CrossRef]
- Mishra, R.; Majeed, A.; Banthia, A. Development and Characterization of Pectin/Gelatin Hydrogel Membranes for Wound Dressing. Int. J. Plast. Technol. 2011, 15, 82–95. [Google Scholar] [CrossRef]
- Balakrishnan, B.; Mohanty, M.; Umashankar, P.; Jayakrishnan, A. Evaluation of an in Situ Forming Hydrogel Wound Dressing Based on Oxidized Alginate and Gelatin. Biomaterials 2005, 26, 6335–6342. [Google Scholar] [CrossRef]
- Rattanaruengsrikul, V.; Pimpha, N.; Supaphol, P. Development of Gelatin Hydrogel Pads as Antibacterial Wound Dressings. Macromol. Biosci. 2009, 9, 1004–1015. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, X.-K.; Xue, X.-T.; Wu, D.-Y. Hydrogel Sheets of Chitosan, Honey and Gelatin as Burn Wound Dressings. Carbohydr. Polym. 2012, 88, 75–83. [Google Scholar] [CrossRef]
- Abaee, A.; Mohammadian, M.; Jafari, S.M. Whey and Soy Protein-Based Hydrogels and Nano-Hydrogels as Bioactive Delivery Systems. Trends Food Sci. Technol. 2017, 70, 69–81. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Xiao, L.; Ould Eleya, M. Whey Protein Concentrate Hydrogels as Bioactive Carriers. J. Appl. Polym. Sci. 2006, 99, 2470–2476. [Google Scholar] [CrossRef]
- Shams, B.; Ebrahimi, N.G.; Khodaiyan, F. Development of Antibacterial Nanocomposite: Whey Protein-Gelatin-Nanoclay Films with Orange Peel Extract and Tripolyphosphate as Potential Food Packaging. Adv. Polym. Technol. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sarbon, N.M.; Badii, F.; Howell, N.K. The Effect of Chicken Skin Gelatin and Whey Protein Interactions on Rheological and Thermal Properties. Food Hydrocoll. 2015, 45, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Li, Y.; Chai, Z.; Leng, X. Study of the Physical Properties of Whey Protein Isolate and Gelatin Composite Films. J. Agric. Food Chem. 2010, 58, 5100–5108. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Auty, M.A.E.; Kerry, J.P. Physical Assessment of Composite Biodegradable Films Manufactured Using Whey Protein Isolate, Gelatin and Sodium Alginate. J. Food Eng. 2010, 96, 199–207. [Google Scholar] [CrossRef]
- Jesus, G.L.; Baldasso, C.; Marcílio, N.R.; Tessaro, I.C. Demineralized Whey–Gelatin Composite Films: Effects of Composition on Film Formation, Mechanical, and Physical Properties. J Appl Polym Sci 2020, 137, 49282. [Google Scholar] [CrossRef]
- Martin, A.H.; Bakhuizen, E.; Ersch, C.; Urbonaite, V.; de Jongh, H.H.J.; Pouvreau, L. Gelatin Increases the Coarseness of Whey Protein Gels and Impairs Water Exudation from the Mixed Gel at Low Temperatures. Food Hydrocoll. 2016, 56, 236–244. [Google Scholar] [CrossRef]
- Tyuftin, A.A.; Wang, L.; Auty, M.A.E.; Kerry, J.P. Development and Assessment of Duplex and Triplex Laminated Edible Films Using Whey Protein Isolate, Gelatin and Sodium Alginate. IJMS 2020, 21, 2486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walkenström, P.; Hermansson, A.-M. Fine-Stranded Mixed Gels of Whey Proteins and Gelatin. Food Hydrocoll. 1996, 10, 51–62. [Google Scholar] [CrossRef]
