Low Temperature NH3-SCR over Mn-Ce Oxides Supported on MCM-41 from Diatomite
Abstract
1. Introduction
2. Materials and Methods
2.1. Catalyst Preparation
2.2. Characterization Techniques
3. Results and Discussion
3.1. Analysis of Composition and Morphology of Diatomite
3.2. Specific Surface Area and Pore-size of MCM-41 Catalyst Carrier and Diatomite
3.3. FT-IR Analysis of MCM-41
3.4. XRD Analysis of MCM-41
3.5. SEM and TEM Analysis of MCM-41
3.6. Characterization of Mn-Ce/MCM-41
3.7. Catalyst Activity of Mn-Ce/MCM-41
3.8. NH3-TPD Analysis of Mn-Ce/MCM-41
3.9. NH3-DRIFTS Analysis of Mn-Ce/MCM-41
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abelson, P.H. Air pollution and Acid rain. Science 1985, 230, 617–618. [Google Scholar] [CrossRef][Green Version]
- Taylor, K.C. Nitric oxide catalysis in automotive exhaust systems. Catal. Rev. Sci. Eng. 1993, 35, 457–481. [Google Scholar] [CrossRef]
- Richter, A.; Burrows, J.P.; Nüß, H.; Granier, C.; Niemeier, U. Increase in tropospheric nitrogen dioxide over China observed from space. Nature 2005, 437, 129. [Google Scholar] [CrossRef]
- Zhao, N.; Shen, B.; Yang, X.; Liu, T. Research progress in numerical simulation for flue gas denitration using selective catalytic reduction. Chem. Ind. Eng. Prog. 2010, 11, 169–174. [Google Scholar]
- Shen, B.; Liu, T.; Ning, Z.; Yang, X.; Deng, L. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. J. Environ. Sci. 2010, 22, 1447–1454. [Google Scholar] [CrossRef]
- Ruiben, J.; Yue, L.; Zhongbiao, W.; Haiqiang, W.; Tingting, G. Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3: A comparative study. Chemosphere 2010, 78, 1160–1166. [Google Scholar]
- Tao, Z.; Shaoguang, L.; Mingzao, T.; Chengwu, C.; Yusong, X.U.; Jinming, W.U. Research progress on selective catalytic reduction De-NOx catalysts. J. Chin. Ceram. Soc. 2009, 37, 317–324. [Google Scholar]
- Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.; Olson, D.H.; Sheppard, E.W.; Mccullen, S.B. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114, 10834–10843. [Google Scholar] [CrossRef]
- Siddiqui, S.; Siddiqui, Z.N. Strontium Doped MCM-41: A Highly Efficient, Recyclable and Heterogeneous Catalyst for the Synthesis of Phenoxy Pyrazolyl Pyrazolines. Catal. Lett. 2018, 148, 3628–3645. [Google Scholar] [CrossRef]
- Qiu, J.; Zhuang, K.; Lu, M.; Xu, B.; Fan, Y. The selective catalytic reduction activity of Cu/MCM-41 catalysts prepared by using the Cu2+-MCM-41 mesoporous materials with copper ions in the framework as precursors. Catal. Commun. 2013, 31, 21–24. [Google Scholar] [CrossRef]
- Selim, A.Q.; Mohamed, E.A.; Mobarak, M.; Zayed, A.M.; Seliem, M.K.; Komarneni, S. Cr(VI) uptake by a composite of processed diatomite with MCM-41: Isotherm, kinetic and thermodynamic studies. Microporous Mesoporous Mater. 2018, 260, 84–92. [Google Scholar] [CrossRef]
- Carja, G.; Kameshima, Y.; Okada, K.; Madhusoodana, C.D. Mn–Ce/ZSM5 as a new superior catalyst for NO reduction with NH3. Appl. Catal. B Environ. 2007, 73, 60–64. [Google Scholar] [CrossRef]
