Heterogeneous Strain Distribution in the Subchondral Bone of Human Osteoarthritic Femoral Heads, Measured with Digital Volume Correlation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Test-jig
2.3. Specimen Loading and µCT Imaging
2.4. Image Processing and DVC Approach
2.5. Uncertainties Analyses of the DVC
2.6. DVC Analyses and Evaluation of Strain
3. Results
3.1. Mechanical Loading
3.2. Uncertainties Analyses of the DVC Approach
3.3. Digital Volume Correlation (DVC)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Specimen 2
Appendix A.2. Specimen 3
Appendix A.3. Specimen 5
References
- Loeser, R.F.; Goldring, S.R.; Scanzello, C.R.; Goldring, M.B. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012, 64, 1697–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arthritis Research UK. Osteoarthritis in General Practice: Data and Perspectives; Versus Arthritis: Chesterfield, UK, 2013. [Google Scholar]
- Tinto, O. Response to N.J. Higham. Natl. Joint Regist. Annu. Rep. 2019. [Google Scholar] [CrossRef]
- Felson, D. Osteoarthritis as a disease of mechanics. Osteoarthr. Cartil. 2013, 21, 10–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varady, N.H.; Grodzinsky, A.J. Osteoarthritis year in review 2015: Mechanics. Osteoarthr. Cartil. 2016, 24, 27–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agricola, R.; Waarsing, J.H.; Arden, N.K.; Carr, A.J.; Bierma-Zeinstra, S.M.A.; Thomas, G.; Weinans, H.; Glyn-Jones, S. Cam impingement of the hip—a risk factor for hip osteoarthritis. Nat. Rev. Rheumatol. 2013, 9, 630–634. [Google Scholar] [CrossRef]
- Baker-LePain, J.C.; Lane, N.E. Relationship between joint shape and the development of osteoarthritis. Curr. Opin. Rheumatol. 2010, 22, 538–543. [Google Scholar] [CrossRef] [Green Version]
- Lane, N.E.; Lin, P.; Christiansen, L.; Gore, L.R.; Williams, E.N.; Hochberg, M.C.; Nevitt, M.C. Association of mild acetabular dysplasia with an increased risk of incident hip osteoarthritis in elderly white women: The study of osteoporotic fractures. Arthritis Rheum. 2000, 43, 400–404. [Google Scholar] [CrossRef]
- Thomas, G.; Batra, R.; Kiran, A.; Pennant, S.; Hart, D.; Spector, T.; Gill, H.; Javaid, M.; Carr, A.; Arden, N.; et al. The association between hip morpholgy and 19-year risk of osteoarthritis in the hip. Osteoarthr. Cartil. 2012, 20, S23–S24. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.-M.; Li, Z.-C.; Jiang, L.-S.; Jiang, S.-D.; Dai, L.-Y. Micro-CT and mechanical evaluation of subchondral trabecular bone structure between postmenopausal women with osteoarthritis and osteoporosis. Osteoporos. Int. 2009, 21, 1383–1390. [Google Scholar] [CrossRef]
- Sun, S.-S.; Ma, H.-L.; Liu, C.-L.; Huang, C.-H.; Cheng, C.-K.; Wei, H.-W. Difference in femoral head and neck material properties between osteoarthritis and osteoporosis. Clin. Biomech. 2008, 23, S39–S47. [Google Scholar] [CrossRef]
- Topoliński, T.; Cichański, A.; Mazurkiewicz, A.; Nowicki, K. The Relationship between Trabecular Bone Structure Modeling Methods and the Elastic Modulus as Calculated by FEM. Sci. World, J. 2012, 2012, 827196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, M.; Barnett, L.; Rochester, J.; Wilkinson, J.M.; Dall’Ara, E. A new approach to comprehensively evaluate the morphological properties of the human femoral head: Example of application to osteoarthritic joint. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bay, B.K.; Smith, T.S.; Fyhrie, D.P.; Saad, M. Digital volume correlation: Three-dimensional strain mapping using X-ray tomography. Exp. Mech. 1999, 39, 217–226. [Google Scholar] [CrossRef]