- Fitzsimons, S.M.; Mulvihill, D.M.; Morris, E.R. Segregative Interactions between Gelatin and Polymerised Whey Protein. Food Hydrocoll. 2008, 22, 485–491. [Google Scholar] [CrossRef]
- Laranjo, M.R.; Costa, B. de S.; Garcia-Rojas, E.E. Stabilization of Gelatin and Carboxymethylcellulose Water-in-Water Emulsion by Addition of Whey Protein. Polímeros 2019, 29, e2019051. [Google Scholar] [CrossRef]
- Zúñiga, R.N.; Kulozik, U.; Aguilera, J.M. Ultrasonic Generation of Aerated Gelatin Gels Stabilized by Whey Protein β-Lactoglobulin. Food Hydrocoll. 2011, 25, 958–967. [Google Scholar] [CrossRef]
- Da Lira, K.H.D.S.; Passos, T.S.; Ramalho, H.M.M.; da Rodrigues, K.D.S.R.; de Vieira, É.A.; de Cordeiro, A.M.T.M.; de Maciel, B.L.L.; da Damasceno, K.S.F.S.C.; de Sousa, F.C., Jr.; de Assis, C.F. Whey Protein Isolate-Gelatin Nanoparticles Enable the Water-Dispersibility and Potentialize the Antioxidant Activity of Quinoa Oil (Chenopodium Quinoa). PLoS ONE 2020, 15, e0240889. [Google Scholar]
- Dziadek, M.; Kudlackova, R.; Zima, A.; Slosarczyk, A.; Ziabka, M.; Jelen, P.; Shkarina, S.; Cecilia, A.; Zuber, M.; Baumbach, T.; et al. Novel Multicomponent Organic–Inorganic WPI/Gelatin/CaP Hydrogel Composites for Bone Tissue Engineering. J Biomed Mater Res 2019, 107, 2479–2491. [Google Scholar] [CrossRef]
- Stănilă, A.; Braicu, C.; Stănilă, S. Antibacterial Activity of Copper and Cobalt Amino Acids Complexes. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Amolegbe, S.A.; Adewuyi, S.; Akinremi, C.A.; Adediji, J.F.; Lawal, A.; Atayese, A.O.; Obaleye, J.A. Iron (III) and Copper (II) Complexes Bearing 8-Quinolinol with Amino-Acids Mixed Ligands: Synthesis, Characterization and Antibacterial Investigation. Arab. J. Chem. 2015, 8, 742–747. [Google Scholar] [CrossRef] [Green Version]
- Rani, V.S.V.; Prabakaran, E.; Jesudurai, D. Synthesis, Characterization and Antimicrobial Activity of L-Tryptophan Coordinated Copper (II) N, N-Donor Amino Acid Complexes. Asian J. Chem. 2016, 28, 2685. [Google Scholar] [CrossRef]
- Tao, B.; Lin, C.; Deng, Y.; Yuan, Z.; Shen, X.; Chen, M.; He, Y.; Peng, Z.; Hu, Y.; Cai, K. Copper-Nanoparticle-Embedded Hydrogel for Killing Bacteria and Promoting Wound Healing with Photothermal Therapy. J. Mater. Chem. B 2019, 7, 2534–2548. [Google Scholar] [CrossRef] [PubMed]
- Mokhtar, A.; Djelad, A.; Bengueddach, A.; Sassi, M. CuNPs-Magadiite/Chitosan Nanocomposite Beads as Advanced Antibacterial Agent: Synthetic Path and Characterization. Int. J. Biol. Macromol. 2018, 118, 2149–2155. [Google Scholar] [CrossRef]
- Forero, J.C.; Roa, E.; Reyes, J.G.; Acevedo, C.; Osses, N. Development of Useful Biomaterial for Bone Tissue Engineering by Incorporating Nano-Copper-Zinc Alloy (NCuZn) in Chitosan/Gelatin/Nano-Hydroxyapatite (Ch/G/NHAp) Scaffold. Materials 2017, 10, 1177. [Google Scholar] [CrossRef] [Green Version]
- Prodan, D.; Filip, M.; Perhaița, I.; Vlassa, M.; Popescu, V.; Marcus, I.; Moldovan, M. The Influence of Minerals and Lactose Content on the Stability of Whey Protein Powders. Studia Univ. Babes-Bolyai Chem. 2017, 62, 397–410. [Google Scholar] [CrossRef]