- Sui, Z.; Chen, X.; Wang, L.Y.; Xu, L.; Zhuang, W.; Chai, Y.; Yang, C. Capping effect of CTAB on positively charged Ag nanoparticles. Phys. E Low Dimens. Syst. Nanostr. 2006, 33, 308–314. [Google Scholar] [CrossRef]
- Borodko, Y.; Jones, L.; Lee, H.; Frei, H.; Somorjai, G.A. Spectroscopic Study of Tetradecyltrimethylammonium Bromide Pt−C14TAB Nanoparticles: Structure and Stability. Langmuir 2009, 25, 6665–6671. [Google Scholar] [CrossRef] [PubMed]
- Cedeno, G.H.; Silvarodrigo, R.; Guevaralara, A.; Melobanda, J.A.; La Torre, A.I.R.D.; Flores, F.M.; Castillomares, A. Role of the Si/Al molar ratio and pH in NIW/MCM41-Al2O3 catalysts for HDS of DBT. Catal. Today 2016, 271, 64–79. [Google Scholar] [CrossRef]
- Ţucureanu, V.; Matei, A.; Avram, A. FTIR Spectroscopy for Carbon Family Study. Crit. Rev. Anal. Chem. 2016, 46, 502–520. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Shukla, P.; Rufford, T.E.; Rudolph, V.; Zhu, Z. Selective catalytic reduction of NO with CO using different metal-oxides incorporated in MCM-41. Chem. Eng. J. 2014, 255, 437–444. [Google Scholar] [CrossRef]
- Gregori, M.; Benito, P.; Fornasari, G.; Migani, M.; Millefanti, S.; Ospitali, F.; Albonetti, S. Preparation of Pd/Cu MCM-41 catalysts for hydrodechlorination: Influence of the synthesis procedure. Microporous Mesoporous Mater. 2014, 190, 1–9. [Google Scholar] [CrossRef]
- Vartuli, J.C.; Schmitt, K.D.; Mccullen, S.B.; Hellring, S.D.; Beck, J.S.; Schlenker, J.L.; Olson, D.H.; Sheppard, E.W.; Kresge, C.T.; Roth, W.J. Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves: Inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications. Chem. Mater. 1994, 6, 2317–2326. [Google Scholar] [CrossRef]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Huo, Q.; Margolese, A.D.I.; Stucky, G.D. Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials. Chem. Mater. 1996, 8, 1147–1160. [Google Scholar] [CrossRef]
- Ma, X.; Liang, Y.; Cui, S.; Wang, Z.; Wang, Y. Preparation of Denitrification Catalytic Materials Using TiO2-SiO2 Composites as Carrier by Rice Husk Ash. Mater. Rev. 2018, 32, 3984–3988. [Google Scholar]
- Firouzi, A.; Kumar, D.; Bull, L.M.; Besier, T.; Sieger, P.; Huo, Q.; Walker, S.A.; Zasadzinski, J.A.; Glinka, C.; Nicol, J. Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science 1995, 267, 1138–1143. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.K.; Nam, K.B.; Hong, S.C. Influence of tungsten on the activity of a Mn/Ce/W/Ti catalyst for the selective catalytic reduction of NO with NH3 at low temperatures. Appl. Catal. A Gen. 2015, 497, 160–166. [Google Scholar]
- Putluru, S.S.R.; Schill, L.; Jensen, A.D.; Siret, B.; Tabaries, F.; Fehrmann, R. Mn/TiO2 and Mn-Fe/TiO2 catalysts synthesized by deposition precipitation—Promising for selective catalytic reduction of NO with NH3 at low temperatures. Appl. Catal. B Environ. 2015, 165, 628–635. [Google Scholar] [CrossRef]