- Roberts, B.C.; Perilli, E.; Reynolds, K.J. Application of the digital volume correlation technique for the measurement of displacement and strain fields in bone: A literature review. J. Biomech. 2014, 47, 923–934. [Google Scholar] [CrossRef]
- Grassi, L.; Isaksson, H. Extracting accurate strain measurements in bone mechanics: A critical review of current methods. J. Mech. Behav. Biomed. Mater. 2015, 50, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Bay, B.K. Texture correlation: A method for the measurement of detailed strain distributions within trabecular bone. J. Orthop. Res. 1995, 13, 258–267. [Google Scholar] [CrossRef]
- Christen, D.; Levchuk, A.; Schori, S.; Schneider, P.; Boyd, S.K.; Müller, R. Deformable image registration and 3D strain mapping for the quantitative assessment of cortical bone microdamage. J. Mech. Behav. Biomed. Mater. 2012, 8, 184–193. [Google Scholar] [CrossRef]
- Joffre, T.; Isaksson, P.; Procter, P.; Persson, C. Trabecular deformations during screw pull-out: A micro-CT study of lapine bone. Biomech. Model. Mechanobiol. 2017, 16, 1349–1359. [Google Scholar] [CrossRef]
- Le Cann, S.; Tudisco, E.; Perdikouri, C.; Belfrage, O.; Kaestner, A.; Hall, S.; Tägil, M.; Isaksson, H. Characterization of the bone-metal implant interface by Digital Volume Correlation of in-situ loading using neutron tomography. J. Mech. Behav. Biomed. Mater. 2017, 75, 271–278. [Google Scholar] [CrossRef]
- Rapagna, S.; Berahmani, S.; Wyers, C.E.; Bergh, J.P.V.D.; Reynolds, K.J.; Tozzi, G.; Janssen, D.; Perilli, E. Quantification of human bone microarchitecture damage in press-fit femoral knee implantation using HR-pQCT and digital volume correlation. J. Mech. Behav. Biomed. Mater. 2019, 97, 278–287. [Google Scholar] [CrossRef]
- Chen, Y.; Dall׳ara, E.; Sales, E.; Manda, K.; Wallace, R.; Pankaj, P.; Viceconti, M. Micro-CT based finite element models of cancellous bone predict accurately displacement once the boundary condition is well replicated: A validation study. J. Mech. Behav. Biomed. Mater. 2017, 65, 644–651. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.C.; Tozzi, G.; Cristofolini, L.; Danesi, V.; Viceconti, M.; Dall’Ara, E. Micro Finite Element models of the vertebral body: Validation of local displacement predictions. PLoS ONE 2017, 12, e0180151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackman, T.M.; Delmonaco, A.M.; Morgan, E.F. Accuracy of finite element analyses of CT scans in predictions of vertebral failure patterns under axial compression and anterior flexion. J. Biomech. 2016, 49, 267–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliviero, S.; Giorgi, M.; Dall’Ara, E. Validation of finite element models of the mouse tibia using digital volume correlation. J. Mech. Behav. Biomed. Mater. 2018, 86, 172–184. [Google Scholar] [CrossRef]
- Ridzwan, M.I.Z.; Sukjamsri, C.; Pal, B.; Van Arkel, R.J.; Bell, A.; Khanna, M.; Baskaradas, A.; Abel, R.; Boughton, O.; Cobb, J.; et al. Femoral fracture type can be predicted from femoral structure: A finite element study validated by digital volume correlation experiments. J. Orthop. Res. 2017, 36, 993–1001. [Google Scholar] [CrossRef] [Green Version]
- Zauel, R.; Yeni, Y.N.; Bay, B.K.; Dong, X.N.; Fyhrie, D.P. Comparison of the Linear Finite Element Prediction of Deformation and Strain of Human Cancellous Bone to 3D Digital Volume Correlation Measurements. J. Biomech. Eng. 2005, 128, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Öhman, C.; Baleani, M.; Perilli, E.; Dall’Ara, E.; Tassani, S.; Baruffaldi, F.; Viceconti, M. Mechanical testing of cancellous bone from the femoral head: Experimental errors due to off-axis measurements. J. Biomech. 2007, 40, 2426–2433. [Google Scholar] [CrossRef]