- Fernández, A.; Kelly, P. PH-Stat vs. Free-Fall PH Techniques in the Enzymatic Hydrolysis of Whey Proteins. Food Chem. 2016, 199, 409–415. [Google Scholar] [CrossRef]
- Adler-Nissen, J. Enzymic Hydrolysis of Food Proteins.; Elsevier: Amsterdam, The Netherlands, 1986; ISBN 0-85334-386-1. [Google Scholar]
- Yin, Y.; Ji, X.; Dong, H.; Ying, Y.; Zheng, H. Study of the Swelling Dynamics with Overshooting Effect of Hydrogels Based on Sodium Alginate-g-Acrylic Acid. Carbohydr. Polym. 2008, 71, 682–689. [Google Scholar] [CrossRef]
- Poulsen, N.A.; Eskildsen, C.E.; Akkerman, M.; Johansen, L.B.; Hansen, M.S.; Hansen, P.W.; Skov, T.; Larsen, L.B. Predicting Hydrolysis of Whey Protein by Mid-Infrared Spectroscopy. Int. Dairy J. 2016, 61, 44–50. [Google Scholar] [CrossRef]
- Mohammadian, M.; Madadlou, A. Characterization of Fibrillated Antioxidant Whey Protein Hydrolysate and Comparison with Fibrillated Protein Solution. Food Hydrocoll. 2016, 52, 221–230. [Google Scholar] [CrossRef]
- Gherman, T.; Popescu, V.; Carpa, R.; Rapa, M.; Gavril, G.L.; Dudescu, M.C.; Bombos, D. Potential Use of Galium Verum Essential Oil for Antibacterial Properties in Gelatin Based Hydrogels Prepared by Microwave Irradiation Technique. Rev. De Chim. 2018, 69, 575–580. [Google Scholar] [CrossRef]
- Lee, S.-H.; Lefèvre, T.; Subirade, M.; Paquin, P. Changes and Roles of Secondary Structures of Whey Protein for the Formation of Protein Membrane at Soy Oil/Water Interface under High-Pressure Homogenization. J. Agric. Food Chem. 2007, 55, 10924–10931. [Google Scholar] [CrossRef] [PubMed]
- Dascalu (Rusu), L.M.; Moldovan, M.; Prodan, D.; Ciotlaus, I.; Popescu, V.; Baldea, I.; Carpa, R.; Sava, S.; Chifor, R.; Badea, M.E. Assessment and Characterization of Some New Photosensitizers for Antimicrobial Photodynamic Therapy (APDT). Materials 2020, 13, 3012. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Singh, B.R. A Distinct Utility of the Amide III Infrared Band for Secondary Structure Estimation of Aqueous Protein Solutions Using Partial Least Squares Methods. Biochemistry 2004, 43, 2541–2549. [Google Scholar] [CrossRef]
- Singh, B.R.; DeOliveira, D.B.; Fu, F.-N.; Fuller, M.P. Fourier Transform Infrared Analysis of Amide III Bands of Proteins for the Secondary Structure Estimation; International Society for Optics and Photonics: Bellingham, WA, USA, 1993; Volume 1890, pp. 47–55. [Google Scholar]
- Demchenko, A.P. Ultraviolet Spectroscopy of Proteins; Springer Science & Business Media: Berlin, Germany, 2013; ISBN 3-642-70847-1. [Google Scholar]
- Gunasekaran, S.; Ko, S.; Xiao, L. Use of Whey Proteins for Encapsulation and Controlled Delivery Applications. J. Food Eng. 2007, 83, 31–40. [Google Scholar] [CrossRef]
- Xu, S.; Fan, L.; Zeng, M.; Wang, J.; Liu, Q. Swelling Properties and Kinetics of CaCl2/Polyacrylamide Hygroscopic Hybrid Hydrogels. Colloids Surf. A: Physicochem. Eng. Asp. 2010, 371, 59–63. [Google Scholar] [CrossRef]
Sample Name | Grams CuSO4 *5H2O/Sample | Concentration 1 CuSO4 * 5H2O [%] | Sample Preparation | Average Films Thickness [μm] |