- Fan, J.; Ning, P.; Song, Z.; Liu, X.; Wang, L.; Wang, J.; Wang, H.; Long, K.; Zhang, Q. Mechanistic aspects of NH3-SCR reaction over CeO2/TiO2-ZrO2-SO42- catalyst: In situ DRIFTS investigation. Chem. Eng. J. 2018, 334, 855–863. [Google Scholar] [CrossRef]
- Zhang, Q.; Jie, F.; Ping, N.; Song, Z.; Xin, L.; Wang, L.; Jing, W.; Wang, H.; Long, K. In situ DRIFTS investigation of NH3-SCR reaction over CeO2 /zirconium phosphate catalyst. Appl. Surf. Sci. 2018, 435, 1037–1045. [Google Scholar] [CrossRef]
- Chen, W.; Li, Z.; Hu, F.; Qin, L.; Han, J.; Wu, G. In-situ DRIFTS investigation on the selective catalytic reduction of NO with NH3 over the sintered ore catalyst. Appl. Surf. Sci. 2018, 439, 75–81. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, X.; Härelind, H.; Duan, W.; Wang, B.; Si, Z. NH3-SCR reaction mechanisms of NbOx/Ce0.75Zr0.25O2 catalyst: DRIFTS and kinetics studies. J. Mol. Catal. A Chem. 2016, 423, 172–180. [Google Scholar] [CrossRef]
Sample | Mass (g) | SiO2 (%) |
---|---|---|
Diatomite | 10 | 95.3638 |
filter residue 1 | 5.0228 | 91.1808 |
filter residue 2 | 5.1064 | 90.6944 |
Component | SiO2 | Fe2O3 | Al2O3 | K2O | CaO | Na2O |
---|---|---|---|---|---|---|
Content (%) | 95.36 | 1.41 | 1.08 | 0.86 | 0.62 | 0.22 |
Sample | SBET (m2/g) | Pore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|
MCM-41(0.1) | 858.3 | 0.78 | 3.4 |
MCM-41(0.2) | 941.8 | 0.94 | 3.3 |
MCM-41(0.3) | 924.1 | 0.96 | 3.4 |
Catalyst | Chemical Compositions (wt.%) | SBET (m2/g) | Pore Volume (cm3/g) | Average Pore Diameter (nm) | ||
---|---|---|---|---|---|---|
MnO | CeO2 | SiO2 | ||||
Mn-Ce/MCM-41(0.1) | 3.73 | 2.58 | 93.46 | 829.3 | 0.78 | 3.3 |
Mn-Ce/MCM-41(0.2) | 13.28 | 6.65 | 79.75 | 587.1 | 0.48 | 3.3 |
Mn-Ce/MCM-41(0.3) | 9.29 | 5.30 | 85.13 | 615.1 | 0.52 | 3.4 |
Mn-Ce/Diatomite | 2.38 | 2.22 | 90.93 | 16.9 | 0.06 | 11.5 |
Mn-Ce-SiO2 [22] | 2.68 | 1.56 | 95.47 | 267.9 | 0.60 | 8.7 |
Mn-Ce-TiO2 [22] | MnO | CeO2 | TiO2 | 124.9 | 0.17 | 4.2 |
17.32 | 8.79 | 62.03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, M.; Ma, X.; Cui, S.; Liu, T.; Tian, Y.; Wang, Y. Low Temperature NH3-SCR over Mn-Ce Oxides Supported on MCM-41 from Diatomite. Materials 2019, 12, 3654. https://doi.org/10.3390/ma12223654
Ma M, Ma X, Cui S, Liu T, Tian Y, Wang Y. Low Temperature NH3-SCR over Mn-Ce Oxides Supported on MCM-41 from Diatomite. Materials. 2019; 12(22):3654. https://doi.org/10.3390/ma12223654
Chicago/Turabian StyleMa, Mingxuan, Xiaoyu Ma, Suping Cui, Tingting Liu, Yingliang Tian, and Yali Wang. 2019. "Low Temperature NH3-SCR over Mn-Ce Oxides Supported on MCM-41 from Diatomite" Materials 12, no. 22: 3654. https://doi.org/10.3390/ma12223654
APA StyleMa, M., Ma, X., Cui, S., Liu, T., Tian, Y., & Wang, Y. (2019). Low Temperature NH3-SCR over Mn-Ce Oxides Supported on MCM-41 from Diatomite. Materials, 12(22), 3654. https://doi.org/10.3390/ma12223654