- Ryan, M.; Mohtar, A.; Cleek, T.; Reynolds, K. Time-elapsed screw insertion with microCT imaging. J. Biomech. 2016, 49, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Hildebrand, T.; Rüegsegger, P. A new method for the model-independent assessment of thickness in three-dimensional images. J. Microsc. 1997, 185, 67–75. [Google Scholar] [CrossRef]
- Gundersen, H.; Boyce, R.; Nyengaard, J.; Odgaard, A. The connEulor: Unbiased estimation of connectivity using physical disectors under projection. Bone 1993, 14, 217–222. [Google Scholar] [CrossRef]
- Dall’Ara, E.; Peña-Fernández, M.; Palanca, M.; Giorgi, M.; Cristofolini, L.; Tozzi, G. Precision of Digital Volume Correlation Approaches for Strain Analysis in Bone Imaged with Micro-Computed Tomography at Different Dimensional Levels. Front. Mater. 2017, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Dall’Ara, E.; Barber, D.; Viceconti, M. About the inevitable compromise between spatial resolution and accuracy of strain measurement for bone tissue: A 3D zero-strain study. J. Biomech. 2014, 47, 2956–2963. [Google Scholar] [CrossRef]
- Palanca, M.; Bodey, A.J.; Giorgi, M.; Viceconti, M.; Lacroix, D.; Cristofolini, L.; Dall’Ara, E. Local displacement and strain uncertainties in different bone types by digital volume correlation of synchrotron microtomograms. J. Biomech. 2017, 58, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, M.; Dall’Ara, E. Variability in strain distribution in the mice tibia loading model: A preliminary study using digital volume correlation. Med. Eng. Phys. 2018, 62, 7–16. [Google Scholar] [CrossRef]
- Comini, F.; Palanca, M.; Cristofolini, L.; Dall’Ara, E. Uncertainties of synchrotron microCT-based digital volume correlation bone strain measurements under simulated deformation. J. Biomech. 2019, 86, 232–237. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Morgan, E.F. Accuracy and precision of digital volume correlation in quantifying displacements and strains in trabecular bone. J. Biomech. 2007, 40, 3516–3520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palanca, M.; Tozzi, G.; Cristofolini, L.; Viceconti, M.; Dall’Ara, E. Three-Dimensional Local Measurements of Bone Strain and Displacement: Comparison of Three Digital Volume Correlation Approaches. J. Biomech. Eng. 2015, 137, 071006. [Google Scholar] [CrossRef]
- Bayraktar, H.H.; Keaveny, T.M. Mechanisms of uniformity of yield strains for trabecular bone. J. Biomech. 2004, 37, 1671–1678. [Google Scholar] [CrossRef]
- Brown, S.; Pollintine, P.; Powell, D.; Davie, M.; Sharp, C. Regional Differences in Mechanical and Material Properties of Femoral Head Cancellous Bone in Health and Osteoarthritis. Calcif. Tissue Int. 2002, 71, 227–234. [Google Scholar] [CrossRef]
- Haba, Y.; Lindner, T.; Fritsche, A.; Schiebenhöfer, A.-K.; Souffrant, R.; Kluess, D.; Skripitz, R.; Mittelmeier, W.; Bader, R. Relationship Between Mechanical Properties and Bone Mineral Density of Human Femoral Bone Retrieved from Patients with Osteoarthritis. Open Orthop. J. 2012, 6, 458–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Aspden, R.M. Composition and Mechanical Properties of Cancellous Bone from the Femoral Head of Patients with Osteoporosis or Osteoarthritis. J. Bone Miner. Res. 1997, 12, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-C.; Dai, L.-Y.; Jiang, L.-S.; Qiu, S. Difference in subchondral cancellous bone between postmenopausal women with hip osteoarthritis and osteoporotic fracture: Implication for fatigue microdamage, bone microarchitecture, and biomechanical properties. Arthritis Rheum. 2012, 64, 3955–3962. [Google Scholar] [CrossRef] [Green Version]