---|---|---|---|---|
H | 0 | 0.0 | 0.5 g gelatin + 0.4 g glycerol + 4 mL hydrolysate + 2 mL water | 231 |
H WPI | 0 | 0.0 | 0.5 g gelatin + 0.4 g glycerol + 4 mL WPI 5% + 2 mL water | - |
H 0.036 | 0.036 | 0.5 | 0.5 g gelatin + 0.4 g glycerol + 4 mL hydrolysate + 2 mL water + 0.036 g CuSO4 * 5H2O | 266 |
WPI 0.036 | 0.036 | 0.5 | 0.5 g gelatin + 0.4 g glycerol + 4 mL WPI 5% + 2 mL water + 0.036 g CuSO4 * 5H2O | 262 |
H 0.06 | 0.06 | 0.9 | 0.5 g gelatin + 0.4 g glycerol + 4 mL hydrolysate + 2 mL water + 0.06 g CuSO4 * 5H2O | 286 |
WPI 0.06 | 0.06 | 0.9 | 0.5 g gelatin + 0.4 g glycerol + 4 mL WPI 5% + 2 mL water + 0.06 g CuSO4 * 5H2O | 290 |
H 0.072 | 0.072 | 1 | 0.5 g gelatin + 0.4 g glycerol + 4 mL hydrolysate + 2 mL water + 0.072 gCuSO4 * 5H2O | 271 |
WPI 0.072 | 0.072 | 1 | 0.5 g gelatin + 0.4 g glycerol + 4 mL WPI 5% + 2 mL water + 0.072 gCuSO4 * 5H2O | 269 |
H 0.12 | 0.12 | 1.7 | 0.5 g gelatin + 0.4 g glycerol + 4 mL hydrolysate 2 mL water + 0.12 g CuSO4 * 5H2O | 269 |
H 0.24 | 0.24 | 3 | 0.5 g gelatin + 0.4 g glycerol + 4 mL hydrolysate 2 mL water + 0.24 g CuSO4 * 5H2O | 278 |
Sample | H | H-WPI | H 0.036 | WPI 0.036 | H 0.06 | WPI 0.06 | H 0.072 | WPI 0.072 | H 0.12 | H 0.24 |
---|---|---|---|---|---|---|---|---|---|---|
nF | 1.07 | 1.18 | 0.85 | 1.53 | 1.39 | 0.79 | 1.31 | 0.64 | 1.11 | 0.79 |
kF | 1.97 | 1.77 | 1.66 | 2.66 | 2.48 | 1.33 | 2.28 | 1.40 | 2.06 | 1.50 |
RF2 | 0.7392 | 0.9997 | 0.9454 | 0.8894 | 0.9094 | 0.9704 | 0.8168 | 0.7137 | 0.9431 | 0.9326 |
SW calculated | 3.66 | 2.90 | 3.05 | 4.08 | 2.70 | 6.98 | 5.18 | 5.60 | 8.33 | 9.99 |
SW experimental | 3.61 | 2.55 | 3.03 | 4.70 | 2.69 | 6.97 | 4.70 | 5.56 | 8.26 | 9.19 |
k [1/h] | 0.16 | 4.92 | 0.06 | 2.22 | 0.89 | 1.19 | 0.25 | 0.19 | 0.11 | 0.10 |
R2 | 0.9987 | 0.9999 | 0.9975 | 0.9996 | 0.9994 | 0.9999 | 0.9988 | 0.9995 | 0.9997 | 0.9998 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu, V.; Molea, A.; Moldovan, M.; Lopes, P.M.; Mazilu Moldovan, A.; Popescu, G.L. The Influence of Enzymatic Hydrolysis of Whey Proteins on the Properties of Gelatin-Whey Composite Hydrogels. Materials 2021, 14, 3507. https://doi.org/10.3390/ma14133507
Popescu V, Molea A, Moldovan M, Lopes PM, Mazilu Moldovan A, Popescu GL. The Influence of Enzymatic Hydrolysis of Whey Proteins on the Properties of Gelatin-Whey Composite Hydrogels. Materials. 2021; 14(13):3507. https://doi.org/10.3390/ma14133507
Chicago/Turabian StylePopescu, Violeta, Andreia Molea, Marioara Moldovan, Pompilia Mioara Lopes, Amalia Mazilu Moldovan, and George Liviu Popescu. 2021. "The Influence of Enzymatic Hydrolysis of Whey Proteins on the Properties of Gelatin-Whey Composite Hydrogels" Materials 14, no. 13: 3507. https://doi.org/10.3390/ma14133507
APA StylePopescu, V., Molea, A., Moldovan, M., Lopes, P. M., Mazilu Moldovan, A., & Popescu, G. L. (2021). The Influence of Enzymatic Hydrolysis of Whey Proteins on the Properties of Gelatin-Whey Composite Hydrogels. Materials, 14(13), 3507. https://doi.org/10.3390/ma14133507