- Perilli, E.; Baleani, M.; Öhman, C.; Baruffaldi, F.; Viceconti, M. Structural parameters and mechanical strength of cancellous bone in the femoral head in osteoarthritis do not depend on age. Bone 2007, 41, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Tassani, S.; Öhman, C.; Baleani, M.; Baruffaldi, F.; Viceconti, M. Anisotropy and inhomogeneity of the trabecular structure can describe the mechanical strength of osteoarthritic cancellous bone. J. Biomech. 2010, 43, 1160–1166. [Google Scholar] [CrossRef]
- Thompson, M.S.; Flivik, G.; Juliusson, R.; Odgaard, A.; Ryd, L. A comparison of structural and mechanical properties in cancellous bone from the femoral head and acetabulum. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2004, 218, 425–429. [Google Scholar] [CrossRef]
- Linde, F.; Sørensen, H.C.F. The effect of different storage methods on the mechanical properties of trabecular bone. J. Biomech. 1993, 26, 1249–1252. [Google Scholar] [CrossRef]
Specimen | Age (Years) | Gender | Tb.BV/TV (%) | Tb.Th (µm) | Tb.Sp (µm) | Tb.N (mm−1) | Conn.D (mm−3) |
---|---|---|---|---|---|---|---|
Specimen #1 | 62 | F | 17.7 | 243 | 1297 | 0.728 | 8.26 |
Specimen #2 | 64 | F | 24.6 | 250 | 743 | 0.983 | 6.41 |
Specimen #3 | 52 | F | 25.7 | 271 | 801 | 0.949 | 5.23 |
Specimen #4 | 82 | M | 21.3 | 269 | 1075 | 0.793 | 5.06 |
Specimen #5 | 67 | F | 22.5 | 304 | 1098 | 0.740 | 3.20 |
MAER (µε) Range VOI0–VOI3 | SDER (µε) Range VOI0–VOI3 | |||||||
---|---|---|---|---|---|---|---|---|
Load case | VOI0 | VOI1 | VOI2 | VOI3 | VOI0 | VOI1 | VOI2 | VOI3 |
Zero load | 529 | 568 | 376 | 495 | 306 | 310 | 221 | 331 |
1% virtual compression | 469 | 488 | 527 | 460 | 296 | 244 | 215 | 270 |
5% virtual compression | 611 | 530 | 486 | 511 | 630 | 644 | 611 | 569 |
Morphometric Parameter | ||||||
---|---|---|---|---|---|---|
Load Step | Strain Parameter | Tb.BV/TV (%) | Tb.Th (µm) | Tb.Sp (µm) | Tb.N (mm−1) | Conn.D (mm−3) |
Load Step 2 | med-εp3 | NS p = 0.75 | rs = 0.90 p = 0.037 | NS p = 0.624 | NS p = 0.624 | NS p = 0.104 |
Percent > 10,000 µε | NS p = 0.87 | NS p = 0.322 | NS p = 0.741 | NS p = 0.741 | NS p = 0.172 | |
Load Step 3 | med-εp3 | NS p = 0.39 | rs = 1.0 p < 0.01 | NS p = 0.873 | NS p = 0.873 | rs = −0.90 p = 0.037 |
Percent > 10,000 µε | NS p = 0.747 | rs = −0.90 p = 0.037 | NS p = 1.0 | NS p = 1.0 | rs = 1.0 p < 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryan, M.K.; Oliviero, S.; Costa, M.C.; Wilkinson, J.M.; Dall’Ara, E. Heterogeneous Strain Distribution in the Subchondral Bone of Human Osteoarthritic Femoral Heads, Measured with Digital Volume Correlation. Materials 2020, 13, 4619. https://doi.org/10.3390/ma13204619
Ryan MK, Oliviero S, Costa MC, Wilkinson JM, Dall’Ara E. Heterogeneous Strain Distribution in the Subchondral Bone of Human Osteoarthritic Femoral Heads, Measured with Digital Volume Correlation. Materials. 2020; 13(20):4619. https://doi.org/10.3390/ma13204619
Chicago/Turabian StyleRyan, Melissa K., Sara Oliviero, Maria Cristiana Costa, J. Mark Wilkinson, and Enrico Dall’Ara. 2020. "Heterogeneous Strain Distribution in the Subchondral Bone of Human Osteoarthritic Femoral Heads, Measured with Digital Volume Correlation" Materials 13, no. 20: 4619. https://doi.org/10.3390/ma13204619
APA StyleRyan, M. K., Oliviero, S., Costa, M. C., Wilkinson, J. M., & Dall’Ara, E. (2020). Heterogeneous Strain Distribution in the Subchondral Bone of Human Osteoarthritic Femoral Heads, Measured with Digital Volume Correlation. Materials, 13(20), 4619. https://doi.org/10.3390/ma13204619